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Abstract
Sheep play  a  vital  role  in  global  agricultural  enterprises  and support  human
livelihoods  by  converting  human-inedible  plant  matter  into  human-edible
products, such as meat and milk. However, the production of methane, a potent
greenhouse gas, during the fermentation of feed by sheep's rumen microbiome
contributes to anthropogenic greenhouse gas emissions. Therefore, the primary
objective of this thesis was to investigate the role of the rumen microbiome in
sheep to enhance feed utilisation,  reduce methane emissions to promote the
long-term sustainability of the sector.  Chapter 2 of this thesis used 16S rRNA
amplicon sequencing to investigate the bacterial  and archaeal  populations in
both  solid  and  liquid  fractions  of  the  rumen  of  sheep  with  different  feed
conversion  rates.  The  study  found  that  the  rumen  archaea  diversity  and
composition differed between feed efficient cohorts, providing evidence for the
link between methane production and dietary energy loss. Chapter 3 explored
the impact of breed on the bacterial and archaeal populations in the solid, liquid,
and epithelial rumen fractions of sheep using 16S rRNA amplicon sequencing.
The study found that breed influenced feed efficiency and the rumen bacterial
populations, with potential applications for breeding programs aimed at selecting
microbiomes  that  can  utilise  feed  efficiently  and  produce  less  methane.  The
study also found variations in the distribution of bacterial taxa between ruminal
fractions, revealing a rumen fraction bias that has implications for sheep rumen
sampling techniques. Chapter 4 used PACs to investigate the effect of time off
feed  (TOF)  on  methane  emissions  and  employed  meta-omics  techniques  to
assess the influence of  TOF on rumen bacterial  and archaeal  communities in
pasture-grazed  sheep.  The  study  found  that  TOF  can  influence  methane
emissions  and  the  composition  of  the  rumen  microbiome,  which  could  have
implications  for  methane-microbiome  studies  involving  animals  that  spend
variable amounts of time off feed. Overall, this thesis showed that the rumen
microbiome is influenced by a range of factors such as feed efficiency, breed,
ruminal fraction, and time off feed, with potential implications for improving feed
conversion  efficiency,  reducing  methane  emissions,  and  optimising  rumen
sampling techniques. 
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Literature Review
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Prospects for adjusting rumen
microbiome composition for

improved productivity &
sustainability of sheep production

McLoughlin S1,2, Spillane C2,*, Waters SM1,*

1 Animal and Bioscience Research Department, Animal and Grassland Research 
and Innovation Centre, Teagasc, Athenry, Co. Galway, Ireland
2 Genetics and Biotechnology Laboratory, Agriculture, Food Systems and 
Bioeconomy Research Centre, Ryan Institute, University of Galway, Ireland

Keywords: Sheep, Rumen Microbiome, Feed efficiency, Methane. (Min.5-
Max. 8)

Abstract
Sheep are an integral component of agricultural systems worldwide due to their
ability to convert human-inedible plant biomass into valuable products like meat
and  milk.  However,  the  contribution  of  livestock  production  to  global
anthropogenic greenhouse gas (GHG) emissions is a concern. The efficiency of
feed  utilisation  and  the  extent  of  methane  (CH4)  production  are  primarily
associated  with  the  metabolic  activities  of  the  diverse  microbial  community
inhabiting the rumen, known as the rumen microbiome. Efforts directed towards
unravelling the intricate interactions within the rumen microbiome can provide
valuable insights into optimising feed efficiency, mitigating CH4 emissions, and
ensuring the long-term sustainability of the sheep sector.

Sheep evolution
The earliest ruminants originated approximately 50 million years ago during the
late Eocene period as selenodont Artiodactyls.  The evolutionary history within
suborder Ruminantia is considered to have involved successive lineages from
Hypertragulidae to Tragulidae to Leptomerycidae to Gelocidae to Moschidae, and
eventually to horned ruminants (Webb and Taylor,  1980). Today, there are 6
extant  ruminant  families  which  include  the  Tragulidae  (e.g  chevrotains),
Moschidae  (e.g  muskdeer),  Giraffidae  (e.g  giraffe,  okapi),  Antilocapridae  (e.g
pronghorn) (Figure 1.1),  Cervidae (e.g deer,  moose)  and Bovidae (e.g sheep,
cattle) (Hackmann and Spain, 2010). Among the ruminant families Bovidae are
the most species-rich ruminant subfamily, with 140 species that include common
domestic  livestock,  such  as  sheep,  goats,  and  cattle  (Hackmann  and  Spain,
2010).  The  diversification  of  bovids  and  the  divergence  of  sheep  and  goats
corresponded  with  the  proliferation  of  C4  grasses  (grasses  that  utilise  C4
photosynthesis) during the late Neogene period (Strömberg, 2011;Jiang et al.,
2014). According to archaeological  records of ungulate fossils,  the sheep and
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goat lineages diverged approximately 5-7 million years ago (Savage and Russell,
1983). The Caprinae lineage (including sheep and goat species) split from the
Bovinae  (Bos  Taurus)  branch  around 15-20 million  years  ago.  More recently,
phylogenetic analysis based on single orthologous genes carried out by Delano
et al. (2014) indicates that sheep and goats diverged from cattle approximately
19.9 million years ago (Ma) before present (BP), while sheep and goats diverged
approximately 4.3 Ma BP (Jiang et al., 2014). 

Figure  1.1 Pronghorn-Antelope.  Image  adapted  from  (Jones,  2018).
Photographer Donald M. Jones

Domestication of sheep 
The  domestication  of  sheep  is  understood  to  have  occurred  in  the  Fertile
Crescent region of the Middle East, which includes parts of modern-day Turkey,
Iran, and Iraq (Zygoyiannis, 2006). Archaeological evidence suggests that sheep
were first domesticated by humans in this region around 10,000-11,000 years
ago,  making  them  one  of  the  oldest  domesticated  livestock  (Zeder,  2008).
Domesticated sheep are descended from wild  Asian  mouflon (Ovis  orientalis)
(Rezaei et al., 2010), which were hunted and later tamed by early humans for
food  and  fiber  (Fuks  and  Marom,  2021).  Domestication  reshaped  the
morphology,  behavior,  and  genetics  of  the  animals.  Today,  there  are  1,143
different  breeds  of  sheep,  (FAO,  2023),  each  with  their  own  unique
characteristics and uses. They are well-suited to a variety of environments, from
arid rangelands to lush pastures (Pearce et al., 2010;Arora et al., 2011), and are
raised for their wool, meat, and milk in many countries around the world.

Global importance of sheep 
Sheep production is a globally significant agricultural activity that plays a vital
role  in  sustaining  rural  economies  and  supporting  cultures  in  many  regions
globally (Ibrahim et al.,  2019). Sheep provide highly valued products such as
meat,  milk,  and  wool,  which  are  traded  and  consumed widely  (Zygoyiannis,
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2006).  Between  1998  and  2018,  the  aggregate  global  economic  output
attributable to the sheep industry amounted to an estimated valuation of $34
billion, accounting for 2% of total output value of all farmed animals (Schrobback
et al., 2023).
Sheep wool is a highly versatile and sustainable material and was among the
earliest  commodities  to  be  traded  internationally  (Rajabinejad  et  al.,  2019).
Sheep wool has found applications in various industries such as textiles (Allafi et
al., 2022) and construction (Mansour et al., 2016;Alyousef et al., 2022). Sheep
are particularly significant for global food security, since as ruminants they are
capable of transforming human inedible plant matter into high quality human
edible protein products such as meat and milk. These products provide a source
of protein, fat (Omega-6 and -3 fatty acids), vitamins (B, E) and minerals (Zn, Fe,
and K) (Fowler et al., 2019), which are essential for maintaining human health
and wellbeing, and as an energy source. 
In recent years,  there has been an increase in the volume of meat and milk
produced  by  sheep  production  systems  globally  (FAOSTAT,  2022),  a  trend
attributed to the growing global population and rising demand, particularly in
emerging nations (Salter, 2017). Global production of sheep meat ranks fourth in
the world, following chicken, pig, and beef, and is higher than that of goat meat,
with approximately 9.9 million tonnes produced in 2020 (FAOSTAT, 2022). Data
obtained from FAOSTAT (2022) indicates a consistent upward trend in the global
sheep population over the course of the last two decades. In 2020, the worldwide
sheep population reached 1.3 billion, representing a significant increase of 20%
compared  to  the  figures  recorded  in  2000.  Furthermore,  when  compared  to
2010, there was a 17% increase in the global sheep population (FAOSTAT, 2022).
While sheep farming is a vital component of global  agricultural  systems, it is
especially  important  in  developing  nations.  According  to  data  from FAOSTAT
(2022), approximately 33% and 20% of the global sheep population are located
in low-income food deficit and least developed countries (FAOSTAT, 2022). The
largest sheep populations are found in Asia and Africa, with China having the
largest  sheep  population  globally,  with  over  173  million  heads.  The  steady
increase in the global sheep population underscores the critical importance of
sheep production at a global scale, particularly in developing countries, where it
plays a significant role in food security and economic stability.

Agriculture and sheep production in Ireland
Agriculture is Ireland’s oldest indigenous industry, and its national importance is
evident from the fact that it covers a vast portion of the country’s land area.
According to the Central  Statistics Office (CSO), in 2018, agriculture occupied
58.4% of Ireland’s total land area (CSO, 2020), which was significantly higher
than  the  EU  average  of  39.1%  for  the  same  year  (Eurostat,  2022).  The
prominence of agriculture in Ireland is due to the favorable temperate climate
and  rainfall  conditions  that  are  suitable  for  grass  growth,  facilitating  the
establishment of animal farming systems that are primarily based on grazing and
the production of grass-fed agri-products (O’Mara, 2012). These products have a
high  demand  in  the  global  market,  as  they  are  perceived  to  be  healthier,
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sustainable,  and  better  for  animal  welfare  when  compared  to  non-grazing
systems (Font-i-Furnols and Guerrero, 2014;Prache et al., 2020). As a result, the
Irish agri-food sector has become a major contributor to the country’s economic
growth. The sector provides employment to around 174,000 individuals, which
amounts to 7.1% of the country’s labor force, according to the Department of
Agriculture, Food, and the Marine (DAFM) (DAFM, 2022a). Additionally, the sector
serves  as  a  significant  source  of  exports,  with  Irish  agri-food  products  being
exported to over 180 countries worldwide, generating €15.4 billion for the Irish
economy  in  2021  (DAFM,  2022a).  Looking  ahead,  Ireland  has  set  ambitious
targets for the future development of its agri-food sector.  As part of its Food
Vision 2030 roadmap, Ireland aims to become a global leader in sustainable food
production and increase agri-food exports to €21 billion by 2030 (DAFM, 2021).
Achieving these goals will require continued investment in the sector, including
in research and development, innovation, and sustainable farming practices.
Sheep production is an important component of Ireland’s agricultural industry,
contributing to the country’s  economy,  generating employment opportunities,
and sustaining rural communities (Ryan et al., 2016;O’Mara, 2022). Additionally,
sheep farming plays a significant role in the conservation of Ireland’s natural
landscapes and biodiversity (O’Mara, 2022). Sheep are often used for grazing in
areas  with  diverse  and  multifunctional  ecosystems,  such  as  upland  and
mountainous regions (O’Rourke et al., 2012). Grazing by sheep helps to maintain
these ecosystems by controlling vegetation growth and providing habitats for
wildlife. According to the latest report on Ireland’s sheep and goat census, the
national  sheep population  rose  to  4.02  million  in  2021,  representing  a  3.6%
increase  from the  preceding  year  (DAFM,  2022b).  This  figure  comprised  2.7
million  breeding  ewes  over  1  year  of  age  and  86,216  breeding  rams,  while
lambs, wethers, and cull ewes accounted for 1.2 million of the national flock. The
number  of  registered  holdings  also  increased  by  571  to  36,163  in  2021,
compared to the previous year (DAFM, 2022b). The Irish sheep industry is known
for producing high-quality, grass-fed lamb, which is sought after by consumers
worldwide. In 2021 Ireland sheep meat exports were valued at €420 million, an
increase of 15% on the previous year (Bia, 2022).
There are a range of sheep breeds that are used for production in Ireland, which
are  classified  and  distributed  according  to  their  adaptability  to  different
environmental  habitats  and  farming  systems,  such  as  mountain,  upland  and
lowland breeds. For instance, some sheep are more suited to mountain or upland
farming systems, while others are more suited to lowland farming systems. The
Scottish  Blackface  breed  are  typically  found  along  the  western  mountainous
regions of Ireland (Teagasc, 2020). They are a dual-purpose breed that is known
for high quality wool  and meat,  and popular  for cross breeding. The Scottish
Blackface have a thick heavy fleece that help them withstand harsh weather
conditions. The Cheviot sheep breed is also a hill breed. However, while resilient
they are not as hardy as the Scottish Blackface. Cheviots are used more in hill
regions along the eastern side of the country (Teagasc, 2020) where the weather
conditions are less harsh. They are slightly larger than the Scottish Blackface and
produce fast maturing lambs (Kirton et al., 1995). The Belclare breed is a popular
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composite  breed  that  was  developed  in  Ireland  in  the  1960s  by  successive
crossbreeding trials with the Finnish landrace, Galway, Lleyn, and Texel breeds
(Hanrahan, 1991;Hanrahan et al., 2004;Mullen et al., 2013). Belclares are known
for  being  a  docile,  easy  to  manage,  highly  productive  breed  that  requires
minimal maintenance.  Figure 1.2 shows three popular sheep breed in Ireland,
Scottish Blackface, Cheviot and Belclare. 

Figure 1.2 Popular sheep breeds in Ireland. Scottish Blackface (Left) adapted 
from (Zhou et al., 2019a), Wicklow Cheviot (Middle) adapted from (Geary, 2019), 
Belclare (Right) adapted from (Merrick, 2022). 

Anthropogenic greenhouse gas emissions
In  1856,  Eunice  Newton  Foote  conducted  a  pioneering  experiment  that
demonstrated  the  greenhouse  effect  of  carbon  dioxide,  providing  empirical
evidence that sunlight could heat carbon dioxide to greater temperatures, and
retain its heat for a longer period of time than other gases (Foote, 1856). This
discovery led to further research and understanding of other gases that could
also contribute to what is termed the “greenhouse effect”,  including CH4 and
nitrous oxide (N2O) (Weart, 2010). Greenhouse gases (GHGs) are gases in the
atmosphere that are able to absorb and emit thermal infrared radiation in the
Earth’s atmosphere (Cassia et al., 2018). The most important greenhouse gases
contributing  to  planetary  warming  are  carbon  dioxide  (CO2),  CH4,  N2O,  water
vapour  (H2O),  and  fluorinated  gases  (such  as  hydrofluorocarbons  and
perfluorocarbons). It is important to note that they are essential for maintaining
habitable  temperatures  on  Earth  (Kweku  et  al.,  2018).  Indeed,  without
atmospheric GHGs the temperature of the Earth would be approximately 33°C
cooler (Kweku et al., 2018). GHGs can occur naturally, originating from natural
causes  such  as  volcanic  eruptions  and  wildfires,  or  through  human
(anthropogenic) activities, such as agriculture, carbon combustion and landfills.
For  millennia  the  concentration  of  GHGs  in  the  Earth’s  atmosphere  have
remained  relatively  stable  (EPA,  2022).  However,  since  the  beginning  of  the
industrial  revolution  in  the  1700s  the  concentration  of  GHGs  in  the  Earth’s
atmosphere has been steadily increasing as a result of human activity (Figure
1.3) (Letcher, 2021). Prior to the industrial revolution, the level of CO2 in the
atmosphere  was  circa  280ppm.  Today,  the  concentration  of  CO2 in  the
atmosphere is over 400ppm, which  resulted in a 1.5 degree warming of the
planet (Letcher, 2021;WMO, 2023). The United Nations (UN) Intergovernmental
Panel on Climate Change (IPCC) projects that without major near-term reductions
in GHG emission, global temperatures will rise by more than 1.5-2°C by 2100 in
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the best case scenario, or >4°C in the worst case scenario (Masson-Delmotte et
al., 2021; Lee et al., 2023). The increase in GHG concentration is the major factor
in global climate change. Global warming changes weather patterns, while rising
CO2 levels  also  effects  on  biological  and  chemical  processes.  While  climate
change is leading to an increased frequency and intensity of adverse weather-
related shocks, the impacts of climate change will be unevenly distributed across
regions.  Precipitation deficits and droughts, resource depletion, rising sea levels,
and  biodiversity  loss  are  just  a  few  of  the  impacts  associated  with  climate
change (Pörtner et al., 2022), which will have ramifications for the health and
well-being, food and water security, and economic prosperity of individuals and
nations  globally  (Masson-Delmotte  et  al.,  2018).  There  is  an  urgent  need  to
reduce GHG emissions through sustainable practices and the development of
alternative, cleaner energy sources. 

Figure 1.3:  Global Atmospheric Concentrations of  Carbon Dioxide Over Time
(EPA, 2022).

Methane
CH4is a potent greenhouse gas, with a global warming potential approximately
28 times higher than carbon dioxide over a period of 100 years (Liu et al., 2022),
making  it  the  second  most  significant  greenhouse  gas  after  carbon  dioxide
(Pachauri  and Meyer,  2014).  However, atmospheric CH4  has a relatively short
lifespan  of  approximately  9.1  ±  0.9  yrs  (Prather  et  al.,  2022),  before  it  is
eventually oxidised to carbon dioxide and water (Lashof and Ahuja, 1990). CH4 is
released  to  the  atmosphere  from  sources  such  as  wetlands,  extraction  and
combustion  of  fossil  fuels,  the  breakdown  of  organic  waste  in  landfills,  and
ruminant livestock production. Over the past century, the concentration of CH4 in
the atmosphere has significantly increased, reaching approximately 1920 parts
per billion (ppb) in 2022 (Lan, 2023). This represents a doubling of the levels
recorded in 1918, which were at 966 ppb (Etheridge et al., 1998). The increase in
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atmospheric CH4  concentrations is largely attributed to anthropogenic activities,
including  livestock  production,  and  the  increasing  CH4  emissions  trend  is
projected  to  continue  (Kleinen  et  al.,  2021).  The  ongoing  increase  in  CH4

concentrations in the atmosphere is a cause for concern, as it contributes to the
warming of the planet and is a driver of climate change. Reducing CH4 emissions
is a key priority in the fight against climate change (Arias et al., 2021).

International and national greenhouse gas emissions
In 2019, global GHG emissions amounted to a total of 50 billion tonnes (Bt) of
CO2 equivalent. Among the countries with the highest emissions, China was the
largest contributor producing 12.06Bt of CO2 equivalent, followed by the United
States (US) with 5.77Bt, India with 3.36Bt and the EU producing 3.15Bt CO2eq
(Figure 1.4). The majority of global GHG emissions are contributed by electricity
and  heat  production  (15.83Bt),  transport  (8.43Bt),  manufacturing  and
construction (6.22Bt) and agriculture (5.80Bt) (Ritchie, 2020). 

Figure 1.4: Total  greenhouse gas emissions (CO2eq) globally and in selected
regions over past three decades (Our World in Data)
In  2019,  Ireland  generated  59.77  million  tonnes  (Mt)  of  CO2eq  of  GHGs.
Agricultural  activities  were the largest source of  GHG emissions estimated at
21.48Mt of CO2eq (Figure 1.5)., accounting for approximately 36% of national
GHG emissions. This was followed by transport (12.237Mt) and energy industries
(10.632Mt). Within agriculture, 17.04 and 5.92 Mt of CO2eq were generated by
the release of CH4 and N2O, respectively 
Specifically,  within the livestock  sector,  pre  farm-gate emissions were mainly
driven  by  enteric  fermentation  and  manure  management,  which  together
contributed 14.1Mt of CO2eq (Figure 1.5), constituting approximately 65% of
total agricultural GHG emissions. Enteric fermentation, primarily occurring in the
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digestive systems of ruminant livestock, was the most significant contributor to
farm-gate emissions, accounting for 12.2Mt of CO2eq, or approximately 57% of
agricultural emissions (Duffy, 2021) (Figure 1.5).

Figure  1.5: Ireland’s  agricultural  GHG emissions  from 1990 to  2019.  Figure
adapted from (EPA, 2021)

Global inter-governmental efforts to reduce greenhouse 
gas emissions 
The Kyoto protocol, adopted in 1997 as part of the United Nations Framework on
Climate Change UNFCC, was the first international agreement aimed at limiting
GHG emissions  to  the atmosphere  (UNFCC,  1997).  Under the Kyoto  protocol,
participating countries agreed to reduce their GHG emissions by an average of
5% below 1990 levels,  during the period from 2008 - 2012 (UNFCC, 1997). A
second  commitment  period  known  as  the  Doha  Amendment,  was  agreed  in
2012,  which  committed  37  participating  countries  to  further  reduce  their
emissions by at least 18% below 1990 levels 2020 (period 2013-2020) (UNFCC,
2012;Erbach, 2015). In 2015, the Paris agreement (UNFCC, 2015) was adopted
with the aim of strengthening the global response to climate change. The Paris
agreement built on the foundations of the Kyoto protocol and laid forth the goal
of  limiting  global  temperatures  to  below 1.5  to  2  degrees  Celsius  over  pre-
industrial levels (UNFCC, 2015). It also includes provisions for financial support to
reduce GHG emissions and adapt  to  the negative impacts  of  climate change
(UNFCC, 2015;Horowitz, 2016). As part of the Paris agreement member countries
of the UNFCC are required to submit Nationally Determined Contributions (NDCs)
outlining their climate action plans, which include emissions reduction targets
and  strategies.  More  recently,  at  the  2021  UNFCCC’s  COP26,  nearly  200
countries pledged to strengthen the fight against climate change, known as the
Glasgow pact. The pledge includes a commitment to limit global warming to 1.5
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°C, phase out the use of coal worldwide, and increase funding to help developing
countries adapt to the effects of climate change (Cifuentes-Faura, 2022). 
The European Union has been a leading player in the global fight against climate
change and is an active participant in international climate change negotiations
(Cifuentes-Faura, 2022). The EU played a key role in the ratification of the Kyoto
Protocol  in  2002  and  the  Paris  Agreement  in  2015.  In  line  with  the  Paris
Agreement  targets,  the  EU  has  set  internal  targets  to  reduce  the  overall
greenhouse gas emissions of its member states.  This is supported by the EU’s
European Green Deal, which is a comprehensive plan launched by the European
Commission  in  December  2019 (European-Commission,  2019).  The  EU Green
Deal aims to reduce GHG emissions by at least 55% by 2030 compared to 1990
levels, and to achieve climate neutrality by 2050 (European-Commission, 2019).
The plan includes a wide range of emissions mitigation measures across different
sectors, such as energy, transport, agriculture, and buildings, with the ultimate
goal of reducing greenhouse gas emissions and achieving a more sustainable
and resource-efficient economy (European-Commission, 2019).

Greenhouse gas emissions in Ireland
The Irish government has developed a strategy to reduce GHG emissions and
combat  climate  change,  known  as  the  Climate  Action  Plan  and  Low  Carbon
Development  Act  2021  (Oireachtas,  2021)  (Torney,  2021).  The  act  is  legally
binding and targets  a 51% reduction in GHG emissions by 2030 below 2018
levels,  and in line the European green deal to achieve net-zero emissions by
2050  (Oireachtas,  2021).  Ireland’s  Climate  Action  Plan  2023  (DECC,  2022)
includes a wide range of measures across various sectors,ncludeing agriculture,
transport,  and energy as well  as initiatives to  increase the use of  renewable
energy, reduce waste, and promote sustainable practices (DECC, 2022). The plan
is a key part of Ireland’s commitment to the European Green deal and its efforts
to mitigate the impacts of global warming (DECC, 2022). In the context of the
agricultural sector, Climate Action Plan specifies that agri-emissions should not
exceed 17.25 Mt CO2eq by the end of 2030, compared to the 2018 baseline of 23
Mt CO2eq (DECC, 2022). This will require a reduction in emissions of 5.75 Mt, or
25%,  compared  to  2018  levels.  Ireland’s  Climate  Action  Plan  is  focused  on
implementing a range of measures to reduce GHG emissions from agriculture,
such as sustainable land management, reducing the use of chemical nitrogen
fertilisers,  and improving the efficiency  of  livestock  production (DECC,  2022).
Achieving  these  objectives  while  sustainably  expanding  agri-food  output  by
2030,  as  outlined  in  FoodVision  2030,  presents  a  significant  challenge  for
Ireland’s agricultural sector. Indeed, according to the Environmental Protection
Agency (EPA), Ireland is projected to fall short of its emissions target reductions,
with  current  forecasts  suggesting a  29% reduction  in  greenhouse  gas  (GHG)
emissions  by  2030  (EPA,  2023).Nevertheless,  reducing  CH4  emissions  from
livestock production is a key area for achieving both these objectives and the
sectors long-term environmental, economic, and social sustainability. 
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Measuring and reporting of methane emissions
CH4output is  reported in in the literature in a variety of  ways,  e.g: daily CH4

emissions (DME) which represents the daily CH4  emissions in grams (g/day) or
litres (l/day); CH4yield (MY) accounts for the CH4  emissions per unit of DMI (CH4

(g)/DMI(kg)); CH4intensity (MI) accounts for CH4  per unit of animal product (CH4

(g)/milk yield(kg) or (CH4 (g)/carcass weight(kg))) and more recently residual CH4

emissions (g/day) which is the difference in the animals actual and expected CH4

output, based on its level of feed intake and body weight (Smith et al., 2022a).

Sheep digestive tract anatomy
The digestive tract  of  sheep (Figure 1.6)  is  similar  to  that  of  other  ruminant
animals  such  as  cows,  goats,  and  deer  (Samir  and  Ghadbane,  2021).  The
evolution  of  this  unique  digestive  anatomy and  its  organisation  has  enabled
sheep to efficiently utilise plant matter as a source of energy (Van Soest, 1994).
The  sheep’s  digestive  tract  comprises  broadly  4  regions;  the  mouth  or  oral
cavity, the oesphagus, the stomach and the small and large intestines (Harfoot,
1981). Sheep use their mouths for the process of grazing and masticating their
feed. In the mouth feed is mixed with saliva before moving through the digestive
tract.  The  oesophagus  is  a  muscular  tube  that  connects  the  mouth  to  the
stomach and serves to move the bolus of feed and saliva from the mouth to the
stomach via peristaltic  contractions (Harfoot,  1981). The stomach of sheep is
organised into four compartments: the reticulum, the rumen, the omasum and
the abomasum (Akester  and Titchen,  1969).  The reticulum receives the feed
matter coming into the digestive system. It acts like a filter trapping undigested
or  large  feed  particles  and  compacting  them  into  cuds  which  are  later
regurgitated  and  chewed  again  to  aid  digestion  (Sejian  et  al.,  2017).  The
reticulum is closely associated with the rumen, and the two compartments are
often referred together as the reticulo-rumen (Sejian et al., 2017). The rumen is
the largest compartment of the sheep’s stomach and serves as the primary site
for feed digestion (Samir and Ghadbane, 2021). The rumen contracts to move
solid  and  liquid  contents  to  subsequent  chambers  of  the  stomach  and lower
intestines. The omasum is lined with many thin folded plates that help strain the
fluids and breakdown feed particles. The abomasum is similar to the stomach of
monogastric animals (referred to as the ‘true stomach’), it secretes gastric acids
and enzymes that breakdown food further (Fenchel et al., 2012). The intestines
function to absorb nutrients into the bloodstream, facilitated by the presence of
villi  and microvilli  along the intestinal  lining,  which significantly increases the
surface area available for nutrient absorption. The large intestine is responsible
for the reabsorption of water and electrolytes and the formation of faeces. 
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Figure 1.6: Illustration of the Digestive tract of sheep. Sourced From: 
https://australiansheepenterprise.weebly.com/digestive-system.html

The sheep rumen
The rumen is the largest compartment of the stomach and is a warm (38.4–
39.8°C), anoxic and weakly acidic environment (Zhang et al., 2017a;Williams et
al., 2020) conducive to the growth of anaerobic microorganisms, which the host
depends for the digestion of cellulose-rich diets (Hungate, 1975). The anaerobic
environment is crucial to the host because it limits the complete oxidation of
carbohydrates  to  carbon  dioxide  and  water  (Ungerfeld,  2020).  Instead,  the
carbohydrates  are  partially  oxidised  to  volatile  fatty  acids  (VFAs)  and
fermentative  gases  by  ruminal  microorganisms,  which  are  important  for  the
host’s  metabolic  processes  (Ungerfeld,  2020).  The  lining  of  the  rumen  is
composed of stratified squamous epithelium through which VFAs can be readily
absorbed. Papillae extend into the lumen and enhance nutrient absorption by
increasing the overall surface area of the rumen epithelium (Harfoot, 1981). The
rumen  absorbs  around  75%  of  VFA,  with  less  than  10%  entering  the  small
intestine (Church, 1979;Harfoot, 1981).
The rumen harbours one of the most complex and diverse microbial ecosystems
in  the  animal  kingdom,  comprising  bacteria,  protozoa,  archaea,  fungi,  and
viruses/bacteriophages (Sirohi et al., 2012;Newbold and Ramos-Morales, 2020).
These microorganisms coexist in the rumen and engage in mutually beneficial
interactions with the host and with each other (Singh et al., 2019). The microbial
community, their genomes, and the rumen environment are collectively known
as the rumen microbiome (Marchesi and Ravel, 2015). The rumen microbiome
plays  a  vital  role  in  the  host’s  digestive  system by  encoding  the  necessary
enzymes  for  the  digestion  and  fermentation  of  complex  structural
polysaccharides,  such  as  cellulose,  hemicellulose,  xylan,  pectin,  and  starch
(Stewart  et  al.,  2019; Newbold and Ramos-Morales,  2020).  The breakdown of
these  plant  polymers  into  constituent  monomers  and  oligomers  facilitates
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subsequent fermentation by resident microbes,  generating volatile fatty acids
(VFAs) such as acetate, butyrate, and propionate, as well as microbial protein
(Hungate,  1975).  VFAs  serve  as  the  primary  energy  source  for  the  host
(Bergman,  1990).  Additionally,  fermentative  gases  such  as  CO2and  CH4 are
produced, and are mainly eructated from the rumen (Hungate, 1975).

Rumen bacteria
Bacteria are the most abundant and diverse group of microorganisms present in
the rumen. Their numbers are estimated to be approximately 1010-11  cells/ml of
rumen  fluid  (Matthews  et  al.,  2019).  Bacteria  present  in  the  rumen  are
categorised according to the rumen fraction with which they are associated, i.e.
solid-, liquid-, and epithelial- fractions (Li et al., 2020; Ren et al., 2020). Solid
associated bacteria form attachments to particulate matter in the rumen and
play  an  important  role  in  fiber  digestion  (McAllister  et  al.,  1994).  Liquid
associated community are typically free-floating planktonic bacteria involved in
the metabolism of soluble nutrients present in the rumen fluid. In addition, the
rumen fluid serves as a medium for solid adherent bacteria to travel to newly
ingested feed (De Mulder et al., 2017). The epithelial associated bacteria attach
to the epithelial lining of the rumen and are involved in oxygen scavenging, urea
hydrolysis  and  epithelial  cell  turnover  (Cheng et  al.,  1979;  De Mulder  et  al.,
2017).  Bacteria  in  the rumen can be classified based on the substrates they
utilise for growth or the products they produce during fermentation (Cammack et
al.,  2018).  For  example,  bacteria  can  be  classified  as  cellulolytic  or  non-
cellulolytic based on their ability to break down cellulose. Other classifications
include hemicellulolytic, amylolytic, proteolytic, and lipolytic, which indicate the
ability  of  bacteria  to  digest  hemicellulose,  starch,  protein,  and  lipids,
respectively.  In  addition,  bacteria  can  also  be  classified  based  on  the
fermentation  products  they  produce.  For  instance,  some  bacteria  produce
acetate, propionate, and butyrate as primary fermentation end products, while
others produce lactate, formate, and succinate.

The  most  prevalent  bacterial  phyla  in  the  sheep  rumen  are  Firmicutes  and
Bacteroidota (formerly Bacteroidetes) (Henderson et al., 2015). Firmicutes is a
large  phylum  of  Gram-positive  bacteria,  dominated  by  the  families
Ruminococcaceae and  Lachnospiraceae within  the  rumen  (Henderson  et  al.,
2015;Martinez  Boggio et  al.,  2023).  These families  include some of  the most
efficient cellulolytic and hemicellulolytic degraders such as Ruminococcus albus,
Ruminococcus  flavefacians (Koike  and  Kobayashi,  2001),  Eubacterium
cellulosolvens (Anderson and Blair, 1996), and Butyrivibrio fibrisolvens (Hernáez
et al., 2018) (Figure 1.7). Bacteroidota is another large phylum composed mainly
of Gram-negative bacteria and dominated by the  Prevotellaceae family in the
rumen (Henderson et al., 2015;Martinez Boggio et al., 2023), which is primarily
driven  by  the  abundance  of  the  genus  Prevotella (Henderson  et  al.,  2015).
Findings from the global rumen census (GRC) indicate that Prevotella accounted
for  approximately  21.5%  of  the  microbial  community  in  the  rumen  sheep,
followed  by  unclassified  Clostridiales  (16.5%)  and  Ruminococcaceae (10.0%)
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unclassified  Bacteroidales  (8.7%),  unclassified  Lachnospiraceae (6.0%),
Ruminococcus (3.5%),  Butyrivibrio (3.3%),  unclassified  Veillonellaceae (2.5%),
and  Fibrobacter (1.9%). Collectively, these bacterial groups represent the core
microbiome in sheep (Henderson et al., 2015) (Figure 1.8).

Figure 1.7: Electron micrograph image of sections of Butyrivibrio fibrisolvens. 
Image adapted from (Sharpe et al., 1975) and credited to Dr B. E. Brooker and 
Mr D. Hobbs. 

Rumen fungi 
Anaerobic fungi (AF) were first discovered in the rumen by Colin Orpin in the mid
1970s (Orpin, 1976). AF are classified under the phylum Neocallimastigomycota
(Yücel and Ekİncİ, 2022) and are estimated to comprise approximately 10-20% of
the microbial biomass in the rumen (Rezaeian et al., 2004; Chaucheyras-Durand
and Ossa, 2014), with concentrations ranging from 102 to 104 mL-1 of rumen fluid
(Singh et al., 2019). The phylum Neocallimastigomycota, which constitutes the
class  Neocallimastigomycetes,  order  Neocallimastigales  and  family
Neocallimastigaceae, currently comprises 18 genera Neocallimastix, Piromyces,
Caecomyces, Agriosomyces, Aklioshbomyces, Buwchfawromyces, Capellomyces,
Feramyces,  Ghazallomyces,  Joblinomyces.,  Liebetanzomyces,  Khoyollomyces,
Pecoramyces, Tahromyces, Aestipascuomyces, Orpinomyces, Anaeromyces, and
Cyllamyces (Bhagat et al. 2023).
AF residing in the rumen lack essential components such as mitochondria and
cytochromes necessary for oxidative phosphorylation. Nonetheless, they possess
distinctive organelles known as hydrogenosomes, which are vital for generating
cellular  energy under the anaerobic  conditions of  the rumen (da Silva et al.,
2017; St-Pierre et al., 2018). AF propagate through the generation of zoospores,
motile,  flagellated  spores  capable  of  dispersing  throughout  the  rumen
environment.  Although zoospores  can remain mobile  for  hours,  they typically
attach to feed quickly and shed their  flagella.  Subsequently,  these zoospores
germinate,  giving  rise  to  a  fungal  thallus  comprised  of  sporangium  and  a
filamentous rhizomycelium or a bulbous holdfast,  initiating fungal growth and
proliferation (Hess et al. 2020). 
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AF play  a  key  role  in  the ruminal  degradation  of  plant  matter  in  the rumen
(Rabee et al., 2019). During growth, AF produce rhizoids, specialized thread-like
structures capable of penetrating structural components of plant cell walls. This
process is known to physically rupture lignocellulosic tissues, thereby increasing
the  surface  area  of  plant  matter.  Consequently,  this  facilitates  enhanced
microbial  colonization  and  promotes  efficient  forage  utilization  (Akin  and
Borneman, 1990).  In addition, AF exhibiting a notable capacity to produce a
diverse  array  of  potent  enzymes  involved  in  the  hydrolysis  of  cellulose  and
hemicellulose,  including  xylanases,  endoglucanases,  and  cellobiohydrolases
(Akin  and  Borneman,  1990;  Wood  et  al.,  1995;  Gruninger  et  al.,  2014).  The
primary  end-products  of  AF  fermentation  process  include  H2,  CO2,  formate,
lactate, succinate, ethanol, and acetate, derived from carbohydrate fermentation
(da Silva, Pedezzi, and Souto, 2017). In addition, AF also play an important role in
the process of methanogenesis. Indeed, methanogens have been observed via
electron microscopy attached to the rhizoids of AF (Jin et al. 2011). Furthermore,
co-cultures of methanogens and AF exhibited a notable decrease in H2 levels and
the  presence  of  CH4 compared  to  pure  cultures  of  AF  alone,  suggesting  the
occurrence of interspecies hydrogen transfer.Rumen Protozoa
Protozoa are the largest  of  the microorganisms in  the rumen,  with  cell  sizes
ranging  from 10x20  –  10x200µm (Millen  et  al.,  2016).  As  a  result  they  can
account  for  as  much  as  50% of  total  microbial  biomass,  despite  being  less
numerous in terms of cell numbers than other microbial groups (Choudhury et
al.,  2015).  Their  cell  numbers are  estimated in the region of  104-6 per  mL of
rumen fluid (Choudhury et al., 2015; Singh et al., 2019).  Protozoa are classified
as ciliates or flagellates, based on the presence of either flagella or cilia (Millen
et al., 2016). Ciliate protozoa make up the majority of the protozoan community
in  the  rumen  and  belong  to  two  taxonomical  groups:  entodiniomorphs  and
holotrichs (Leschine, 1995;Millen et al., 2016). 
Protozoa play important roles in the digestion and fermentation of feed in the
rumen (Millen et al., 2016;Williams et al., 2020), and produce a variety of VFAs
that provided energy to the host (Morgavi et al., 2010). Like fungi, protozoa also
possess  hydrogenosomes  and can produce high amounts  of  hydrogen during
metabolism (Williams and Coleman, 1997; Morgavi et al., 2010). They are known
to engage in mutualistic interactions with archaea, whereby they are involved in
interspecies hydrogen transfer that helps sustain a community of endobiont and
ectobiont-associated archaea (Tan et al., 2020). In addition, protozoa are known
to  exhibit  predatory  behavior  on  bacteria,  archaea  and  fungi  in  the  rumen
(Williams et al., 2020; Solomon and Jami, 2021). This behavior has been linked to
horizontal  gene  transfer  (HGT),  which  has  been  suggested  to  enhance  the
fibrolytic capabilities of rumen protozoa (Ricard et al., 2006).

Rumen archaea
Rumen archaea make up approximately ~2-4% (of cell number) of the microbial
community present in the rumen (Millen et al., 2016).  Similar to bacteria, rumen
archaea have also known to associate with different fraction of the rumen (i.e
solid, liquid and epithelium) (Morgavi et al., 2010). In addition, rumen archaea
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also have a protozoal associated community, and are known to engage in endo-
and ecto-symbiotic relationships with rumen protozoa (Williams and Coleman,
1997).  While  archaea  appear  morphologically  similar  to  bacteria,  they  are
metabolically distinct (Millen et al., 2016). The majority of rumen archaea are
methanogenic,  meaning  they  produce  CH4as  a  product  of  their  metabolism
(Morgavi et al., 2010). There are 3 broad groups of methanogens found in the
rumen  and  are  categorised  based  on  the  substrates  they  use  during
methanogenesis. Most methanogens are hydrogenotrophic, in that they reduce
carbon  dioxide  with  electrons  from  H2 and  formate  for  metabolism.  Other
methanogens  are  methylotrophic  which  utilise  methyl  compounds  during
methanogenesis.  A  few  species  are  acetoclastic  methanogens  which  utilise
acetate  for  the  methanogenesis.  Methanogens  play  an  important  role  in
preventing the accumulation of H2, which is produced during the fermentation
process  and maintain  a  balanced rumen ecosystem.  Indeed,  all  three  known
pathways  of  methanogenesis  rely  on  the  availability  of  H2 as  a  substrate
(Morgavi et al., 2010). According to the global rumen census Methanobrevibacter
gottschalkii are the most dominant methanogen accounting for on average 54%
of  the  total  archaeal  community  in  sheep,  followed  by  Methanobrevibacter
ruminantium (25.7%) and Methanosphaera sp. ISO3-F5 (7.3%) (Henderson et al.,
2015) (Figure 1.8). 

Figure 1.8: Stacked barcharts representing the relative abundance of the top 
15 archaeal species (A) and bacterial genera (B) in sheep. Data used to generate
this figure was obtained from the global rumen census (Henderson et al., 2015).
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Microbial digestion and fermentation of plant matter
Plant  cell  walls  are  complex  structures  that  provide  structural  support  and
protection to the plant. They are composed of various polysaccharides such as
cellulose,  hemicellulose,  lignin,  and pectin  (Terry  et  al.,  2019),  with  cellulose
being  the  most  abundant  (Morrison,  1979).  Lignin  and  hemicellulose  form a
matrix around the cellulose strands, which helps to protect it from degradation
(Morrison,  1979).  While  rumen  microorganisms  such  as  bacteria,  fungi,  and
protozoa are capable of breaking down hemicellulose, cellulose, and pectin, they
are  unable  to  degrade  lignin  due  to  its  complex  structure  and resistance  to
enzymatic breakdown (Samir and Ghadbane, 2021). As the lignin content in plant
material  increases  with  maturity,  the  rate  of  degradation  by  rumen
microorganisms  decreases.  Mastication  mechanically  damages  plant  fibers,
exposing the inner structures and facilitating microbial  colonisation when the
feed enters the rumen (Terry et al., 2019). 
Upon entering the rumen, the newly ingested plant matter undergoes a series of
microbial colonisation events which lead to the gradual breakdown of organic
matter over time, as indicated by in sacco studies (Huws et al., 2015). Primary
phase colonisers rapidly attach to the surface of the ingested plant material and
begin metabolizing the readily available nutrients. During the secondary phase of
microbial  colonisation,  the  microbial  population  undergoes  a  shift  towards
specialised microorganisms that are capable of breaking down the more complex
structural  components  of  plant  cell  walls  (Huws  et  al.,  2016).  During  the
secondary  phase,  cellulolytic  and  hemicellulolytic  microorganisms  form
attachments to feed particles (Huws et al., 2016), and produce a vast array of
hydrolytic  enzymes  or  enzyme  complexes  (e.g  β-1,4-glucanase,
cellobiohydrolase  and  β-glucosidase)  that  depolymerize  the  structural
polysaccharides into constituent hexose and pentose sugars, such as glucose,
xylose, and arabinose. These sugars represent essential substrates for microbial
metabolism and fermentation within the rumen and the provision of energy to
the host animal in the form of VFAs and microbial protein.
Glucose  is  the  monomeric  constituent  of  cellulose  (and  of  starch)  and  is
metabolised by rumen microbes via several different pathways (Hackmann et al.,
2017).  One of  the most  well-documented pathways  is  the Embden-Meyerhof-
Parnas  (EMP)  pathway,  which  successively  reduces  glucose  to  pyruvate
(Hackmann et al.,  2017). Pyruvate is a crucial  intermediate metabolite in the
rumen, serving as a central branching point for the formation of various VFAs.
Pyruvate  undergoes  oxidative  decarboxylation  to  acetyl-CoA  which  can
subsequently be converted to acetate. Alternatively, two molecules of acetyl-CoA
can  be  used  to  form  acetoacetyl-CoA  which  is  the  precursor  to  butyrate
formation.  In  contrast,  pyruvate  can  be  metabolised  to  lactate  or  succinate,
which are subsequently converted to propionate (Beauchemin et al., 2022a). The
production of acetate and butyrate in the rumen is reported to result in a net
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production of hydrogen, while the production of propionate results in a net use of
hydrogen. 
Hydrogen  metabolism  plays  a  central  role  in  the  energy  metabolism  of  the
rumen (Beauchemin et al., 2022a). Metabolic hydrogen is produced during the
conversion  of  glucose  to  pyruvate  through  glycolysis  and  the  subsequent
oxidative decarboxylation of pyruvate to acetyl-CoA (Beauchemin et al., 2022a).
This process results in the reduction of electron carriers NAD+ and ferredoxins,
which  must  be  re-oxidised  to  maintain  the  fermentation  process.  The  re-
oxidation of these electron carriers is facilitated by hydrogenase enzymes, which
transfer electrons to H+ or CO2 to produce dihydrogen or formate, respectively
(Ungerfeld,  2020).  However,  the accumulation of  hydrogen in the rumen can
limit  the  activity  of  hydrogenase  enzymes  and  impede  fermentation
(Satyanagalakshmi et al., 2015). To dispose of hydrogen and maintain low rumen
hydrogen  levels,  the  rumen  microbiome  has  evolved  several  hydrogen-
incorporating  pathways  or  “hydrogen sinks”,  including propionate  production,
nitrate or nitrite reduction to form ammonia, sulfate reduction to form hydrogen
sulfide, and reductive acetogenesis that converts hydrogen and carbon dioxide
to form acetate (Ungerfeld, 2020;Beauchemin et al., 2022a). However, the most
significant hydrogen sink in the rumen is methanogenesis carried out by rumen
methanogens (Figure 1.9).
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Figure  1.9:  Microbial  digestion,  fermentation  and  hydrogen  disposal  in  the
rumen:  polysaccharide  degradation  (I),  rumen  fermentation  (II),  and  electron
disposal  (III).  Coloured  circles:  dark  gray  is  methyl  groups,  blue  is  carboxyl
groups,   brown is  carbon,  yellow is  oxygen,  green is  hydrogen,  light  grey  is
nitrogen  and  pink  is  sulfur.  SVFA:  Short  volatile  fatty  acids.  MCT:
monocarboxylate transporter.  Figure and legend sourced from (Sanjorjo et al.,
2023)

Methanogenesis pathways
CH4  production  in  the  rumen  occurs  primarily  through  three  distinct
methanogenic  pathways  (Figure  1.10),  namely,  hydrogenotrophic,
methylotrophic,  and  acetoclastic  pathways  (Liu  and  Whitman,  2008).  The
hydrogenotrophic pathway, which involves the reduction of carbon dioxide using
electrons derived from hydrogen or formate, is the central route for CH4 synthesis
within the rumen (Kurth et al., 2020). 
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The hydrogenotrophic pathway is a seven step metabolic cascade which begins
with  formate-dehydrogenase  catalysing  the  reduction  of  CO2 bound  to
methanofuran  using  electrons  from  reduced  ferredoxin,  forming
formylmethanofuran (Wagner et al., 2018). Next, formyltransferase cleaves and
transfers the formyl-group from formylmethanofuran to tetrahydromethanopterin
forming  formyl-tetrahydromethanopterin.  Step  3  is  catalysed  by
methenyltetrahydromethanopterin  cyclohydrolase,  which  converts
formyltetrahydromethanopterin to methenyltetrahydromethanopterin (Wagner et
al.,  2018).  Step  4  is  catalysed  by  5,10-methylene-tetrahydromethanopterin
dehydrogenase,  which  reduces  the  methenyl  group  to  a  methylene  group
forming methylene-tetrahydromethanopterin utilising electrons supplied by F420

(Goldman et al., 2009). Alternatively, the methenyl group can be reduced to a
methylene  group  using  electrons  from  H2 which  is  catalyzed  by  H2-forming
methylenetetrahydromethanopterin dehydrogenase (Goldman et al., 2009). Step
5 is catalysed by methylene-tetrahydromethanopterin reductase, which reduces
the methylene group to a methyl group using electrons from F420, resulting in the
formation  of  methyl-tetrahydromethanopterin.  Step  6  is  catalysed  by  a
methyltransferase  complex  (MtrA-H),  which  transfers  the  methyl  group  from
methyl-tetrahydromethanopterin  to  coenzyme M (CoM-SH),  forming  methyl-S-
CoM.  Finally,  methyl-S-CoM is  reduced  with  coenzyme B  (CoB-SH)  to  CH4  by
methyl-coenzyme M reductase (MCR) (Wagner et al., 2018). 
Methylotrophic  methanogenesis  from  methanol  is  catalyzed  by  methanol
coenzyme  M  methyltransferase,  which  transfers  of  the  methyl  group  from
methanol  to  coenzyme  M,  forming  methyl-coenzyme  M.  Methyl-coenzyme  M
enters the central methanogenesis pathway and is subsequently reduced to CH4

by the enzyme methyl-coenzyme M reductase (Thauer et al., 2008). 
During  acetoclastic  methanogenesis  acetate  is  converted  to  acetyl-CoA  by
acetyl-CoA synthetase.  Acetyl-CoA is then dismuted to form a carboxyl  group
and a methyl group by acetyl-CoA decarbonylse/synthase complex. The carboxyl
group is oxidised to form carbon dioxide and the methyl  group is enters the
central methanogenesis pathways and is reduced to CH4  by methy-coenzyme M
reductase (Kurth et al., 2020).  
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Figure  1.10:  Depiction  of  the acetoclastic,  hydrogenotrophic  and
methylotrophic methanogenesis pathways which were inferred from the genome
of Methanosarcina barkeri CM1. Figure and legend sourced from (Lambie et al.,
2015). 

Methods for measuring methane emissions from sheep 
production
Accurate quantification of CH4  emissions is critical for reducing CH4  from sheep
production systems and forming the basis for national inventories and mitigation
strategies (Hill et al., 2016;Patra, 2016). Several technologies have been used to
measure  CH4  emissions  from  sheep,  including  respiration  chambers  (RCs),
portable accumulation chambers (PACs), sulphur hexafluoride (SF6) tracers  and
GreenFeeds (GF) (Hammond et al., 2015). However, these methods differ in their
scope  and  application,  and  each  has  its  own  advantages  and  disadvantages
(Storm et al., 2012;Hammond et al., 2016). It is important to carefully evaluate
which method is most appropriate for a particular study as no one method is
suitable for every research problem (Hammond et al., 2016). A brief description
of the above-mentioned techniques and their advantages and disadvantages is
outlined below. 

Respiration chambers
RCs have been used to measure CH4 emissions from livestock for over 120 years
(Hammond et al., 2016) and fall under two system categories: open-circuit and
closed-circuit  systems,  with  the  former  most  frequently  used  in  ruminant
research (Storm et al., 2012). The usage of RCs involves holding animals for a
period  of  day(s)  in  a  large,  airtight,  and  environmentally-controlled  chamber
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under slightly negative atmospheric pressure (Pickering et al., 2015; Hammond
et al.,  2016). The basic idea behind RCs is that outside air is drawn into the
chamber via inlet air vent at the bottom of the chamber and mixes with the
gases  emitted  from the  animal  inside  the  chamber.  Air  is  drawn  out  of  the
chamber through an outlet air vent at the top of the chamber while sampling
inlet  and  outlet  air  for  gas  analysis  (Hammond  et  al.,  2016).  Flow  rate  is
measured using a flow meter and gas concentrations are measured at specific
and regular time intervals (e.g 12 mins) using gas sensors (Waghorn, 2014). CH4

emissions  are  estimated  multiplying  the  airflow  through  the  system  by  the
difference  in  the  concentration  inlet  and  outlet  gases  (Storm  et  al.,  2012;
Hammond et al., 2016; Zhao et al., 2020). Importantly, gas concentration and
flow measurements are required to be corrected to a standard temperature and
pressure and account for humidity which can affect emissions (Hammond et al.,
2016).  RCs quantify all  gases emitted from animals,  including those exhaled,
eructated, and released through flatulence. When operated properly (Hristov et
al.,  2018),  RCs are  considered the gold standard for estimating CH4  emission
(Pickering  et  al.,  2015;  Hammond  et  al.,  2016),  due  to  the  precision  of
measurements  and  the  ability  to  account  for  feed  intake  (Waghorn,  2014).
However, RCs have a number of drawbacks. They are limited in the use for large-
scale research due to low throughput and high costs and do not measure the
gases  in  animals  under  their  natural  conditions  (Bhatta  and  Enishi,  2007;
Garnsworthy et al., 2019). Furthermore, the use of RCs may result in a reduction
of feed intake and alteration of feeding behavior in animals, which can lead to an
underestimation of daily CH4  emissions compared to what would be produced
under normal conditions (Bickell et al., 2014).  

Portable accumulation chambers
PACs were developed by Goopy et al. (2011) as a means to measure gaseous
emissions from sheep (Goopy et al., 2011). The use of PACs involves enclosing
an animal in a compact air-tight transportable chamber for a short period of time
(~50mins-1hr) (Jonker et al., 2018;O’ Connor et al., 2021) (Figure 1.11). Gases,
including CH4  accumulate within the chamber and concentration readings are
taken at regular intervals using a monitoring device attached to a one-way valve
(Jonker  et  al.,  2018).  The  CH4  production  is  calculated  by  multiplying  the
concentration of CH4 (corrected for background CH4) by the net chamber volume
(total chamber volume minus the live weight of the animal) (Goopy et al., 2011).
Although measurements from PACs are short-term spot samples they have been
shown to be repeatable and heritable (Goopy et al., 2015) and found to correlate
well  with  RCs.  Goopy  et  al.  (2013)  reported  moderately-high  correlations
between CH4  measurements taken in PACs for one hour and those taken in RCs
over three days (r=0.71), one day (r=0.67) and one hour (r=0.69). In comparison
to RCs, PACs have proven a cost-effective method of measuring CH4  emissions,
ranking  animals  and  are  suitable  for  on-farm  use.Also  PACs  allow  for  the
measurement of multiple animals simultaneously facilitating large-scale research
(Goopy et al., 2011; Jonker et al., 2018; O’ Connor et al., 2021). While a single
PAC can cost as much as €80,000 and a single RC €50,000-60,000 (Cummins et
al. 2022), PACs have a much higher throughput, with animals only required to

33



spend  50mins  in  the  chamber  when  compared  to  days  with  RCs.  A  major
drawback of PACs is that they cannot capture fluctuations in daily CH4 emissions,
cannot measure CH4  per unit of feed intake. Despite limitations PACs can still
prove valuable for ranking animals for breeding studies aimed at reducing CH4

emissions.

Figure 1.11: Portable accumulation chambers (PACs) used to measure methane
emissions from sheep. Image sourced from (Teagasc, 2017)

SF6 tracer technique
SF6 tracers  were  developed  by  Patrick  Zimmerman  in  1993  to  measure  CH4

emissions  from cattle  (Zimmerman,  1993)  and  was  later  adapted  for  use  in
sheep.  The SF6 system consists  a small  brass  permeation tube that  contains
liquid SF6 and a sampling capillary line/tubing fitted from the nostrils to a pre-
evacuated canister harnessed to the sheep back (Berndt et al., 2014; Hammond
et al., 2016). The permeation tube is administered orally into the animal’s rumen
and is designed to release the SF6 gas at a relatively stable and constant rate.
Breath  samples  are  continuously  collected  via  the  sample  line  into  the  pre-
evacuated  canisters  (Hammond  et  al.,  2016).  CH4  output  is  calculated  by
multiplying the CH4:SF6 ratio by the SF6  permeation rate (Berends et al., 2014).
Calibration of  permeation rate  pre-  and post-sampling and adjustment of  the
CH4:SF6 ratio for background concentrations of CH4 and SF6 are conducted and
critical  to  ensure  accurate  estimations  (Della  Rosa  et  al.,  2021).  SF6 is
advantageous as animals are not confined to a chamber (Garnsworthy et al.,
2019),  which  allows  CH4  emissions  to  be  measured  from  grazing  animals.
Moreover, relative to RCs they are less expensive and are suitable for large scale
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studies (Garnsworthy et al., 2019). Despite its usefulness in quantifying enteric
CH4  emissions using the SF6 tracer technique has several limitations. Firstly, the
method does not capture all  of the CH4  emitted from the animal (Bhatta and
Enishi,  2007),  which  can  result  in  the  underestimation  of  total  emissions.
Additionally, the rate of SF6release from the permeation tube can decline over
time,  potentially  leading  to  errors  in  the  data  (Hammond  et  al.,  2016).
Furthermore,  high  variability  of  measurements  within  and  between  animals,
interference with grazing behavior (Hammond et al., 2016), the fact that SF6has
a  powerful  global  warming  potential  (GWP100)  of  23,500  are  among  other
drawbacks of the technique (Bhatta and Enishi, 2007). 

GreenFeed
The GreenFeed (GF) system (C-Lock Inc.,  Rapid City,  South Dakota, USA) is a
portable standalone unit that consists of a head chamber, a feeding dish, and an
automated diet feeder linked to radio frequency identification (RFID) sensors to
identify individual animals using RFID tags. The system dispenses feed pellets
into the feeding tray, which is used as ‘bait’ to attract animals to the GF and
encourage them to remain at the unit to allow exhaled gases to be sampled. An
extractor fan at the top of the unit draws exhaled gases and air through the
system and detected using sensors. Integration of air flow, gas concentrations,
and muzzle position are used to measure CH4 and CO2 fluxes (Huhtanen et al.,
2015). Breath samples are obtained from individual animals throughout the day,
each time the animal visits  the unit,  and are generally measured over a 3-7
minute period (Hammond et al., 2016). GF systems are a reliable and useful way
to collect methane emissions from either housed or grazing animals and are less
expensive that RCs. However, a primary limitation of the GF systems is that it is
dependent on animals voluntarily visiting the system, and animals may need
training to use the system (Garnsworthy et al., 2019).

Research techniques for understanding the rumen 
microbiome
Traditionally,  the  rumen  microbiome  was  studied  using  culture-based
approaches pioneered by Robert Hungate (Krause et al., 2013), who developed
procedures for isolating and cultivating anaerobic microorganisms present in the
rumen.  Over  the  years  culture-based  microbiology  has  provided  a  wealth  of
information and transformed our understanding of rumen ecology (Annison and
Bryden,  1998),  helping  describe  some  of  the  most  abundant  and  diverse
bacterial members present in the rumen (Newbold and Ramos-Morales, 2020).
Typically culture-based methodologies involve growing microorganisms in broths
or on agar plates, isolating pure colonies after a period of incubation, and using
biochemical  tests  for  classification  (Gupta  et  al.,  2019).  However,  a  major
recognised limitation of culture-based microbiology is that a large proportion of
rumen  microorganisms  that  are  not  amenable  to  laboratory  cultivation
techniques (Krause et al., 2013). Indeed, Staley and Konopka (1985) observed
that  when  complex  microbial  communities  from  natural  environments  were
examined  via  microscopy,  the  number  of  viable  cell  colonies  on  agar  were
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substantially lower than the number visible under the microscope, which became
known as the great plate count anomaly (Staley and Konopka, 1985). Given the
rumen  microbiome's  immense  diversity  and  complexity,  culture-based
techniques alone are insufficient for understanding the complexity of the rumen
microbiome  in  terms  of  community  composition,  function,  and  interactions
(Morgavi et al., 2013). 
The advent of next-generation sequencing (NGS) technologies has revolutionised
the  study  of  the  rumen  microbiome  by  allowing  high-throughput  parallel
sequencing of the genetic content contained within microbial communities and
overcoming the limitations of culture-based techniques (Morgavi et al.,  2013).
NGS  technologies  have  revealed  a  much  higher  level  of  microbial  diversity,
including  previously  uncultured  microorganisms  that  constitute  a  significant
portion  of  the  rumen  microbiome (Krause  et  al.,  2013;McCabe  et  al.,  2015).
Moreover,  NGS  technologies  provide  a  means  to  begin  more  functional
characterization of microbial  communities (Morgavi  et al.,  2013), enabling the
study of the rumen microbiome's role in enhancing feed efficiency (Zhang et al.,
2016) and reducing CH4  production (Shi et al., 2014; Kamke et al., 2016). NGS
technologies are central to current methodologies employed to study the rumen
microbiome,  including  metataxonomics,  metagenomics,  metatranscriptomics,
metabolomics, and culturomics (Zehavi et al., 2018; Xue et al., 2022). Among
these  methodologies,  amplicon  sequencing  (metataxonomics)  and  whole
shotgun  metagenomic  sequencing  (metagenomics)  are  widely  utilised  and
employ bioinformatics as means of analysis (Matthews et al., 2019; Liu et al.,
2021). A brief description of both is provided below.

Metataxonomics
Metataxonomics  is  the  study  of  microbial  populations  through  targeted
sequencing of phylogenetic marker genes (Wilkinson et al., 2018). This approach
involves high-throughput sequencing of PCR-amplified taxonomic marker genes,
which are termed amplicons (Denman et al., 2018; Weinroth et al., 2022). The
most  commonly used marker genes include the 16S ribosomal  RNA gene for
bacterial and archaeal communities, the 18S ribosomal RNA gene for eukaryotic
organisms such as fungi and protozoa, and the internal transcribed spacer region
(ITS) or the D1/D2 domain of the large ribosomal subunit for fungi (Dagar et al.,
2011; Schoch et al., 2012;Denman et al., 2018). The 16S ribosomal RNA gene is
highly  conserved  in  both  bacteria  and  archaea,  is  evolutionary  stable,  and
contains enough variable information  to delineate between different  bacterial
and archaeal taxonomic groups (Woese, 1987; Zeineldin et al., 2018). The gene
encodes the RNA component of the small ribosomal subunit involved in protein
synthesis  (Kitahara  and  Miyazaki,  2013).  Structurally,  the  16S  rRNA  gene
consists  of  around  1550  base  pairs  and  contains  nine  hypervariable  regions
interspersed  with  highly  conserved  regions  (Ramiro-Garcia  et  al.,  2016)
(Figure1.12). These conserved regions can be targeted with primers to sequence
through variable regions of interest,  allowing for the identification of different
bacterial and archaeal taxa (Yang et al., 2016). In the past, long-read sequencing
platforms such as Oxford Nanopore and PacBio have not been commonly used
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for sequencing the 16S rRNA marker gene due to their high rate of sequencing
errors  (Pollock  et  al.,  2018).   However,  recent  studies  have  emerged
demonstrating  their  potential  usefulness  for  sequencing  the  16S  rRNA  gene
(Myer  et  al.,  2016).  Nevertheless,  high  quality,  short-read  sequencing
technologies such as the Illumina MiSeq are more often preferred and are used
to sequence targeted hypervariable region(s) within the gene (Kameoka et al.,
2021). The selection of the hypervariable region is a crucial step in the analysis
of 16S rRNA gene sequencing data as it can impact the results (Pollock et al.,
2018; Kameoka et al., 2021). The V4 region of the 16S rRNA gene is a widely
utilised target region for microbial analysis (Gruninger et al., 2019) owing to its
relatively short length that allows for near-complete overlap of Illumina paired-
end  sequences  and  its  ability  to  accurately  identify  taxa  included  in  mock
community standards (McGovern et al., 2018).

Figure 1.12: Depiction of the 16S rRNA gene. The numbers at the top indicate
the estimated number of base pairs (bp) from the start to the end of the gene.
Areas in gray depict conserved regions of the gene. Areas in blue depict the
variable  regions  on the gene (V1-V9).  Image adapted from (McAllister  et  al.,
2018).

Metagenomics and Metatranscriptomics 
Metagenomics  is  the  study  of  the  entire  (meta)  genetic  material  (genomes)
obtained from a complex microbial community using untargeted (shotgun) high-
throughput  sequencing  (Marchesi  and  Ravel,  2015).  This  approach  generates
large-scale  sequencing  data  that  can  reveal  insights  into  the  genomes  of
bacteria,  protozoa,  fungi,  archaea,  and viruses simultaneously.  Metagenomics
sequencing  has  several  applications,  including  taxonomic  and  functional
profiling, draft genome assembly, and the identification of novel microorganisms
(Quince et al., 2017; Latorre-Pérez et al., 2020). In addition, it is possible to study
taxa  at  the  species  and  strains  level,  and  investigate  their  functional
relationships  with  the  host  (Beghini  et  al.,  2021).  Similar  to  metagenomics,
metatranscriptomics is the untargeted sequencing of all microbial mRNA (Moran,
2009)  present  in  a  biological  sample  using  high  throughput  sequencing
technologies. This method is used to profile the gene expression of the rumen
microbiome  to  provide  information  on  the  functional  activity  of  microbial
communities.
The  analysis  of  metagenomic  and  metatranscriptomic  data  requires  greater
computational resources and advanced bioinformatics tools when compared to
amplicon-based metataxonomics (Niu et al., 2018), making it a more complex
and challenging process. In addition, although sequencing cost has dropped over
the decade, the cost of high-throughput metagenomics sequencing can still be
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expensive (Teufel and Sobetzko, 2022) and may be a limiting factor, particularly
in  studies  with  a  large  number  of  samples.  Despite  these  limitations,
metagenomics and metatranscriptomics offers a powerful approach to study the
rumen microbiome and has enabled researchers to gain valuable insights into
the contribution of the rumen microbiome to the regulation of  complex traits
such as feed efficiency and CH4  emissions (Shi et al., 2014; Kamke et al., 2016;
Greening et al., 2019; Asselstine et al., 2021).

What associations between the rumen microbiome and 
methane emissions in sheep?
A  number  of  studies  have  investigated  associations  between  the  rumen
microbiome and CH4 emissions in sheep (Kittelmann et al., 2014; Shi et al., 2014;
Kamke et al.,  2016; Ghanbari Maman et al.,  2020). Although archaea are the
exclusive producers of  CH4in  the rumen, and are thus positively linked to its
production  (Wang  et  al.,  2023),  a  clear  association  between  community
abundance  and  higher  or  lower  CH4  producing  sheep  has  not  been  widely
observed (Kittelmann et al., 2014;Shi et al., 2014). Instead it appears that the
relationship between the archaeal community and CH4  emissions is more tightly
linked to differences in community composition rather than the overall size of the
archaeal community (Tapio et al., 2017). For example, Kittelmann et al. (2014)
and Shi et al. (2014) both reported no significant differences in total archaeal
abundance in the rumen of high and low MY sheep. However, they did observe
differences in the abundance of individual members of the archaeal community
(Kittelmann et al., 2014;Shi et al., 2014). The abundance of Methanosphaera and
Methanosphaera stadtmanae were found to be higher in the LMY cohort, while
the abundance of  Methanobrevibacter smithii was found to be increased in the
rumen of the HMY cohort.  Further analysis of the data produced by Shi  et al
(2014)  showed  increased  abundance  of  Methanobrevibacter  smithii and
Methanobrevibacter  ruminantium in  higher  CH4  emitting  sheep  and
Methanosphaera stadtmanae  in lower CH4  emitting sheep (Ghanbari Maman et
al., 2020). 
Differences in the abundance of archaeal taxa between high or low CH4 emitting
animals can be driven by hydrogen concentrations in the rumen. For example,
hydrogenotrophic  Methanobrevibacter species  are  phylogenetically  classified
into  two  distinct  clades;  SGMT  (M.  smithii,  M.  millerae,  M.  thaueri  and  M.
gottschalkii) and RO (M. ruminantium and  M. olleyae) clades. The SGMT clade
are known to possess 2 isozymes of the methyl-coenzyme M reductase enzyme;
MCRI and  MCRII,  while  the  RO  clade  only  possesses  MCRI.  The  catalytic
properties of both enzymes are distinct with  MCRI exhibiting higher substrate
specificity than MCRII, while having a lower maximum turnover rate (Pitta et al.,
2022).  Indeed,  the  expression  of  MCRI and  MCRII is  dependent  on  the
concentrations  of  dissolved  hydrogen  in  the  rumen,  with  MCRII only  fully
expressed when hydrogen concentrations  are relatively  high (Alvarado et al.,
2014). Thus, the SGMT clade would have an energetic advantage over the RO
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clade  when  the  partial  pressure  of  hydrogen  in  the  rumen  is  elevated  and
contribute to higher CH4  production. Moreover, methylotrophic  Methanosphaera
have a lower hydrogen threshold than hydrogenotrophic methanogens,  which
they can out-compete when the partial pressure of hydrogen in the rumen is low
(Feldewert et al., 2020) and could explain its higher abundance in LMY sheep.  
Methanogenesis is intricately linked to the production and transfer of hydrogen
from microbial  species such as bacteria,  protozoa,  and fungi to methanogens
(Patra et al., 2017). Similarly, the relationship between these microbial groups is
further  complicated  by  the  competition  for  methanogenic  substrates,  as
evidenced by the presence of competing pathways in bacteria (Greening et al.,
2019).  As  a  result,  the  production  of  CH4  in  the rumen is  dependent  on  the
interplay  between  these  microorganisms.  Indeed,  studies  have  found  the
bacterial  community  composition differing between high and low CH4  yielding
(MY) sheep (Kittelmann et al., 2014; Kamke et al., 2016). Kittelmann et al. (2014)
investigated whether differences in rumen bacterial community were linked to
high and low CH4 emitting in sheep (Kittelmann et al., 2014). The study found
that there were gradual transitions between three distinct bacterial ruminotypes
of  236 sheep samples,  which were linked to different  CH4 emissions.  Two of
these ruminotypes, Q and S, were associated with significantly lower CH4 yields
than the third ruminotype, H. The authors hypothesised that lower CH4 yields
were  the  result  of  bacterial  communities  that  fermented  ingested  feed  to
relatively less hydrogen, which resulted in less CH4  being formed (Kittelmann et
al.,  2014).  Ruminotype  Q  was  associated  with  a  lower  ruminal  acetate  to
propionate  ratio  and  high  relative  abundances  of  the  propionate-producing
Quinella ovalis, while ruminotype S was characterised by lactate- and succinate-
producing Fibrobacter spp., Kandleria vitulina, Olsenella spp., Prevotella bryantii,
and Sharpea azabuensis. In contrast, high-CH4 ruminotype H had higher relative
abundances of species known to form significant amounts of hydrogen, including
Ruminococcaceae and  Lachnospiraceae  (Kittelmann  et  al.,  2014).  In  a  later
study, Kamke et al. (2016) conducted a study to investigate the contribution of
rumen bacteria to MY phenotypes and to identify specific microbial species and
metabolic pathways associated with low MY in sheep (Kamke et al., 2016). The
study found that HMY animals harbored a greater abundance of Ruminococcace
and Lachnospiraceae families, while lactate-producing Sharpea spp. and lactate
fermenting  Megasphaera  elsdenii were  enriched  in  the  rumen  bacterial
communities of low MY (LMY) sheep. 
In addition, Kamke et al.  (2016) observed differences in metabolic pathways,
whereby  the  LMY  sheep  exhibited  an  upregulation  of  genes  involved  in  the
conversion  of  lactate  to  propionate,  namely  acyl-CoA-dehydrogenase,
propionate-CoA-transferase,  lactate-dehydrogenase,  and lactyl-CoA-transferase.
It is understood that propionate, which is produced from succinate and lactate
precursors,  functions as a hydrogen sink in the rumen (Kamke et al.,  2016).
Greening et al. (2019) found the expression profiles of H2-evolving hydrogenases
were comparable between the two divergent cohorts (Greening et al., 2019). On
the  other  hand,  differences  in  the  expression  of  H2 utilising  pathways  were
observed  between  the  cohorts.  Specifically,  the  expression  levels  of
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methanogenic  hydrogenases  and  methyl-CoM  reductase  were  found  to  be
decreased  in  low  MY  sheep.  In  contrast,  the  gene  expression  levels  of  two
prominent  non-methanogenic  H2 sinks,  namely  acetogenesis  and  fumarate
reduction, were found to be upregulated (Greening et al., 2019). The results of
the studies suggest that disparities in MY between high and low MY sheep are
not exclusively attributable to differences in hydrogen production. Instead, the
upregulation of methanogenic and non-methanogenic H2 utilising pathways, such
as propionate production, acetogenesis and fumarate reduction, appears to be
also contributing to the observed differences in MY between the two cohorts. 
Ciliate  protozoa  play  a  central  role  in  the  supply  of  substrates  for
methanogenesis  by  producing  significant  amounts  of  hydrogen  during
fermentation. A meta-analysis conducted by Guyader et al. (2014) explored the
correlation  between  rumen  protozoa  concentration  and  CH4  production.  The
study found that a reduction in protozoa concentration by 0.12 log10 cells/ml led
to a significant reduction in the amount of CH4  produced (1 gram of CH4  per
kilogram of dry matter intake). However, it was noted that in 21% of the studies
used in the meta-analysis, there was a reduction in CH4  production even when
the  protozoa  concentration  were  the  same (Guyader  et  al.,  2014).  A  further
meta-analysis conducted by Newbold et al. (2015) found that the elimination of
ciliate protozoa from the rumen reduced CH4  production by as much as 11%
(g/kg DMI)  (Newbold et  al.,  2015).  In  a study carried  out  by Belanche et  al.
(2015)  the  effects  of  different  types  of  protozoa  (entodinium  and  holotrich
protozoa)  on  the  production  of  CH4  in  the  rumen  of  sheep found that  when
defaunated  sheep  were  refaunated  with  holotrich  protozoa,  there  was  an
increase in the number of methanogens and CH4  production. When the sheep
were subsequently refaunated with a mixture of both holotrich and entodinium
there  was  no  differences  in  CH4  production  or  the  number  of  methanogens
(Belanche et al., 2015). 
Studies  investigating  the  relationship  between  fungal  communities  and  their
impact on CH4 emissions in sheep are lacking. However, one study conducted by
Kittelmann  et  al.  (2014)  reported  no  differences  in  fungal  or  protozoal
communities between HMY and LMY sheep (Kittelmann et al., 2014), however,
this  may  be  due  to  the  limited  representation  of  these  microorganisms  in
genomic databases (Greening et al., 2019). 

Methane mitigation strategies for more sustainable 
sheep production
The rumen microbiome is influenced by a range of factors, such as diet, feeding
practices  and  host  genetics,  which  alter  fermentation  in  the  rumen  and
consequently  influence  the  amount  of  CH4  produced.  These  factors  can  be
targeted in mitigation strategies aimed at reducing CH4  emissions from sheep
production systems by improving dietary management, supplementing diet with
feed additives, breeding for low CH4  producing animals and/or enhancing feed
efficiency. 
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Dietary management practices to reduce methane emissions
Dietary  management  practices  can  play  an  important  role  in  reducing  CH4

emissions  from  sheep.  One  potential  strategy  for  reducing  CH4  emissions  is
feeding diets with a high proportion of grains/or concentrates to forages. This is
known to favourably alter the rumen fermentation, leading to increased ratio of
propionate to acetate  production,  faster  ruminal  passage  rate  and lower CH4

emissions per unit of feed consumed (Janssen, 2010). Gere et al. (2022) showed
that  supplementing  low-quality  forage  (Rhodes  grass  hay)  with  dry  distilled
grains soluble (DDGS) (a DM ratio of 64:36) in sheep resulted in an increase in
dry matter intake (DMI) by 22%, while reducing DME by 24% (g/d) and MY by
35% (g/kg DMI)  (Gere et al.,  2022). Indicating that supplementing low-quality
forage  with  DDGS  could  improve  productivity  and  reduce  CH4 emissions  in
livestock systems. However, increasing concentrate or grain feeding can lead to
ruminal acidosis and negatively impact normal rumen physiology and host health
(Snyder  and Credille,  2017).  A  potentially  safer  alternative  is  to  offer  higher
quality forages (Fraser et al., 2015; Wang et al., 2019;Thompson and Rowntree,
2020), such as young plants, which have lower levels of neutral detergent fiber
(NDF)  and higher  amounts  of  easily  fermentable  carbohydrates  compared  to
more mature and lower quality forages (Islam and Lee, 2019). Indeed, in a study
conducted by Moss et al. (2019), it was found that supplementing sheep with 0.5
kg/d concentrates while on a high-quality perennial rye diet had no significant
effect on DME or MY. Based on their research findings, the authors concluded
that a diet consisting of high-quality grass can sustain high nutrient utilization
efficiency as effectively as diets supplemented with concentrates in the context
of ewe lamb production. In addition, Fraser et al. (2015) discovered that sheep
offered fresh cut perennial ryegrass with a low NDF profile produced less CH4

emissions per unit DMI and proportion of gross energy intake excreted as CH4

compared to those fed fresh cut permanent pasture with a high NDF profile. This
finding is consistent with the knowledge that higher quality forages are more
readily digested and have a faster passage rate from the rumen, leading to a
reduction  in  CH4  production  (Janssen,  2010).  Some  studies  have  also
demonstrated that offering lotus and chicory to sheep can significantly reduce
CH4 emissions in sheep (Waghorn et al., 2002), while other studies have found no
discernible effect of either forage type (Hammond et al., 2011; Sun et al., 2012).
In summary, careful management of dietary practices can lead to reduced CH4

emissions without negatively impacting animal health, welfare, or productivity,
ultimately contributing sustainable production.

Plant extracts in sheep feeds to reduce methane emissions
Various plant extracts such as saponins, tannins, and essential oils are being
studied  as  potential  strategies  to  mitigate  CH4  emissions  from sheep.  These
substances  have  antimicrobial  properties  that  can  alter  fermentation  in  the
rumen, leading to reduced CH4 production (Patra et al., 2012). However, the use
of these extracts can also have negative impacts on factors such as feed intake
and nutrient utilization, which can affect animal performance (Vasta et al., 2009;
Patra et al.,  2012). Factors such as the type of extract,  its source,  molecular
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weight dose administered and diet type have varying degrees of impact on both
CH4reduction and animal performance (Islam and Lee, 2019; Valenti et al., 2021),
and optimizing the use of plant extracts to reduce CH4while limiting effects on
animal performance is a matter of ongoing research (Zhou et al., 2019b; Valenti
et al., 2021). Studies in sheep have found that purified condensed tannins and
tea saponins can significantly reduce CH4  emissions without impacting animal
performance (Yuan et al., 2007; Wang et al., 2009; Ngámbi et al., 2022). A meta-
analysis comparing the effectiveness of various CH4-reducing strategies found
that  tannins  and  lipids  were  the  most  effective  additives  in  reducing  CH4

production,  with  the  specific  effectiveness  varying  based  on  the  type  and
amount  of  additive,  diet  composition,  and  method  of  CH4  production
measurement (Torres et al., 2022; Santos Torres et al., 2023). 

Dietary lipids in sheep feeds to reduce methane emissions
The  inclusion  of  polyunsaturated  fatty  acids  (PUFAs)  has  been  found  to
effectively reduce CH4 emissions in sheep (Machmüller, 2006). Different types of
PUFAs, such as coconut oil,  soya oil,  rapeseed oil,  and linseed oil,  have been
tested for their effectiveness in reducing CH4 emissions (Machmüller et al., 2000;
Mao et al., 2010). For instance, Mao et al. (2010) studied the effects of adding
soybean oil on CH4 production in growing lambs fed a diet composed of Chinese
wild rye and concentrates.  The finding showed that including 3% soybean oil
reduced CH4 emissions by 14% (from 26.2 to 22.6 L/kg DMI) (Mao et al., 2010). In
another study, Machmüller et al. (2000) showed that including 6% coconut oil
could reduce CH4  emissions by 26% (662 to 489 ml kg−1  Live weight) in lambs
fed maize silage,  grass  hay and concentrates  (Machmüller  et  al.,  2000).  The
reduction  of  CH4through  dietary  lipid  supplementation  is  mediated  through
combined  effect  of  various  mechanisms  including  the  toxicity  of  lipids  to
protozoa and methanogens,  the bio-hydrogenation of unsaturated fatty acids,
and  the  promotion  of  propionate  production  through  the  shifting  of  rumen
fermentation pathways (Newbold et al., 2015; Beauchemin et al., 2022b). While
the use of PUFAs have been shown to effectively reduce CH4 emissions in sheep,
their use does have potential drawbacks. High concentration fats can also have a
toxic  effect  on cellulolytic  microorganisms in the rumen,  which could  have a
negative impact on fiber digestibility, rumen fermentation and ultimately animal
production (Behan et al., 2019). In addition, oils and fats can reduce feed intake
by as much as 6% and digestibility of the diet by as much as 4% (Arndt et al.,
2021), which can impact on production. Therefore, it is important to carefully
balance the benefits of reducing CH4 emissions with potential negative effects on
productivity  when  incorporating  PUFAs  into  sheep  diets.  Current
recommendations is that dietary fat levels do not exceed 6-8% of the diets DM
(FAO, 2022). 

Ionophores in sheep feeds to reduce methane emissions
Ionophores, such as monensin, have been shown to be effective feed additives
for reducing CH4 production in sheep (Ushida et al., 1985). Ionophores are a type
of antimicrobial agent that work by binding to the lipid bi-layer of microbial cells
(Chow  et  al.,  1994),  allowing  H+ and  metal  ions  to  pass  through  the  cell
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membrane  and  ultimately  leading  to  cell  death  (Russell  and  Strobel,  1989;
Fellner et  al.,  1997).  Monensin is  known to selectively target and reduce the
populations of gram-positive bacteria and protozoa in the rumen (Shen et al.,
2017;  Ogunade  et  al.,  2018).  This  leads  to  changes  in  rumen  fermentation
patterns,  shifting  towards  increased  ratios  of  propionate  to  acetate,  reduced
ammonia and increased protein, reduced H+ and CH4  production (Russell  and
Strobel, 1989; Russell  and Houlihan, 2003). However, the use of antimicrobial
agents  in  general  is  controversial  due  to  the  potential  development  of
antimicrobial resistance. Therefore, the use of monensin has been prohibited in
certain regions, including the EU. (Castillo et al., 2004). 

3-NOP feed additive for methane reductions from ruminants
3-nitrooxypropanol  (3-NOP),  or  Bovaer®  as  it  is  commercially  known,  is  a
synthetic  compound  that  has  been  shown  to  reduce  CH4by  inactivating  the
activity  of  methyl  coenzyme  M  reductase,  a  key  enzyme  involved  in  the
production  of  CH4.  A  meta-analysis  carried  out  by  Jayanegara  et  al.  (2018)
examined the methane reducing effects of 3-nitrooxypropanol (3-NOP) on enteric
CH4 emissions from cattle and sheep. The study found that increasing levels of 3-
NOP  in  ruminant  diets  decreased  enteric  MY  by  approximately  20% without
negatively  affecting  animal  performance  or  DMI  (Jayanegara  et  al.,  2018).
Additionally, 3-NOP decreased A:P ratio and archaea population, and had little
effect on nutrient digestibility of the diet (Jayanegara et al., 2018). Overall, the
study  concluded  that  3-NOP  is  an  effective  feed  additive  for  mitigating  CH4

emissions in ruminants without compromising animal productivity (Jayanegara et
al., 2018). An analogous compound, ethyl-3-nitrooxypropionate (E-3NP), has also
been shown to have CH4-reducing potential in sheep (Martínez-Fernández et al.,
2014). Martínez-Fernández showed that high doses of E-3NP (500mg/kg of DMI)
reduce CH4  production by as much as 29% in sheep (Martínez-Fernández et al.,
2014). Lower doses of both E-3NP and 3-NOP have also been shown to reduce
CH4  emissions,  albeit  to  a  lesser  extent  (Martínez-Fernández  et  al.,  2014).
Overall,  these  findings  provide  a  promising  avenue  for  reducing  methane
emissions from sheep production systems.

Host genetics and breeding programs
Numerous studies have demonstrated that CH4  emission in sheep is a heritable
trait,  indicating that host genetics can influence the amount of CH4an animal
produces (Ghavi Hossein-Zadeh, 2023; Pinares-Patiño et al., 2013). For example,
heritability estimates for DME were found to range from 0.13 (Goopy et al., 2015)
to 0.29 (Pinares-Patiño et al., 2013), while MY had a heritability of 0.13 (Pinares-
Patiño et al., 2013). A recent meta-analysis showed that heritability estimates for
MY was 0.137 (Ghavi Hossein-Zadeh, 2023), further supporting the idea that CH4

emissions  in  sheep  are  genetically  influenced.  These  findings  highlight  the
potential for selective breeding as a strategy for reducing CH4  emissions from
sheep  production  systems.  Rowe  et  al.  (2019)  established  selection  lines  of
sheep with high and low CH4 emissions. After 10 years, the study reported a 12%
reduction in CH4 emissions between the high and low MY selection lines (Rowe et
al., 2019), demonstrating the potential of selective breeding for cumulative and
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permanent  reductions  in  CH4.  Thus,  selective  breeding  programs  could  be  a
sustainable  and  effective  solution  for  mitigating  CH4  emissions  from  sheep
production systems.

Feed efficiency in sheep production for methane 
emissions reduction
Feed efficiency is an important metric in livestock production as it measures the
animal's ability to convert ingested feed into body weight or milk. Sheep that are
feed efficient are able to maintain or increase their production while consuming
less  or  comparable  amounts  of  feed  than  their  feed  inefficient  counterparts
(Zhang et al.,  2017b).  Feed can account  for  a  substantial  proportion of  total
production costs which is estimated to be 60-70% in the sheep industry (Zhang
et  al.,  2019),  therefore,  feed  efficiency  has  significant  implications  for
profitability  within  the  sector.  Indeed,  feed  efficient  lambs  have  been
demonstrated to save between 20% - 26% on feed costs in comparison to their
feed  inefficient  counterparts  (Ellison  et  al.,  2022).  In  addition,  research  has
shown that the quantity of feed consumed by sheep has a significant impact on
CH4  production, with dry matter intake (DMI) accounting for between 76% and
91% of  the  variation  in  CH4  emissions  from pasture-fed  sheep.  Studies  have
shown that more feed efficient sheep tend to produce less CH4  per unit of feed
consumed (Paganoni et al., 2017). This can be attributed to the fact that animals
with higher feed efficiency produce less methane per unit of weight gain due to
their  reduced  overall  feed  intake.  Furthermore,  ruminal  methanogenesis  is
commonly associated with the loss of dietary energy, ranging from 2% to 12%
according to various studies (Johnson and Johnson,  1995; Bhatt  et al.,  2019),
thereby influencing feed efficiency of the host. Since CH4 cannot be metabolised,
it is eructated to the atmosphere, contributing to atmospheric GHG emissions
(Naqvi  and  Sejian,  2011).  Thus,  enhancing  feed  efficiency  in  sheep  has  the
potential to improve profitability and environmental sustainability of the sector.

Measures of feed efficiency in ruminant livestock
Feed efficiency can be measured in a number of different ways. Feed conversion
ratio (FCR) and residual feed intake (RFI) are two of the most common indices
measuring feed efficiency in sheep (Ellison et al.,  2017; Claffey et al.,  2018;
Zhang et al., 2019). FCR is simply calculated as the kilogram ratio of the animal's
average dry matter intake (DMI) to its average daily growth (ADG) (Berry and
Crowley, 2013). In essence, FCR measures how many kilos of feed are consumed
to produce one kilogram of animal product, thus a decrease in FCR is related
with an increase in energy efficiency.  However, one notable downside of using
FCR as a measure of feed efficiency is that it is correlated to animal body weight
and ADG, which can lead to the selection of larger, faster growing animals that
would  theoretically  require  more  maintenance  (Santana  et  al.,  2012).
Consequently, this can have negative economic and environmental ramifications.
RFI  is  a  more  robust  and  reliable  measure  of  feed  efficiency  (Zhang  et  al.,
2017b). The concept of RFI was first introduced by (Koch et al.,  1963) and is
defined  as  the  difference  between  observed  feed  intake  and  predicted  feed

44



intake,  which  is  calculated as  the residuals  from a multiple  linear  regression
model  of  feed  intake  adjusted  for  production  levels  and  maintenance
requirements  (Berry  and  Crowley,  2013).  As  a  result  RFI  is  independent  on
animal’s growth rate and are better capable of selection animals that are truly
more feed efficient. 

Factors influencing feed efficiency of ruminant livestock
Feed efficiency is a complex trait that is influenced by various factors including
host genetics (Tortereau et al., 2020) and the rumen microbiome (Ellison et al.,
2017). In ruminants, including sheep, the rumen microbiome plays a crucial role
in feed digestion and fermentation, which results in the production of volatile
fatty  acids  (VFAs),  the  primary  source  of  energy  for  the  host  (France  and
Siddons, 1993). As a result, the rumen microbiome is inextricably linked to the
feed efficiency of the host. Indeed, a number of studies have established links
between the rumen microbiome and feed efficiency in sheep (Ellison et al., 2017;
Zhang et  al.,  2021b;  Cheng  et  al.,  2022).  For  instance,  Zhang  et  al.  (2021)
conducted a study on concentrate-fed Hu lambs with divergent residual  feed
intake  (RFI),  using  16S  rRNA  amplicon  sequencing  to  investigate  the  rumen
microbiome.  The  study  found  that  low-RFI  (high  feed  efficiency)  animals
harbored a more diverse microbial community enriched with  Succinivibrio and
exhibited a higher Firmicutes-to-Bacteroidota ratio (F:B) than high-RFI (low feed
efficiency) animals (Zhang et al., 2021b). Although, other studies have reported
a  higher  F:B  in  feed  inefficiencient  animals  (Lopes  et  al.,  2021).Besides  the
rumen microbiome, feed efficiency has a genetic component, with RFI and FCR
showing moderate heritability in sheep (Tortereau et al., 2020). According to a
study conducted by Tortereau et al. (2020), both residual feed intake (RFI) and
feed conversion ratio (FCR) were found to be heritable, with RFI exhibiting higher
heritability (0.45) than FCR (0.30). The study further demonstrated that selecting
sires with low RFI values led to the production of lambs that consumed 3% less
feed,  while  maintaining comparable  growth rates to  those selected based on
high RFI values (Tortereau et al., 2020). These findings suggest the potential for
breeding strategies to improve feed efficiency and improve profitability within
the  sector.  Further  continued understanding  the  complex  interactions  among
host  genetics,  diet,  and  the  rumen  microbiome  can  contribute  to  the
development of effective strategies to enhance feed efficiency and reduce the
environmental impact of sheep production systems.

Typical workflow for rumen microbiome studies
The rumen harbors a diverse microbial community that plays a crucial role in the
feed  efficiency,  CH4  production  and  host  health.  To  understand  the  complex
interactions  between  rumen  microbes  and  their  host,  microbial  studies  are
conducted which follow a typical workflow: the collection and storage of rumen
samples,  DNA extraction  and  library  preparation,  DNA sequencing,  sequence
analysis,  and  statistical  analysis.  The  microbial  community  analysis  workflow
typically employs short-read Illumina sequencing technologies, and the following
is an overview of this process.
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Sample collection and storage
Conducting a rumen microbial study requires careful consideration of the sample
collection process.  The type and number of samples collected, as well  as the
method  used  to  obtain  them,  should  be  determined  based  on  the  research
hypothesis. A power analysis can be conducted to determine the necessary or
minimum number of samples required to discern a biological effect  (Ferdous et
al.,  2022).  Methods  for  collecting  rumen  samples  include  trans-esophageal
tubing, rumen fistulation, or collection at slaughter (Ramos-Morales et al., 2014;
Fu  et  al.,  2020).  To  ensure  accurate  biological  inference,  it's  important  to
maintain the information present in the rumen sample at the time of collection.
Rumen samples are typically snap frozen in liquid nitrogen immediately after
collection and stored in laboratory freezers at -20 to -80°C (Martinez-Fernandez
et al.,  2019). Variations in storage methodologies,  the timing of storage,  and
refreezing after thawing can all affect the microbial community composition and
downstream analyses (Granja-Salcedo et al.,  2017).  Therefore,  it  is  crucial  to
carefully  consider  the sample collection and preservation process  in  order to
obtain reliable and meaningful results in rumen microbial studies.

DNA extraction and library preparation
DNA is isolated from microbial  cells prior to sequencing using DNA extraction
methodologies. This is achieved by lysing microbial cells by mechanical and/or
chemical  means  (Gupta,  2019),  which  are  incorporated  into  a  variety  of
commercially available DNA extraction and purification kits, such as the Qiagen
DNeasy PowerSoil® or FastDNA™ SPIN Kit for Soil. DNA extraction protocols aim
to maximize yield, quality and purity of microbial DNA (Gupta, 2019). Mechanical
lyses using bead beating technology has been shown to produce higher DNA
yields, however, excessive bead beating can lead to DNA shearing (Zhang et al.,
2021a), which can negatively impact downstream analysis (Cullen et al., 2022).
The variability in microbial cell wall structures among different microorganisms
complicates DNA extraction, which can bias sequencing and analysis (Zhang et
al.,  2021a;  Lourenco  and  Welch,  2022).  Therefore,  it  is  essential  to  control
potential  biases  during  the  DNA  extraction  process  to  ensure  accuracy  and
reliability in downstream analysis (Lourenco and Welch, 2022). One approach to
achieving this is by using the same extraction protocol and batch reagents for all
samples  (Lourenco  and Welch,  2022)  to  minimise  variations  in  DNA yield  or
quality that could skew the results. Additionally, the inclusion of proper negative
and positive  controls  is  crucial  for  mitigating  potential  biases  (Lourenco  and
Welch,  2022).  Negative  controls  enable  researchers  to  monitor  for  potential
contamination during the DNA extraction process, while positive controls, such
as "mock communities", provide a known set of DNA sequences that can be used
to  validate  the sequencing process  and downstream processing  and analysis
(McGovern et al., 2018).
After  DNA  extraction,  DNA  libraries  are  prepared  prior  to  sequencing.  For
amplicon sequencing, specific variable regions of interest (such as 16S rRNA V1-
V9)  are  first  amplified  via  PCR  using  suitable  primers  (Leray  et  al.,  2016).
Amplicons  are  then  ligated  with  adapter  sequences  to  prepare  them  for
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sequencing  (Leray  et  al.,  2016).  For  metagenomics  sequencing,  DNA  is
fragmented, end-repaired and then ligated with adapter sequences (Bronner and
Quail,  2019).  The  adapters  contain  a  complementary  sequence  to
oligonucleotides  present  on  the  surface  of  the  sequencing  flow  cell,  which
anchors the DNA fragments for sequencing (Kozarewa et al., 2009). In addition,
adapters  also  contain  an  index  sequence  that  enables  pooling  and  sample
identification, as well as an annealing site for the sequencing primers to attach
to  the  DNA  template  and  initiate  the  sequencing  reaction  (Leray  et  al.,
2016;Slatko  et  al.,  2018).  Size  selection  is  performed  either  via  gel
electrophoresis  or  a  bead-based size  selection  method to  obtain  the  desired
library  sequencing  sizes  (Bronner  and  Quail,  2019).  Finally,  libraries  are
quantified and assessed prior to sequencing using a Agilent Bioanalyser (Bronner
and Quail, 2019).

DNA sequencing
The choice of sequencing technology can depend on the type of study being
carried out, as different sequencing technologies have their own strengths and
weaknesses. Short-read sequencing technologies, such as the Illumina platforms
(e.g MiSeq, NovaSeq HiSeq) (Caporaso et al., 2012), are widely used in rumen
microbiome studies as they offer high sequencing depth at a comparatively low
cost (Bharti and Grimm, 2021) Illumina's MiSeq sequencing platform has been
widely  adopted  in  amplicon  sequencing  studies,  primarily  owing  to  its  high-
throughput capabilities, fast turnaround times, extended sequence read lengths,
and high accuracy (Wen et al., 2017). The MiSeq sequencing platform commonly
generates 15GB of data with 25 million paired-end reads with a read length of
300bp (Illumina, nd), and facilitates parallel sequencing of roughly 400 samples
with an average of  50,000 paired-end reads per sample (Dong et al.,  2017).
Illumina  HiSeq  and  NovaSeq  platforms  are  typically  used  for  shotgun
metagenomics sequencing, which allows for thousands of microbial genomes to
be sequenced in parallel. For instance, the HiSeq 2500 model can generate up to
600 million high quality paired-end reads with a read length of 251bp reads,
alternatively, the NovaSeq 6000 can produce up to 1.6 billion paired end reads
with  a  read  length  of  251bp  reads  (Illumina,  2021).  Illumina  sequencing
platforms  use  bridge  amplification  and  sequencing  by  synthesis  technology,
which involves the iterative addition of individual nucleotides to DNA template
strands in repetitive cycles (Buermans and den Dunnen, 2014). Each nucleotide
is fluorescently labeled and detected after incorporation, allowing the sequence
of the template strand to be determined (Buermans and den Dunnen, 2014).

Bioinformatic processing and analysis of amplicon data
After sequencing, reads are demultiplexed/sorted according to sample of origin,
which  is  based  on  the  adapter  index/barcode  sequences.  This  produces
individual files (FastQ files) containing all the reads belonging to their respective
samples.  Reads  then  undergo  a  quality  control  step,  to  assess  sequencing
performance  and inform pre-processing  of  the  raw reads.  FASTQC (Andrews,
2010)  is  an  efficient  and  widely  utilised  tool  for  the  quality  assessment  of
sequencing data. Reads then pre-processed to trim off adapter sequences and
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remove  low-quality  bases  and  reads.  A  variety  of  different  tools  have  been
developed  for  trimming  sequence  reads  including  Cutadapt  (Martin,  2011),
Trimmomatic (Bolger et al.,  2014) and FASTP (Chen et al.,  2018). Paired end
reads can then be error corrected and merged using tools such as PANDAseq
(Masella et al., 2012). QC and pre-processing are important components of the
workflow which serves to improve the overall quality of the data and minimise
overestimation of the microbial community prior to downstream analyses. 
Following  QC  and  processing  steps,  sequenced  reads  are  clustered  and
classified.  Traditionally,  reads were clustered based on an arbitrary sequence
similarity  threshold  of  97%,  known  as  operational  taxonomic  units  (OTUs)
(Westcott  and Schloss,  2015) using the UPARSE-OTU algorithm (Edgar, 2013).
However, such criteria are incapable of distinguishing closely related species or
genera (Pei et al., 2010). In addition, errors introduced by PCR and sequencing
may compromise the ability to distinguish between distinct taxa (Galloway-Peña
and Hanson, 2020). 
Recently, there has been a shift away from arbitrary OTU clustering and towards
amplicon  sequence  variants  (ASVs),  which  provides  greater  resolution  of  the
rumen  microbiome  (Callahan  et  al.,  2017).  ASV  methods,  such  as  DADA2
(https://benjjneb.github.io/dada2/index.html),  infer  biological  sequencing  by
correcting errors introduced during PCR amplification and sequencing, and are
capable  of  distinguishing  sequence  variants  that  differ  by  as  little  as  one
nucleotide (Callahan et al., 2016;Callahan et al., 2017). ASV are advantageous
over OTUs as they can be compared across studies, they are not impacted by
incomplete databases and are reproducible for future datasets (Callahan et al.,
2017).  ASVs  or  OTUs  are  then  taxonomically  classified  by  comparing
representative  DNA  sequences  to  a  reference  database,  such  as  the  SILVA
(Quast et al., 2012) or Greengenes (DeSantis et al., 2006) databases. A feature-
count table is generated by quantifying the frequency of each ASV or OTU in
each sample and serves as the basis for downstream analyses, such as alpha
and beta diversity analysis or differential abundance analysis (Figure 1.13A).
One of the fundamental drawbacks of amplicon sequence analysis gene analysis
is  that  it  provides  limited  information  on  metabolic  activity  of  microbial
communities. However, software applications such as PICRUSt (Langille et al.,
2013; Douglas et al.,  2020) and CowPI (Wilkinson et al.,  2018) have been to
developed to help infer the functional potential from amplicon data. Functional
prediction algorithms, however, are incapable of inferring the functional activity,
which can only can only be measured via metatranscriptomic methodologies. 

Metagenomic sequence analysis
Metagenomic data is quality assessed with bioinformatic tools, such as FASTQC
(Andrews, 2010) and MultiQC (Ewels et al., 2016), which inform pre-processing of
the raw data. Undesired sequences, low-quality bases, and adapter sequences
can be removed using tools such as Trimmomatic (Bolger et al., 2014), Cutadapt
(Martin, 2011) and FASTP (Chen et al., 2018). In addition, metagenomic datasets
can contain contaminant reads from the host, and their presence in the dataset
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can  lead  to  erroneous  downstream  analysis  and  interpretation.  Contaminant
reads  should  therefore  be  removed,  which  can  be  achieved  by  aligning  and
filtering reads that map to the host reference genome using Bowtie2 (Langmead
and Salzberg, 2012) or BWA (Burrows-Wheeler-Aligner) (Li  and Durbin, 2009).
Kneaddata  (https://github.com/biobakery/kneaddata)  is  a  recently  developed
bioinformatic  pipeline  that  incorporates  various  bioinformatic  tools  such  as
FASTQC  (Andrews,  2010),  Trimmomatic  (Bolger  et  al.,  2014),  and  Bowtie2
(Langmead  and  Salzberg,  2012)  for  trimming  and  cleaning  of  metagenomic
datasets. These quality control steps are crucial to ensure that the metagenomic
data's  quality  is  sufficient  for  downstream  analysis  and  that  any  biases
introduced by contamination or low-quality reads are minimised.
Cleaned metagenomics reads can follow one of two analytical  paths, or both:
assembly-based and/or reference-based analysis (Liu et al., 2021). In reference-
based analysis, sequenced reads are classified by mapping them against curated
databases. Kraken2 (Wood et al., 2019) and MetaPhaln3 (Beghini et al., 2021)
are popular tools for taxonomic classification and quantification of metagenomics
reads.  Kraken2  is  a  fast  and  memory  efficient  tool  that  uses  exact  k-mer
matching to the lowest common ancestor (LCA) to assign taxonomic labels to
DNA  sequences  (Wood  et  al.,  2019).  MetaPhlAn3  performs  taxonomy
classification  by  aligning  reads  to  a  database  of  pre-defined  clade  specific
markers genes (Beghini et al., 2021). A review by Ye et al. (2019) presents an
evaluation of 20 taxonomic classification tools and provides benchmarks for their
performance (Ye et al., 2019). In addition to taxonomy profiling, HUMAnN3 can
be  used  to  conduct  functional  profiling  of  metagenomics  and/or
metatranscriptomic data (Beghini et al., 2021). HUMAnN3 implements a tiered
approach to functional classification, firstly it maps reads to a to clade specific
marker  genes  to  identify  species  within  a  sample,  then  it  maps  reads  to
functionally  annotated  pan-genomes  of  identified  species,  and  finally  aligns
unclassified reads to a protein database (UniRef90 or UniRef50) using translated
search (Franzosa et al., 2018). MEGAN is an another widely used bioinformatics
tool  which  can  be  used  for  both  taxonomic  and  functional  analysis  of
metagenomic data (Huson et al., 2016).
Assembly-based metagenomics aims to reassemble short sequenced reads into
longer contiguous sequences, known as contigs (Deng and Delwart, 2021). There
are two different approaches to metagenome assembly:  de novo assembly and
reference  guided  assembly  (Galloway-Peña  and  Hanson,  2020).  De  novo
assembly  methods  aim  to  rebuild  contigs  using  only  the  sequenced  reads,
independent of reference genomes, and can be done by either co-assembly or
independent  assembly.  In  co-assembly  reads  are  assembled  from  multiple
samples whereas independent assembly refers to the assembly of reads in each
sample independently (Delgado and Andersson, 2022).  De novo reconstruction
using  metagenomic  reads  is  a  computationally  expensive,  and  complex
procedure due to the size and heterogenous nature of metagenomic data (Sun et
al., 2022; Vuong et al., 2022). Nevertheless, several heuristic-based algorithms
for  de novo assembly have been developed, including ‘greedy’, overlap-layout
consensus (OLC), and De Bruijn graph (Ghurye et al., 2016). De Bruijn graph is
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the most widely implemented algorithm in  de novo assembly tools (Galloway-
Peña and Hanson, 2020). In principle, the algorithm constructs a de Bruijn graph
using k-mers of reads, where the nodes of the graph represent the prefixes and
suffixes  of  the  k-mers  and  edges  represent  the  k-mers.  Instead  of  explicitly
aligning the reads, this method identifies their overlap by examining the shared
k-mers.  The  de  Bruijn  graph  finds  the  Eulerian  path  through  the  graph  to
assemble reads into contigs (Ghurye et al., 2016). Popular  de novo assembling
tools  include  Megahit  (Li  et  al.,  2015),  MetaSPAdes  (Nurk  et  al.,  2017),
MetaVelvet  (Namiki  et  al.,  2011)  and  SOAPdenovo2  (Luo  et  al.,  2012).  For
reference-guided assembly, sequenced reads are aligned to reference genomes,
and contigs are reassembled based on their relative alignment positions (Cepeda
et al., 2017). 
Once reads are assembled into contigs,  gene predictions can be made using
tools  such  as  MetaGeneMark2 (Gemayel  et  al.,  2022)  and Prokka  (Seemann,
2014), which identify protein coding regions within contigs. CD-HIT (Fu et al.,
2012) can then be used to remove redundant genes and produce a reference
database from the contig dataset (Fu et al., 2012). Gene abundance tables are
then produced by aligning back the reads using alignment based tool such as
Bowtie2  (Langmead  and  Salzberg,  2012)  or  BWA  (Li  and  Durbin,  2009),  or
pseudo-aligners such as Salmon (Patro et al., 2015) and used for downstream
exploratory  and  statistical  analyses.  In  addition,  genes  can  annotated
functionally, for example with KEGG Orthology (KO) (Kanehisa et al., 2016), or
pathways such as MetaCyc (Caspi et al., 2020) or KEGG pathways (Kanehisa et
al.,  2016;Liu  et  al.,  2021).  Alternatively,  assembled  contigs  can  be  clustered
based on similarity in composition, coverage, and tetranucleotide frequency to
create  genome  bins  (Alneberg  et  al.,  2014).  This  process  is  referred  to  as
binning, and the resulting genome bins can be used to assemble draft genomes
known  as  metagenome-assembled  genomes  (MAGs).  A  variety  of  tools  have
been  available  for  metagenomics  binning  such  as  MaxBin2  (Alneberg  et  al.,
2014), CONCOCT (Alneberg et al., 2014) or MetaBAT2 (Kang et al., 2019). 
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Figure  1.13:  Workflow  of  commonly  used  methods  for  amplicon  (A)  and
metagenomic (B) sequencing. Blue, orange, and green blocks represent input,
intermediate,  and  output  files,  respectively.  The  text  next  to  the  arrow
represents  the method,  with  frequently  used software  shown in  parentheses.
Taxonomic and functional tables are collectively referred to as feature tables.
Figure and legend sourced from (Liu et al., 2021).

Classification databases for rumen microbiome studies
Classification of microbial communities is an important step for the analysis of
complex ecosystems such as those found in the rumen. Classification involves
comparing DNA sequences obtained from rumen samples to reference databases
to  identify  and  annotate  the  closest  matching  sequences.  The  Ribosomal
Database  Project  (RDP)  (Cole  et  al.,  2014),  SILVA  (Quast  et  al.,  2012),
GreenGenes (DeSantis et al., 2006), RefSeq (O'Leary et al., 2016) the Genome
Taxonomy Database (GTDB) (Parks et al., 2018) are among the most commonly
used  publicly  available  reference  databases  for  taxonomic  classification.  The
choice of reference database can have an impact on sequence classification and
subsequently on the interpretation of microbiota analysis (Pollock et al., 2018;
Henderson  et  al.,  2019).  Many  of  the  reference  databases  used  in  rumen
microbiome studies are biased toward human-relevant microorganisms (Pollock
et al., 2018), which can lead to misclassification and underestimation of rumen
microbial  diversity.  Additionally,  a  large  proportion  of  the  rumen microbiome
remains uncharacterised (McCabe et al., 2015), and current databases are not
fully representative of the rumen microbiome (Smith et al., 2022b), which can
result in an incomplete identification of the true microbial diversity present in the
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rumen. To address this, efforts have been made to improve the representation of
the rumen microbiome. The Hungate1000 project,  launched in 2012,  aims to
isolate and sequence the genomes of 1,000 microorganisms cultured from the
rumen (Seshadri et al., 2018). Currently more than 410 bacteria and archaea,
from every known family,  have been cultured and their genomes sequenced.
Moreover, the genomes are estimated to represent up to 75% of all bacterial and
archaeal genera present in the rumen (Seshadri et al., 2018). Further work is
needed to improve the representation of  the rumen microbiome in reference
databases in order to accurately characterise rumen microbial diversity. 

Statistical analysis of microbiome data
Feature count table
Amplicon and metagenomic sequencing technologies generate large amounts of
sequencing  data,  which  are  subsequently  processed  through  bioinformatics
pipelines to produce feature-count tables that detail the abundance of microbial
features  (e.g.  OTUs,  genes,  pathways)  in  each  sample.  Feature-count  tables,
along with  sample metadata,  are  used for  various  exploratory  and statistical
analyses, including diversity calculations, differential abundance and correlation
analysis,  co-abundance  network  analysis,  and  data  visualization  (Liu  et  al.,
2021). 
Microbiome feature-count tables are often sparse, especially when it comes to
taxonomy data (Pan, 2021). This means that many of the ASVs or OTUs have
zero counts in most of the samples - up to 70%-90%, in some cases (Lin and
Peddada,  2020;  Yang and Chen,  2022).  This  sparsity  is  due to  the fact  that
microbial communities are typically diverse, with many different taxa present but
only a subset of these taxa are detected in any given sample due to limitations
of sequencing depth or sampling variations, and are known as sampling zeros
(Yang and Chen, 2022). However, some taxa may truly not be present, and are
known as structural zeros (Zeng et al., 2022).  In addition, microbiome data is
highly variable with large variations in the abundance of specific taxa between
samples (Pan, 2021). Furthermore, microbiome data is compositional in nature
(Gloor et al., 2016; Gloor et al., 2017), which means that the data only provides
information on the relative abundances of microbial taxa in a given sample and
not their absolute abundances (Yang and Chen, 2022). Therefore, changes in the
abundance of one taxon can affect the relative abundances of all others. Strong
compositional  effects  can  arise  with  presence  of  many  low-abundance  taxa
alongside a few highly abundant taxa (Yang and Chen, 2022). Thus, microbiome
feature count tables have complex characteristics  that present challenges for
normalization and statistical analyses (Yang and Chen, 2022).
To reduce the complexity of the data, it is often common practice to filter out
features with low counts and low prevalence (Cao et al., 2021). Filtering is often
implemented  by  setting  arbitrary  abundance  and  prevalence  thresholds,
informed by biological  understanding and/or  careful  examination of  the data.
However, such criteria may result in a loss of informative data and influence the
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results (Mokhtari and Ridenhour, 2022). To ensure reliability, it can be useful to
apply and compare multiple filtering thresholds. Alternatively, various packages
have  been  developed  to  perform  unsupervised  filtering,  such  as  PERFect
(Smirnova  et  al.,  2019),  which  applies  a  statistical  data-driven  significance
threshold  to identify  the most  informative subset of  taxa for  further analysis
(Smirnova  et  al.,  2019).  Another  recently  proposed  method  is  the  MI-based
(mutual information based) method which uses information theoretic functionals
and graph theory for filtering (Mokhtari and Ridenhour, 2022). 

Data normalisation
Prior to downstream analysis, feature-counts are often normalised to account for
differences  in  sequencing  depth  across  samples,  and  ensure  meaningful
comparisons  can  be  made  between  samples  (Badri  et  al.,  2020).  There  are
various approaches to normalization,  and the choice of  normalization method
may differ depending on the nature of data and analysis being conducted (Xia
and Sun, 2017). Rarefying is common approach used to normalise feature-count
data,  and often performed prior to  diversity analysis  (Willis,  2019).  Rarefying
equalizes sequencing depth across  samples  by randomly subsampling counts
without  replacement  to  a  specified  depth,  often  determined  by  rarefaction
curves, to ensure equal numbers of sequences are drawn from each sample (Lin
and Peddada, 2020; Pan, 2021). However, rarefying the data can result in the
loss of useful information and bias the results (Nearing et al., 2022). Total sum
scaling (TSS)  is  a  widely  used approach,  whereby the individual  read counts
within a sample are transformed into proportions, such as relative abundances,
by dividing them by the total number of reads (Badri et al., 2020). Cumulative
sum scaling (CSS) is an alternative method for normalizing counts in microbiome
analysis. This approach involves scaling the counts of individual features based
on their cumulative sum up to a percentile threshold, which is determined using
a data-driven approach (Paulson et al., 2013). Others methods of normalization
and scaling are  also  available  and their  strengths  and limitations  have been
reviewed by Lin and Peddada (2020) (Lin and Peddada, 2020). 

Diversity analysis
Alpha diversity analysis is a common first  step in the analysis of microbiome
data. Alpha diversity is a measure of the diversity within a sample or community
(Sepkoski,  1988)  and  in  essence  describes  the  community  structure.  Alpha
diversity  can  be  calculated  using  different  metrics,  such  as  the  number  of
species (richness) or the equitability of their distribution (evenness) in a sample
(Thukral,  2017).  The Shannon index (generally  denoted as  H’),  developed by
Claude Shannon in 1948, is one of  the most  widely used indices to measure
alpha  diversity  in  microbiome  studies  (Thukral,  2017;Xia  et  al.,  2018).  The
Shannon  index  measures  both  the  richness  and evenness  of  the  community
(Gauthier  and  Derome,  2021).  It  calculates  the  natural  logarithm  of  the
proportion of individual species in a sample and multiplies it by the portion of
individuals  of  each  species  (Xia  et  al.,  2018).  This  results  in  a  value  that
increases with increasing diversity. Another common metric for alpha diversity is
the Simpson index, which is a measure of the diversity based on the probability
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that two individuals randomly drawn from the community belong to the same
species (Xia et al.,  2018). This index is a measure of the inverse dominance,
which means the higher  the Simpson index,  the lower the dominance of  the
species in the community and the greater the diversity (Xia et al., 2018). The
Simpson diversity  index ranges from 0 to 1,  with  a value of  0  indicating no
diversity  (i.e.,  all  individuals  belong  to  the  same  species)  and  a  value  of  1
indicating  maximum  diversity  (i.e.,  all  species  are  equally  abundant).  Alpha
diversity measures can be computed using the R programming package Vegan
(Oksanen  et  al.,  2013).  These  measures  are  commonly  compared  between
groups utilizing either classical parametric tests, provided certain assumptions
are  satisfied,  or  non-parametric  tests  in  cases  where  parametric  test
assumptions are not satisfied.
Beta diversity refers to the measurement of diversity between different samples
or communities (Koleff et al., 2003), describing variations in species composition
(Xia et al., 2018). Beta diversity can be estimated by using a variety of methods
such  as  the  Jaccard  or  Sorensen  indices  which  measure  the  similarity  or
dissimilarity  based on  the  presence  or  absence  of  different  species  between
different  communities (Xia et  al.,  2018).  Another  commonly  used method for
measuring beta diversity is the Bray-Curtis dissimilarity metric, which calculates
the compositional dissimilarity between two microbial communities based on the
relative abundance of different species in each community (Xia et al.,  2018).
Another popular approach for calculating beta diversity is the UniFrac metric,
which  considers  the  evolutionary  relationships  between  different  species
(Lozupone  and  Knight,  2005).  To  compare  beta  diversity  across  groups,  a
common  method  is  to  use  permutational  multivariate  analysis  of  variance
(PERMANOVA) (Anderson,  2014),  which can also be implemented using the R
programming package Vegan (Oksanen et al., 2013).

Differential abundance analysis
Differential abundance analysis is a critical aspect of microbiome data analysis,
which aims to identify taxa or features that are differentially abundant between
two or more groups or conditions. However, this can be challenging due to the
complex  nature  of  the  data,  including  high  dimensionality,  sparsity,  and
compositional  structure.  To  perform  differential  abundance  analysis,  various
statistical methods have been developed and applied, which can differ in their
assumptions, power, and sensitivity. Classic parametric statistical tests, such as
the  t-test  and analysis  of  variance  (ANOVA)  are  considered  inappropriate  for
differential abundance analysis due to the non-normal distribution of microbiome
data which violates the test assumptions (Pan, 2021). Non-parametric test such
as the Wilcoxon rank sum test and Kruskal-Wallace test,  are often used as a
result.  However, non-parametric tests also have limitations.  For example, ties
can occur when multiple taxa have zero counts, which can limit the ability to
detect differences between groups (Pan, 2021). In addition, nonparametric tests
cannot  adjust  for  covariates,  and  may  have  low  statistical  power,  especially
when working with sparse data and small sample sizes (Pan, 2021). A number of
packages originally designed for RNA-Seq differential expression analysis, such
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as EdgeR (Robinson et al., 2010) and DESeq2 (Love et al., 2014), have been used
for differential abundance analysis in rumen microbiome studies (Glendinning et
al., 2021; Neves et al., 2021). These packages use a generalised linear model
with a negative binomial distribution but apply different normalization methods.
A major limitation of these techniques is that the large number of zero counts in
a  microbiome dataset  can  exceed the  assumptions  of  the  negative  binomial
model, which can limit the statistical power (Pan, 2021). ANCOM-BC (Analysis of
Compositions of Microbiomes with Bias Correction) (Lin and Peddada, 2020) is a
recently developed method that extends upon the Analysis of Composition of
Microbiomes  (ANCOM)  (Mandal  et  al.,  2015).  ANCOM-BC  accounts  for  the
compositional nature of microbiome data and offers improved handling of the
high  sparsity  and  zero-inflation  commonly  observed  in  these  datasets.  The
method  uses  a  bias  correction  technique  to  adjust  for  the  effects  of  non-
biological variation on microbiome data (Lin and Peddada, 2020). Various tools or
packages are available for conducting differential abundance analysis. Therefore,
the  selection  of  a  suitable  method  should  take  into  account  the  specific
characteristics  of  the  dataset  and  the  underlying  assumptions  of  the  chosen
approach.

Conclusion
In  summary,  this  review  highlights  the  importance  of  sheep  production,
encompassing both its positive contributions and negative implications. Beyond
its critical role in ensuring food security by providing a source of animal protein,
sheep  production  also  confronts  environmental  challenges,  particularly  with
regards to  CH4 production through the enteric fermentation of feed within the
rumen.  Harnessing  the  power  of  next-generation  sequencing  (NGS)  and
metagenomics,  this review underscores the potential  of  these technologies in
unravelling  the  intricate  dynamics  of  the  rumen  microbial  community.
Understanding the role of the rumen microbiome and factors influencing it offers
promising  avenues  for  dietary  management  practices  and selective  breeding
programs aimed at optimizing feed efficiency while concurrently mitigating CH4

emissions. The integration of NGS and metagenomics approaches in studying the
rumen microbiome represents a pivotal step towards achieving sustainable and
environmentally friendly sheep production systems.

Aims
The objective of  this thesis  is  to  employ metagenomic approaches  to further
investigate the role of the rumen microbiome in enhancing feed efficiency and
reducing  methane  emissions  in  sheep.  It  aims  to  advance  our  current
understanding of rumen microbiome and to facilitate the development of more
effective strategies to improve livestock productivity and sustainability.
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Abstract
Rumen  microbiome  composition  and  functioning  is  linked  to  animal  feed
efficiency,  particularly for bovine ruminants.  To investigate this in sheep, we
compared rumen bacterial and archaeal populations (and predicted metabolic
processes) of sheep divergent for the feed efficiency trait feed conversion ratio
(FCR). In our study 50 Texel cross Scottish Blackface (TXSB) ram lambs were
selected from an original  cohort  of  200 lambs.  From these,  26 were further
selected for experimentation based on their extreme feed conversion ratio (High
Feed Efficiency, HFE=13; Low Feed Efficiency, LFE=13). Animals were fed a 95%
concentrate diet  ad libitum over 36 days. 16S rRNA amplicon sequencing was
used to investigate the rumen bacterial and archaeal communities in the liquid
and  solid  rumen  fractions  of  sheep  divergent  for  FCR.  Weighted  UniFrac
distances separated HFE and LFE archaea communities from the liquid rumen
fraction (Permanova, P<0.05), with greater variation observed for the LFE cohort
(Permdisp,  P<0.05).  LFE  animals  exhibited  greater  Shannon  and  Simpson
diversity indices, which was significant for the liquid rumen fraction (P<0.05).
Methanobrevibacter  olleyae  (in  liquid  and  solid  fractions) and
Methanobrevibacter millerae  (liquid fraction) were differentially abundant, and
increased  in  the  LFE  cohort  (P.adj<0.05),  while  Methanobrevibacter  wolinii
(liquid fraction) was increased in the HFE cohort (P.adj<0.05). This suggests that
methanogenic archaea may be responsible for a potential loss of energy for the
LFE cohort. Bacterial community composition (Permanova, P>0.1) and diversity
(P>0.1) was not affected by the FCR phenotype. Only the genus  Prevotella 1
was differentially abundant between HFE and LFE cohorts. Although no major
compositional shifts of bacterial populations were identified amongst the feed
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efficient cohorts (FDR>0.05), correlation analysis identified putative drivers of
feed efficiency with  Ruminococcaceae UCG-014 (liquid,  rho=-0.53; solid,  rho=-
0.56) and Olsenella (solid, rho=-0.40) exhibiting significant negative association
with FCR (P<0.05). Bifidobacterium and Megasphera showed significant positive
correlations with ADG. Major cellulolytic bacteria  Fibrobacter  (liquid,  rho=0.43)
and Ruminococcus 1 (liquid, rho=0.41; solid, rho=41) correlated positively with
FCR (P<0.05). Our study provides evidence that feed efficiency in sheep is likely
influenced by  compositional  changes  in  archaea  community,  and abundance
changes of specific bacteria, rather than major overall shifts within the rumen
microbiome.

Introduction
The world's population is expected to increase by 2 billion persons in the next 30
years, from 7.7 billion currently to 9.7 billion in 2050  (UN, 2019). In addition,
rising gross domestic product (GDP) in developing countries and urbanization is
driving dietary shifts  towards animal-based protein products  (Thornton,  2010;
Henchion  et  al.,  2017).  There  is  increasing  demand  on  livestock  production
systems to support the dietary requirements and demand of a rapidly growing
population (Hunter et al., 2017). Feed is the largest economic factor influencing
profitability in livestock enterprises, accounting for up to 70% of total direct costs
(Kenny et al.,  2018). Due to the cost of feed as an external input, improving
profitability of livestock systems has significantly focused on the identification of
animals capable of maximizing the utilization of feed  (McGovern et al., 2018).
Research to date provides evidence that highly feed efficient animals consume
less feed, while at the same time maintaining the same level of production as
less efficient animals  (Carberry et al., 2012; Shabat et al., 2016; Claffey et al.,
2018).  Additionally,  highly  efficient  animals  produce  less  methane  and  less
manure due to reduced consumption of feed  (Kenny et al.,  2018). Therefore,
improving  feed  efficiency  has  the  potential  to  simultaneously  increase
profitability within the livestock sector while reducing the environmental impact
of livestock production.

Feed Conversion Ratio (FCR) and Residual Feed Intake (RFI) are two widely used
measures of feed efficiency (Bhatt et al., 2013; Zhang et al., 2017; Claffey et al.,
2018; McGovern et al.,  2018).  FCR is  calculated as the kilogram ratio  of  dry
matter intake (DMI) to average daily gain (ADG), while RFI measures the residual
difference  between  observed  and  predicted  feed  intake  against  bodyweight
maintenance and animal performance  (Berry and Crowley, 2013). FCR and RFI
have  an  inverse  relationship  with  feed  efficiency,  with  superior  FCR and RFI
measures corresponding to poorer animal production, and vice versa (Cannas et
al.,  2019).  Both  measures  are  related as they both require  feed intake as  a
variable.  However,  a  major  limitation of  FCR is  that  it  is  dependent on ADG,
which  can  result  in  the  selection  of  larger  and  faster  growing  animals  that
require more maintenance. In contrast, RFI is independent of growth rate and
considered a more robust measurement of feed efficiency (Santana et al., 2012).
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Ruminants depend on the microbes (composed mainly of bacteria, archaea, fungi
and protozoa) residing in the rumen to ferment and transform their feed into
volatile fatty acids (VFAs),  proteins and vitamins. The primary VFAs produced
(butyrate, propionate and acetate) contribute approximately 80% of the hosts
metabolised energy requirements (Keogh et al., 2017; Li and Guan, 2017; Abecia
et al., 2018; Zeineldin et al., 2018). Furthermore, the concentrations of different
VFAs within the rumen have been associated with feed efficiency of the host (Li
and Guan, 2017). The underlying biological mechanisms regulating production
efficiency are dependent on a number of internal and external factors including
age, sex, genotype and diet, all of which are known to influence rumen microbial
structure and function (Henderson et al., 2015; Shabat et al., 2016; Claffey et al.,
2018; Thomas et al., 2019). Hence, there is a potential association between feed
efficiency and the rumen microbiome. Indeed, previous research performed by
our group and others has identified links between the rumen microbiome and
animal variation in feed efficiency phenotypes  (Carberry et al., 2012; Jewell et
al., 2015; Shabat et al., 2016; Ellison et al., 2017; McGovern et al., 2018).

Understanding  of  microbiome  composition  and  functioning  has  advanced  in
recent  years  through  the  application  of  high-throughput  next-generation
sequencing (NGS) technologies for metagenomic analyses (Quince et al., 2017).
Popular  NGS  platforms  such  as  the  MISeq  (Illumina)  and  MINion  (Oxford
Nanopore)  coupled  with  metagenomic  approaches  that  either  target  specific
genes (16S rRNA) or  the whole  bacterial  genome,  are  providing insights  into
complex  microbial  populations  in  the  rumen,  which  are  otherwise  difficult  to
identify using culture-dependent approaches  (Zhou et al., 2015; Kachiprath et
al.,  2018;  Gu  et  al.,  2019).  Additionally,  the  development  of  user-friendly
computational software is enabling researchers to extrapolate more information
from biological data. For instance, CowPI, a functional prediction tool, can infer
the functional potential of different rumen microbiome profiles using 16S rRNA
data (Wilkinson et al., 2018).
There are approximately 1.2 billion sheep in the world that are primarily reared
for  commodities  such  as  meat,  milk  and  wool  (Pulina  et  al.,  2018).  Sheep
production remains an important agricultural enterprise internationally, which is
exemplified by continual annual growth of the sheep dairy sector (Pulina et al.,
2018). To  date,  most  research  investigating  the  relationship  between  feed
efficiency and the rumen microbiome has been conducted in cattle. However,
sheep are less expensive,  require less feed,  reach maturity  quicker  and are
more manageable than cattle, making sheep a practical and economical model
for ruminant research (Delano et al., 2002).
In a previous study by our group (Claffey et al., 2018), FCR was measured for a
cohort of Texel cross Scottish Blackface (TXSB) lamb rams over 36 days and was
found to vary across the group. While the rumen microbiome has been shown to
be associated with feed efficiency in cattle  (Carberry et al., 2012; Jewell et al.,
2015;  McGovern  et  al.,  2018) such  a  relationship  has  not  been  extensively
examined  in  sheep.  Therefore,  the  objective  of  the  current  study  was  to
investigate  the  bacterial  and  archaeal  populations  present  in  both  solid  and
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liquid fractions of the rumen of sheep that are divergent for the FCR phenotype,
using  amplicon  sequencing  targeting  the  16S  rRNA  gene.  In  addition,  the
archaeal and bacterial populations identified were correlated with FCR to further
identify possible microbial drivers of feed efficiency. To determine the potential
functionality of the microbiome taxa that are differentially abundant due to FCR,
CowPI (Wilkinson et al., 2018) was used to predict functional genes of metabolic
pathways associated with feed efficiency in sheep. 

Material and Methods
Animal model 
All  animal  procedures  used  in  this  study  were  conducted  under
experimental license from Ireland’s Health Product Regulatory Authority
(HPRA) in accordance with the European Union (EU) protection of animals
used for scientific purposes regulations 2012 (S.I. No 543 of 2012). This
study was conducted as part of a larger study designed to examine the
production  efficiency  of  purebred  Scottish  Blackface  and  Texel  cross
Scottish Blackface (TXSB)  wether and ram lambs (n=200)  (Claffey et al.,
2018).  The  current  study  focused  on  the  rams of  the  TXSB  breeds  of
sheep  used  in  that  study.  Briefly,  twenty-six  lambs  of  the  TXSB  were
separated into two highest and lowest feed conversion efficiency quartile
cohorts  (high and low feed efficiency animals  with 13 animals  in  each
group)  according  to  their  extreme  feed  conversion  ratio  (FCR)  values,
from an original group of 50 individuals (HFE = 3.83 ± 0.40, LFE=6.05 ±
0.92, (p < 0.05)). The experiment was performed over a period of 36 days
of intensive indoor feeding. Lambs were individually penned on expanded
metal-floored feeding pens (182 cm L × 122 cm W) and allowed tactile,
olfactory, and visual contact with each other through the pen partitions.
Lambs were  allowed a  12-d  pre-experimental  acclimatization  period  to
adapt  to  a  95%  concentrate  diet.  Relative  to  commencement  of  ad
libitum, concentrate feeding (day 0),  lambs were offered 150-g/d fresh
weight of concentrate feed on days −12, −11, and −10 increasing by 100-
g/d  fresh  weight  concentrate  on  each  day  from  days  −9  to  d  −1  to
minimise the risk of any digestive upsets. For the duration of the finishing
period,  lambs  were  offered  100-g/d  DM  of  silage  and  had  ad  libitum
access to concentrates; ad libitum concentrate was described as access to
concentrate  feed  at  all  times  over  the  36-d  experimental  period.
Concentrate  and  silage  samples  were  collected  weekly  and  dried
overnight at 55 °C and pooled for determination of CP, ADF, NDF, and ash.
Concentrate and silage were offered daily with individual  lamb refusals
recorded twice weekly  (Claffey et al., 2018). Lambs were transported to
the  slaughter  facility  on  the  morning  of  slaughter.  Animals  were
slaughtered at a mean age of 292 days old. Production variables (average
daily  feed intake (ADI),  total  weight  gain  (TWG),  feed conversion  ratio
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(FCR), and average daily gain (ADG)) were calculated post slaughter. All
production data used in the study has been previously described (Claffey
et al., 2018).

Rumen sampling, DNA extraction and 16s rDNA library 
preparation
Liquid and solid fractions from rumen content were collected immediately after
slaughter. Fractions were separated by squeezing rumen digesta through four
layers of sterile cheesecloth, which were collected in 250ml centrifuge bottles.
Both fractions were frozen immediately in liquid nitrogen after separation and
then stored at -80ºC. Under liquid nitrogen, each sample was homogenized to a
fine frozen powder using a pestle and mortar. Extraction of microbial DNA from
the samples was performed using the method described by Yu and Morrison,
(2004) (Yu and Morrison, 2004). DNA purity was assessed using Nanodrop 1000
spectrophotometer.  The  260/280  ratio  averaged  1.83.  To  generate  the  PCR
amplicons of the V4 hyper-variable region (of the 16SrDNA), 515F-806R primers
were  used on  a  template  of  25ng of  rumen microbial  DNA  (Caporaso  et  al.,
2011). 515F-806R primers target both bacterial and archaeal populations (Willis
et  al.,  2019). The  515F-806R  primers  were  designed  with  Nextera  overhang
adapters.  The  PCR amplification  was  conducted  using  2X  KAPA HiFi  HotStart
ReadyMix DNA polymerase (Roche Diagnostics, West Sussex, United Kingdom).
The PCR conditions were as described in McGovern et al.  (2018). Finally,  the
amplicons were sequenced on an Illumina MiSeq platform using the 500-cycle
version 2 MiSeq reagent kit (Illumina, San Diego, CA, United States).

Bioinformatic analysis
Raw paired-end sequenced reads were quality  checked with FASTQC (version
0.11.5) (Andrews, 2010). Primers and ambiguous basecalls were removed using
Cutadapt  (version  1.18)  (Martin,  2011).  Processing  and  analysis  of  amplicon
reads was performed using Divisive Amplicon Denoising Algorithm 2 (DADA2), as
described  in  (Callahan  et  al.,  2017).  Read  filtering,  dereplication,  sample
inference,  chimera  removal,  merging  of  paired  end  reads  and  taxonomic
classification  were  all  performed  following  the  DADA2  tutorial  from
https://benjjneb.github.io/dada2/tutorial.html (version  1.12)  with  minor
alterations. Taxonomic classification was performed to the genus level using the
SILVA  classification  database  (sourced  from
https://zenodo.org/record/1172783#.XWLkpd-YW6A)  (Callahan,  2018).  The final
output  from  DADA2  was  an  Amplicon  Sequence  Variant  (ASV)  table  and  a
corresponding taxonomy table. A phylogenetic tree was constructed using the
phangorn package (Schliep, 2011). A phyloseq object containing the ASV table,
taxonomy table, phylogenetic tree and experimental metadata was built using
the  R/Bioconductor  package  Phyloseq  (version  1.26)  (Mcmurdie  and  Holmes,
2013) prior  to  downstream  analysis.  Finally,  CowPI  was  used  to  predict  the
functional processes of the microbial community within each sample using the
ASVs generated from the DADA2 pipeline  (Wilkinson et al.,  2018). Basic local
alignment search tool (BLAST) against the rRNA/ITS database was used to further
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classify methanogens representative ASV sequences of interest  (Johnson et al.,
2008).

Compositional and Statistical Analysis
Compositional  and  statistical  analyses  were  carried  out  using  various
libraries/packages in R studio (running R version 3.6.1). Samples were separated
according  to  rumen  phase  (liquid  and  solid)  for  independent  analysis  and
compared between the feed efficient cohorts (low feed efficient (LFE) v high feed
efficient (HFE)). Taxa unassigned at the phylum level, with less than 5 counts
and prevalent in 3 or less samples were filtered from the data. For the analysis of
alpha  and  beta  diversity  counts  were  normalised  by  subsampling  to  the
minimum  sampling  depth;  bacteria  reads  (liquid=63,924,  solid=75,873)  and
archaea  reads  (liquid=896,  solid=1182).  Principle  coordinate  analysis  (PCoA)
based  on  weighted  and  unweighted  UniFrac  distances  was  performed  for
ordination  analysis  to  visualize  compositional  differences  between  the  two
cohorts for both rumen fractions. PERMANOVA analysis with 9999 permutations
was  conducted  using  the  Adonis  function  from  the  R/Bioconductor  package
Vegan (version 2.5-5) (Oksanen et al., 2019). Vegans betadisper and permutest
functions were used to test for homogeneity of variance. Alpha diversity indices
Shannon,  Simpson and observed ASVs were obtained  for  each  of  the  rumen
samples and compared between cohorts using the non-parametric Wilcoxon rank
sum test. Alpha and beta diversity analysis was conducted at the ASV level for
both bacterial and archaeal populations. 

To  profile  the  bacterial  community  populations,  taxa  were  agglomerated  to
higher taxonomic ranks (i.e. phylum to genus) due to poor classification at the
species  level  and  counts  were  transformed  to  relative  abundances.  Archaeal
populations  were  assessed  at  the  genus  and  ASV  level.  Differential  relative
abundance  analysis  was  conducted  from phylum to  genus  level  for  bacteria
populations and conducted at the genus to ASV level for archaea populations.
For lower taxonomic ranks (i.e. genus and ASV) analysis was only conducted on
taxa had a relative abundance greater than 0.1% and were prevalent at least
30%  of  samples.  The  Wilcoxon  rank  sum  test  was  implemented  to  test  for
differences in relative abundance of taxa between the cohorts, and Benjamini-
Hochberg (B-H) was used to correct for multiple testing. Spearman’s correlation
analysis was also performed to test for associations between relative abundance
of taxa and production traits of feed efficiency (FCR and ADG). 

STAMP (v.2.1.3)  (Parks et al., 2014) was used to conduct principal component
and statistical analysis following functional prediction using CowPI (Wilkinson et
al., 2018). The relative abundance of reads mapped to each functional process
was  compared  between  cohorts  using  Whites  non-parametric  t-test  with  B-H
correction for multiple testing. 
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Results
Animal production traits differed across the divergent feed 
efficiency cohorts
This study focused on twenty-six TXSB ram lambs divergent for feed efficiency
(HFE n=13; LFE n=13). A Wilcoxon rank sum test was performed to test the null
hypothesis that production traits; feed conversion ratio (FCR), average daily gain
(ADG), average daily intake (ADI), total weight gain (TWG), did not differ between
the two cohorts. For the four production traits significant differences were found
in their medians (p< 0.05), confirming that production traits were statistically
different between feed efficiency cohorts (Table 2.1) (Claffey et al., 2018).

Over 1600 unique ASVs identified in both rumen fractions
Following data processing, quality filtering and chimera removal, and a total of
6,326,753 amplicon reads remained for analysis (solid phase=3,061,130, liquid
phase=3,265,623). The average number of reads per sample in the liquid rumen
phase  was  125,600,  and  117,735  in  the  solid  rumen  phase.  1691  uniquely
identified  ASVs  were  obtained  from the  reads  in  both  rumen fractions.  After
prevalence filtering and removal of unclassified ASVs at the phylum level 560
and 513 ASV’s mapped to kingdom bacteria, while 12 and 11 ASV’s mapped to
kingdom  archaea  for  liquid  and  solid  rumen  fractions,  respectively.  Initial
exploratory analysis using PCoA ordination based on weighted UniFrac distances
detected two samples from the LFE cohort  as outliers (Animal  ID: 10707 and
10835)  (supplementary  Figure  1).  Further  investigation  revealed that  in  both
fractions the genus Prevotella 1 had a relative abundance of approximately 70%.
The  samples  from both  animals  were  considered highly  biased  and removed
prior to downstream analysis.

Effect of rumen fraction and FCR on microbial community 
composition and diversity
Ruminal  fraction  (i.e  liquid  and  solid)  had  no  effect  on  microbial  profiles
(P<0.05). Similar microbial composition, diversity and relative abundances were
observed between the two fractions (Supplementary Figure  2.2). PCoA analysis
on bacteria community composition showed considerable overlap between HFE
and LFE samples, based on weighted (liquid, P=0.28, R2=0.05, PermDisp=0.91;
solid,  P=0.48,  R2=0.03,  PermDisp=0.71)  (Figure  2.1)  and unweighted (liquid,
P=0.10,  R2=0.06,  PermDisp=0.37;  solid,  P=0.15,  R2=0.06,  PermDisp=0.69)
UniFrac  distances  (Supplementary  Figure  2.3).  Alpha  diversity  indicators;
Shannon, Simpson and observed ASVs were not significant between HFE and LFE
cohorts  for  either  rumen  fraction  (P >  0.05),  although  LFE  cohort  exhibited
greater  diversity  (Figure  2.2).  For  archaea  populations  greater  variation  in
community  composition  was  observed  in  the  LFE  cohort  and  found  to  be
significantly divergent from the HFE cohort in the liquid rumen fraction based on
weighted  UniFrac  distances  (liquid,  P=0.01,  R2=0.18,  PermDisp=0.01;  solid,
P=0.12,  R2=0.08,  PermDisp=0.10) (Figure  2.1). Shannon and Simpson indices
were  increased  in  the  LFE  liquid  fraction  (P >  0.05)  and  observed  ASV  was
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increased in the LFE solid fraction (P > 0.05) when compared to the HFE cohort
(Figure 2.2).

Significant effects of FCR on microbial abundance 
After  filtering  a  total  of  13  bacterial  phyla  were  identified  in  both  rumen
fractions, and their relative abundances were not affected by the FCR phenotype.
Firmicutes, and Bacteroidetes constituted the most abundant phyla, respectively.
Together they represented 77% and 83% mean relative abundance in the HFE
cohort, and 82% and 83% mean relative abundance in the LFE cohort, for liquid
and  solid  rumen  fractions  respectively  (Table  2.2).  The  Firmicutes  and
Bacteroidetes ratio (F:B) was not affected by FCR phenotype (P > 0.1) in either
the liquid or solid rumen fractions.  Proteobacteria and Actinobacteria were the
next  most  abundant  phyla  respectively.  The  mean  relative  abundance  of
Fibrobacter was increased in both HFE and LFE solid rumen fractions compared
with liquid fractions, while also exhibiting a greater mean relative abundance in
the LFE cohort compared the HFE cohort (P>0.05) (Table 2.2). 
A total  of 104 and 99 bacterial  genera were identified in the liquid and solid
rumen fraction, respectively. The most dominant genera in both fractions were
Prevotella 7,  Succinivibrionaceae UCG-001 and Lachnospiraceae NK3A20 group
(Figure  2.4) and their abundance did not differ between feed efficient cohorts
(P>0.05).  The  genus  Prevotella  1 was  the  only  bacterial  taxa  differentially
abundant, increased in the LFE liquid fraction (FDR=0.02) (Figure  2.3). Genera
were  predominantly  enriched  to  families  Lachnospiraceae (liquid=24.0%;
solid=24.0%),  Ruminococcaceae  (liquid=16.3%;  solid=17.0%),  Veillonellaceae
(liquid=8.7%;  solid=9.0%),  Eryspielotrichaceae (liquid=8.7%;  solid=9.0%)  and
Prevotellaceae (liquid=8.7%; solid=9.0%). 

After  profiling  of  the  archaeal  population  three  genera  were  identified.
Methanobrevibacter was  the most  dominant,  followed by  Methanosphera  and
Candidatus Methanomethylophilus, respectively, and their abundances were not
affected  by  the  FCR  phenotype  (P>0.05).  At  the  ASV  level,  11  taxa  were
identified from the liquid rumen fraction and 10 from the solid rumen fraction.
Three  archaeal  ASVs  showed  difference  in  relative  abundance  between  the
divergent FCR cohorts. In the liquid rumen fraction ASV58 and ASV118, identified
to closely match  Methanobrevibacter olleyae (98.8%) and  Methanobrevibacter
millerae  (99.2%),  respectively,  were  increased  in  the  LFE  cohort.  Whereas
ASV18, identified as Methanobrevibacter wolinii (100%) was increased in the HFE
cohort. In the solid rumen fraction  Methanobrevibater olleyae was increased in
the LFE cohort (Figure 2.3). 

Significant associations of different bacterial taxa with FCR and 
ADG 
Spearman’s  correlation  analysis  was  performed  to  identify  putative  bacterial
drivers of feed efficiency. At the genus level, relationships were only explored for
genera that were prevalent in greater than 30% of samples and had minimum
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relative abundance of 0.1%. At the genus level, in the rumen liquid phase the
relative  abundance  of  Ruminococcaceae  UCG-014  (rho=-0.51)  exhibited  the
strongest negative correlation with FCR (P <0.05), while Prevotella 1 (rho=0.56),
Coprococcus  1 (rho=0.44),  Ruminococcus  1  (rho=0.41) and  Fibrobacter
(rho=0.43) exhibited the strongest positive correlation with FCR (P <0.05). Only
Bifidobacterium (rho=0.41) exhibited a significant positive association with ADG
(P<0.05),  while  Prevotella  1  (rho=-0.72),  Pseudoramibacter  (rho=-0.56),
Coprococcus 1 (rho=-0.51), Ruminococcus 1 (rho=-0.50), Ruminococcus 2 (rho=-
0.43),  Acetitomaculum  (rho=-0.45),  Rikenellaceae RC9 gut  group  (rho=-0.42),
Fibrobacter  (rho=-0.61),  and  Treponema  2  (rho=-0.57)  exhibited  significant
negative associations with ADG (P <0.05) (Table 2.3).

In the solid rumen phase, Ruminococcaceae UCG-014 (rho=-0.55) and Olsenella
(rho=-0.40) exhibited a significant negative association with FCR (P <0.05), while
Pyramidobacter (rho=0.53),  Pseudoramidobacter  (rho=0.42),  Ruminococcus  1
(rho=0.43), Acetitomaculum  (rho=-0.42),  Prevotella  1  (rho=0.39)  and
Coprococcus 1 (rho=0.42) exhibited significant positive associations with FCR (P
<0.05).  Bifidobacterium  (rho=0.44)  and  Megasphera  (rho=0.43)  were
significantly positively associated with ADG (P <0.05), while Prevotella 1 (rho=-
0.56),  Coprococcus  1  (rho=-0.41),  Ruminococcus  1  (rho=-0.53),  and
Acetitomaculum  (rho=-0.41),  Roseburia  (rho=-0.45),  Pseudoramibacter  (rho= -
0.45),  Fibrobacter  (rho=-0.51),  Pyramidobacter  (rho=-0.52)  and  Treponema 2
(rho=-0.48) were among those showing significant  negative associations  with
ADG (P <0.05) (Table 2.3).  

At  the  phylum  level,  Fibrobacter  (liquid,  rho=0.44),  Synergistetes  (liquid,
rho=0.038;  solid,  rho=0.51) and  Elusimicrobia  (solid,  rho=0.43)  exhibited  a
significant positive relationship with FCR (P <0.05), whereas  Tenericutes (solid,
rho=-0.44) showed a significant negative relationship with FCR (P <0.05) (Table
2.2).

Functional potential and microbial processes similar between low 
and high feed efficient cohorts
CowPI was used for functional prediction analysis of the microbial community for
each of the rumen samples. Principal component analysis, which captured over
75% variation with the first 2 principal components, indicated no separation in
functional potential between feed efficient cohorts (Supplementary Figures 2.4
and 2.5). Metabolic processes identified by CowPI were compared between the
feed  efficient  cohorts  using  White’s  non-parametric  t-test  and  adjusted  for
multiple  testing  using  B-H  method.  No  significant  differences  in  metabolic
processes  were  observed  between  cohorts  for  both  liquid  and  solid  rumen
fractions (P.adj>0.1).

Discussion 
The current study examined the effect of the FCR phenotype on ruminal bacteria
and archaeal populations obtained from the liquid and solid rumen fractions of
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TxSB ram lambs offered a high concentrate diet  ad libitum. Rumen  liquid and
solid fractions are widely used for microbiome research (De Mulder et al., 2016; Ji
et al.,  2017) and for animal feed efficiency analyses  (McGovern et al.,  2018).
Both are differentiated ecological niches, which can contribute to feed efficiency
in different ways. The solid rumen fraction is largely composed of plant and grain
biomass and selects for various adherent cellulolytic and saccharolytic microbial
species that play a significant role in the breakdown of feed within the rumen
(De  Mulder  et  al.,  2016).  While  the  liquid  rumen  fraction  is  considered  to
contribute  less  to  the  metabolic  activity  of  rumen,  it  does  provide  readily
available  nutrients  for  free  living microbes  and facilitates  their  movement  to
newly consumed feed (De Mulder et al.,  2017). Our analysis reveals a similar
microbial  community  composition,  diversity  and  relative  abundance  profiles
between  the  liquid  and  solid  rumen  fractions.  A  range  of  studies  have  also
reported comparable findings in microbial diversity and community composition
between liquid and solid rumen fractions in both cattle and sheep (Schären et al.,
2017;  McGovern  et  al.,  2018;  Li  et  al.,  2020).  The  high  degree  of  similarity
observed  between  the  fractions  may  be  attributed  to  the  method  used  to
separate the fractions (McGovern et al., 2018). Alternatively, it may also reflect
the frequent interchange of microbes between the liquid and solid fractions (De
Mulder et al., 2016; Schären et al., 2017). Ultimately, due to the large degree of
homogeneity  observed  between  the  two  rumen  fractions  it  is  difficult  to
determine whether either plays a distinctive role towards feed efficiency in the
current study.

In  the  rumen,  methane production  is  considered  beneficial  to  the  host  as  it
regulates  the  partial  pressure  of  hydrogen  facilitating  microbial  growth  and
digestion within the rumen (Wallace et al., 2015; Lan and Yang, 2019). However,
production of methane is known to result in a loss of dietary energy to the host,
of  circa  2-12% depending  on  the  diet  (Johnson  and  Johnson,  1995),  thereby
impacting on the production performance of the animal. Several studies have
linked higher methane emission to feed inefficiency in ruminants  (Nkrumah et
al.,  2006;  Zhou  et  al.,  2010;  Fitzsimons  et  al.,  2013).  The  abundance  of
methanogenic archaea has also been correlated with higher levels of methane
emissions (Wallace et al., 2015) and poorer feed efficiency (Zhou et al., 2010).
As a result, numerous approaches have been developed to target rumen archaea
to reduce methane emissions and improve animal production, including vaccines
and  small  molecule  enzyme  inhibitors  (Matthews  et  al.,  2019).  Although
numerous studies in ruminants have reported no correlation between the overall
abundance of methanogens and methane emissions, they have shown positive
correlations between methane production and compositional changes within the
archaea community (Danielsson et al., 2012; Shi et al., 2014; Tapio et al., 2017).
In particular, increased abundance of taxa assigned to the  Methanobrevibacter
SGMT clade (i.e M. gottschalkii, M. millerae and M. smithii) is strongly correlated
with  methane  emissions  compared  to  those  within  the  RO  clade  (i.e  M.
ruminantium, M. olleyae, M. wolinii)  (Tapio et al., 2017). Members of the SGMT
clade harbour 2 methyl coenzyme M reductase isozymes McrI and McrII, enabling
them to utilise hydrogen more efficiently than those within the RO clade, which
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solely express McrI  (Tapio et al.,  2017).  In line with such studies, our results
show no major shifts in the relative abundance of archaea taxa at the genus
level  or higher taxonomic ranks between the feed efficient cohorts.  However,
compositional changes were observed at the ASV level. LFE animals exhibited
greater  variation  in  community  composition  (based  on  weighted  UniFrac
distances)  and increased diversity  (as calculated by Shannon and Simpson and
observed ASVs) compared to their HFE counterparts. The relative abundance of
Methanobrevibacter millerae (SGMT clade) and Methanobrevibacter olleyae (RO
clade) was increased in the LFE liquid fraction, while Methanobrevibacter wolinii
(RO clade) was increased in the HFE liquid fraction. Methanobrevibacter olleyae
was also increased in the LFE solid fraction. Compositional changes within the
Methanobrevibacter genus between divergent cohorts may partially explain the
observed differences in feed conversion and animal production in our study. 

Bacteria are the most diverse microbial domain found within the rumen and are
capable of extracting energy from a wide variety of dietary substrates, including
fiber, starch, sugars and protein (Tapio et al., 2017). Due to the dependence of
the host on bacterial fermentation it can be considered that the rumen bacterial
population  plays  a  critical  role  in  the  feed  efficiency  of  the  animal.  Indeed,
previous studies in both cattle and sheep have reported significant association
between the feed efficiency of the host and rumen bacterial populations (Jewell
et al., 2015; Shabat et al., 2016; Ellison et al., 2017). In our study, no significant
differences  in  bacterial  alpha  diversity  between  HFE  and  LFE  lambs  were
observed. This is consistent with a number of studies in cattle (Myer et al., 2015;
McGovern  et  al.,  2018).  Although,  differences  in  alpha  diversity  were  not
significant in the present study, the HFE cohort exhibited a less diverse bacterial
community than their LFE counterparts. This finding is in agreement with a larger
study in cattle that reported lower bacterial diversity associated with higher feed
efficiency  (Shabat  et  al.,  2016).  Furthermore,  we  found  no  major  shifts  in
community composition and relative abundance of taxa between feed efficient
cohorts in either liquid or solid rumen fractions. Weighted UniFrac distances was
unable  differentiate  bacterial  community  composition  between  HFE  and  LFE
cohorts  with  only  a  small  percentage  of  the  variation  explained  by  the  FCR
phenotype  (Figure  1).  This  finding  was  supported  by  our  differential  relative
abundance analysis, which identified the genus Prevotella 1 as the only bacterial
taxa differentially abundant between the two feed efficient cohorts, increased in
the LFE liquid fraction (Figure 3). While we detected no major differences in the
relative abundance of taxa, we have identified several taxa exhibiting significant
correlations of relative abundance with FCR and/or ADG (Table 3). 

Prevotella 1, Fibrobacter, Ruminococcus 1, Corprococcus, Pseudoramibacter and
Pyramidobacter  all  exhibited  significant  positive  associations  with  FCR  and
negative associations with ADG. Prevotella species are known to ferment a wide
variety  of  substrates  including starches,  peptides,  proteins  and hemicellulose
(Matsui et al., 1998; Xie et al., 2019), which contribute to the feed efficiency of
the host.  Indeed, different  Prevotella species have been associated with both
higher and lower feed efficiency in cattle and sheep (Ellison et al., 2017; Brooke
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et al., 2019; Delgado et al., 2019). For instance, Ellison et al. (2017) reported
that  the  abundance  of  Prevotella ruminicola increased  significantly  for  L-RFI
lambs when fed a concentrate based diet and decreased in L-RFI lambs when fed
a forage-based diet. The opposite was reported for Prevotella bryantii (Ellison et
al., 2017). This indicates a dietary effect on the abundance of Prevotella species,
which is likely attributed to the metabolic divergence observed within the genus
Prevotella (Matsui  et  al.,  2000).  Matsui  et  al.  (2000)  reported  differential
production  of  polysaccharide  degrading  enzymes  and  growth  rates  among
Prevotella species when grown on various growth substrates  in vitro. A recent
study identified Prevotella 1 as the most dominant genus in both the liquid and
solid rumen fractions of lambs (Li et al., 2020). However, Li et al. (2020) offered
lambs a higher ratios of forage to concentrate (45:55), which contrasts with the
95% concentrate diet provided to lambs in the current study. This suggests that
Prevotella  1 may require  fibrous  tissue  or  substrates  released following  fiber
degradation  for  optimal  growth,  where  the  association  with  poorer  feed
efficiency in the current study may be driven by differences in the quantity of
dietary intake observed between the two feed efficient cohorts.

Members of the genera  Fibrobacter and  Ruminococcus are predominant fiber-
digesting bacteria in the rumen, specifically the species Fibrobacter succinogens,
Ruminococcus flavefacians  and Ruminococcus  albus (Koike  and  Kobayashi,
2001).  All  of  these three species largely depend on cellulose for  growth and
energy, although  Ruminococcus albus  can utilise more efficiently a variety of
other  substrates  produced  following  breakdown of  plant  fibers  (La  Reau  and
Suen, 2018). In contrast to our findings (Table 3), McGovern et al (2018) found
negative associations  between RFI  and the relative abundance of  Fibrobacter
and Ruminococcus OTUs. This may have resulted from variations in the ratio of
dietary  concentrates  to  forage  fed  to  the  animals  during the  two studies,  in
addition to differences in how feed efficiency was measured (FCR compared to
RFI).  Indeed,  the  abundance  of  these  cellulolytic  bacteria  in  the  rumen  has
previously been shown to diminish with reductions in the ratio of dietary forages
(Carberry et al., 2012; Henderson et al., 2015; Zhang et al., 2017). This suggests
that  the  cellulolytic  activities  of  Fibrobacter and  Ruminococcus may  become
redundant in high concentrate-based diets, and that their increased abundance
in the LFE cohort may confer inefficiency in energy extraction from feed.

Species within the genus Coprococcus metabolise carbohydrates for growth and
energy,  producing  predominantly  butyrate  and  acetate  as  fermentation  end
products (Whitman, 2015). In contrast to our findings, previous studies in cattle
have shown positive associations between Coprococcus and host feed efficiency
(Jewell et al., 2015; McGovern et al., 2018). This may be explained by differences
in animal models or diets used in the studies. Indeed, Kim et al. (2014) profiled
the fecal microbiota from steers fed three different diets (high grain, moderate
grain,  and  silage/forage)  and  found  three  distinct  OTU’s  belonging  to
Coprococcus that differed significantly between the treatment groups (Kim et al.,
2014). 
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Associations  between  Pseudoramibacter and ruminant  feed efficiency  are  not
well  reported  in  the  literature.  Pseudoramibacter is  a  member  of  the
Eubacteriaceae family and can utilise carbohydrates for energy  (Deusch et al.,
2017),  while  producing fermentation end products  butyrate,  acetate,  formate
and hydrogen (Deusch et al., 2017; Palakawong Na Ayudthaya et al., 2018). 

The phylum Synergistetes was negatively correlated with feed efficiency in the
solid rumen fraction (Table 2). This association was primarily driven by the genus
Pyramidobacter.  Members  of  the  Pyramidobacter genus  are  asaccharolytic,
nonmotile and produce acetic acid and isovaleric acid (Downes et al., 2009). The
abundance of  Pyramidobacter has previously been associated with low RFI  in
Simmental  bulls  (McGovern  et  al.,  2018)  and  isolated  from  higher  methane
emitting steers (Wallace et al., 2015). McGovern et al. (2018) found the relative
abundance of  Pyramidobacter and  Fibrobacter to be positively correlated. This
may indicate that  Pyramidobacter relies on co-dependence with  Fibrobacter for
nutrient utilization following fiber degradation in the rumen. 

The  genera  Roseburia,  Treponema  2,  Mogibacterium,  Rikenellaceae  RC9  gut
group, Acetitomaculum  and  Ruminococcus  2  all  exhibited significant  negative
associations with ADG in either or both rumen fractions in the current study, but
showed no significant associations with FCR. Roseburia utilises carbohydrates for
growth and its abundance is known to increase with greater ratios of dietary
concentrates (Mccann et al., 2014; Zhang et al., 2018). Butyrate is the primary
VFA  produced  by  Roseburia and  its  production  is  largely  dependent  on  the
availability of acetate (Duncan et al., 2002). Supporting the findings of our study,
Li et al. (2019) identified a greater abundance of  Roseburia in feed inefficient
Kinsella  composite  hybrid  steers  fed  a  high-energy  diet  (Li  et  al.,  2019).  In
contrast, Ellison et al. (2017) reported a greater abundance of Roseburia in feed
efficient  lambs  fed  a  concentrate  diet.  Other  studies  in  this  area  have  not
reported any association between  Roseburia and feed efficiency (Jewell et al.,
2015;  McGovern  et  al.,  2018;  Carberry  et  al.,  2012).  Given  the  Roseburia
saccharolytic activity it is unclear why the genus correlated negatively with feed
efficiency in lambs fed a high concentrate diet. One suggestion is that a greater
availability of acetate may be present in the rumen of lower feed efficient lambs.
Roseburia has  been  reported  to  be  a  net  utiliser  of  acetate  during  growth
(Duncan  et  al.,  2002).  The  correlation  between  the  abundance  of
Acetitomaculum  and  lower  feed  efficiency  may  support  this  possibility.  The
genus Acetitomaculum is capable of utilizing hydrogen to reduce carbon dioxide
for the formation of acetate in a process known as acetogenesis (Greening and
Leedle, 1989; Le Van et al., 1998). 

Mogibacterium has previously been identified in the rumen of both sheep (Mi et
al.,  2018) and cattle  (Myer et  al.,  2015;  Freetly  et  al.,  2020).  Mogibacterium
belongs to the order Clostridiales from the phylum Firmicutes and is described as
incapable of breaking down carbohydrates for energy (Whitman, 2015).  Similar
to  the  finding  presented  in  the  current  study,  a  recent  study  found
Mogibacterium to be enriched in the jejunum of lower ADG steers fed a high-
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energy  diet  (Freetly  et  al.,  2020).  In  addition,  Mogibacterium has  also  been
associated with higher methane-emitting steers (Wallace et al., 2015). 

Members  of  the  genus  Treponema  have  been  associated  with  pathological
conditions including digital dermatitis (Wilson-Welder et al., 2015), yaws disease
and  syphilis  (Newbrook  et  al.,  2017),  while  others  are  part  of  the  normal
microflora in the GI tract of animals (Newbrook et al., 2017). Treponema species
such as T. bryantii and T. succinifaciens ferment carbohydrates (Stanton, 1984;
Cwyk  and  Canale-Parola,  1979),  but  are  also  known  to  be  involved  in  the
breakdown of  fiber  (Xie et  al.,  2018).  In  a recent study  (Ellison et al.,  2019)
identified a greater abundance of the species  Treponema maltophilum in the
rumen of feed efficient lambs fed a forage-based diet. McGovern et al. (2018)
also identified two Treponema OTU’s positively correlating with feed efficiency in
Simmental  bulls.  This  contrasts  with  the  findings  of  our  study,  which  found
Treponema associating significantly with poorer ADG and tending towards feed
inefficiency in lambs fed a high concentrate diet. 

Rikenellaceae  RC9  gut  group has  previously  been identified  in  the  rumen of
domesticated livestock (Petri et al., 2013; Ren et al., 2019) (Ishaq et al., 2019).
Petri et al. (2013) observed a reduction in the abundance of  Rikenellaceae  in
heifers treated with a diet comprising mixed forage and concentrate to those fed
forage  alone  (Petri  et  al.,  2013).  Additionally,  the  abundance  of  unclassified
Rikenellaceae was found to decrease in goats fed with high grain diets compared
to hay based diets (Liu et al., 2015). The finding from these studies may indicate
a preference for forage-based diets for the  Rikenellaceae RC9 gut group and
could explain its correlation with reduced ADG in our study where animals were
fed a concentrate diet. 

Ruminococcaceae UCG-014  and  Olsenella  also  exhibited  significant  negative
associations  with FCR and were not found to be significantly associated with
ADG.  The  uncultivable  genus  Ruminococcaceae UCG-014 (family
Ruminococcaceae)  showed  the  strongest  negative  associations  with  FCR.
Ruminococcaceae is considered a dominant family within the rumen of livestock
(Creevey et al., 2014; Henderson et al., 2015) and generally more abundant in
animals  fed  forage-based  diets  (Henderson  et  al.,  2015).  Within  the
Ruminococcaceae family  certain  members  are  known  cellulolytic  fermenters,
such as Ruminococcus albus and Ruminococcus flavefaciens (Perea et al., 2017).
However, other members are non-cellulolytic and actively ferment various forms
of  polysaccharides  (Hook  et  al.,  2011;  Petri  et  al.,  2012;  La Reau and Suen,
2018). Indeed, Ellison et al. (2017) found particular Ruminococcus species to be
more enriched in sheep fed a concentrate diet, compared to those fed a forage-
based diet  and vice versa.  Additionally,  in  a study carried on dairy cows the
abundance of Ruminococcaceae NK4A214 was increased in a high grain diet (Pan
et al.,  2017).   It  is  unclear why  Ruminococcaceae UCG-014 shows significant
associations with FCR in our study. One possibility is that it may indicate that
Ruminococcaceae  UCG-014 is  associated  with  improved  carbohydrate
metabolism in the rumen.
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Olsenella ferment starch and glycogen substrates and produce lactic, acetic and
formic acid  (Göker et  al.,  2010).  Members of  the genus  Olsenella have been
identified in oral cavities and GIT of humans and animals  (Kraatz et al., 2011;
Ellison et al., 2017; Kubasova et al., 2018; Elolimy et al., 2020). In line with our
findings,  Elolimy  et  al.  (2020)  reported  a  greater  abundance  of  Olsenella  in
hindguts of feed efficient Holstein heifer calves (Elolimy et al., 2020). However,
other  studies  have  reported  a  greater  abundance  of  Olsenella  in  the  rumen
microbiota of low feed efficient lambs when fed a concentrate diet (Ellison et al.,
2017) and in the fecal microbiota of low feed efficient piglets  (Kubasova et al.,
2018).

The  genera  Megasphera and  Bifidobacteria exhibited  significant  positive
associations  with  ADG  but  no  significant  associations  with  FCR  (Table  3).
Megasphera has previously been associated with high feed efficiency in Holstein
dairy cattle (Shabat et al., 2016), and also exhibited greater abundance in lower
methane  emitting  sheep  (Kamke  et  al.,  2016).  Megasphera is  known  to
metabolise lactate within the rumen, which it utilises for production of important
VFAs  for  animal  growth  (e.g  acetate,  propionate,  and  butyrate)  (Chen et  al.,
2019), indicating its association with ADG in ruminants. Removal of lactate is
important  mechanism  in  regulating  pH  levels  within  the  rumen,  preventing
rumen lactic acidosis and maintaining rumen health and function (Hernández et
al., 2014; Chen et al., 2019).  

Bifidobacterium species are known to produce a broad spectrum of carbohydrate
modifying enzymes, which facilitate the metabolism of a wide variety of dietary
carbohydrates. This enables members of the Bifidobacterium genus to efficiently
adapt,  extract  energy and contribute to the feed efficiency of  the host when
offered a high-energy diet (Pokusaeva et al., 2011). Indeed, Ellison et al. (2017)
found  Bifidobacterium to be significantly more abundant in the rumen of feed
efficient lambs when fed a concentrate diet. Furthermore, a study conducted by
Abe et al. (1995) showed that oral administration of  Bifidobacterium improved
daily weight gain and FCR of young calves  (Abe et al., 1995). Our findings are
consistent  with  both  of  these  studies,  suggesting  that  Bifidobacterium may
contribute significantly in extracting energy from carbohydrate based diets.

The relationship of feed efficiency with the rumen microbiota composition and
abundance has not been extensively researched in sheep. In one study, Ellison et
al. (2017) examined the effect of feed efficiency, diet and breed on the rumen
microbial  populations from the rumen of  sheep. That study differed from our
study in several  key aspects.  Firstly,  in the study by Ellison et al. (2017) RFI
(Residual  Feed  Intake)  was  used  to  distinguish  feed  efficient  cohorts,  which
contrasts with the FCR measurement used in our study. Secondly, Ellison et al.
(2017)  used  wether  lambs  spanning  three  different  breeds  of  sheep  -
Rambouillet, Hampshire, and Suffolk, whereas TXSB ram lambs were used in our
study. Thirdly, Ellison et al. (2017) fed animals with both concentrate and forage
based diets. Although animals were not treated with a forage-based diet in this

98



study, the composition of concentrates in the diets used in both studies varied. A
further study carried out by Perea et al. (2017) also examined the effect of RFI
on the microbial populations in the rumen, as well as multiple other sites from
the digestive tract,  (including the rumen) of wether lambs fed a forage-based
diet. Differences in diet, breeds, sex, measures of feed efficiency and analytical
methodologies  used  between  the  studies  may  have  contributed  to  the
differences in the findings between the studies. 

The dominance of  Firmicutes and  Bacteroidetes in the rumen of ruminants is
widely  reported  throughout  the literature  (Paz  et  al.,  2018;  McGovern  et  al.,
2018;  Liu  et  al.,  2019;  Bo  Trabi  et  al.,  2019).  Consistent  with  those  studies
Firmicutes and Bacteroidetes were identified as the most abundant phyla in the
rumen  of  ram  lambs  fed  a  high  concentrate  diet.  Prevotella 7,
Succinivibrionaceae UCG-001 and Lachnospiraceae NK3A20 group were found to
be the three most abundant genera in our study (Figure 3). This finding is also in
line with a large global study set out to characterise the core rumen microbiota
in small and large ruminants (Henderson et al., 2015). Henderson et al. (2015)
identified Prevotella and unclassified Lachnospiraceae among the most abundant
bacterial  groups  in  the  rumen.  In  addition,  Prevotella and  unclassified
Succinivibrionaceae were found to be the most  abundant  bacterial  groups in
ruminants when fed a concentrate diet (Henderson et al., 2015). The degree of
similarity between the taxa of sheep and cattle indicate that sheep models may
serve as a useful and robust model for rumen microbiome research, as they are
less expensive and more manageable than cattle (Delano et al., 2002).   

To limit global warming to below 1.5°C above pre-industrial levels by 2050, in
line with the Paris  Agreement (UNFCCC, 2015),  as  well  as feeding a growing
population, there is an urgent requirement to increase production while reducing
methane emissions intensity from livestock (Islam and Lee, 2019). In 2018, the
IPCC’s Special Report on Global Warming of 1.5oC detailed reduction targets for
global biogenic methane to between 24% and 47% of 2010 levels by 2050 (IPCC,
2018).  Reducing  methane  emissions  from  livestock  production  represents  a
promising mitigation strategy that can be achieved by sustainable intensification
livestock production and/or reduced livestock product consumption  (Herrero et
al.,  2016).  In  the  context  of  sustainable  intensification  of  ruminant  livestock
production,  our  findings  indicate  that  genetically  selecting  for  feed  efficient
animals can be a potential route for improving production and reducing feeding
costs,  while  achieving  methane  emissions  reductions  in  ruminant  production
systems.

Conclusion

In  summary,  our  study  investigated  the  rumen  bacterial  and  archaeal
populations in the rumen of ram lambs divergent for the FCR phenotype, which
were  fed  a  concentrate  diet.  Although  lambs  were  found  to  be  significantly
divergent for feed efficiency, no major shifts in the rumen bacterial composition
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were  observed.  Correlation  analysis  suggests  that  the  differences  in  feed
efficiency may be attributed to a number of specific bacterial taxa within the
rumen  rather  than  the  community  as  a  whole.  On  the  other  hand,  archaea
community  composition,  diversity  and  the  relative  abundance  of  a
Methanobrevibacter species differed between HFE and LFE cohorts, which may
partially  explain  a  loss  of  energy  in  the  LFE  cohort.  Whilst  no  significant
difference  in  predicted  metabolic  processes  was  detected  using  CowPI,  a
limitation of this technique is that it infers microbial metabolic pathways based of
16S rDNA data and does not measure the microbial transcriptome or proteome
(Wilkinson  et  al.,  2018).  Our  study  was  also  somewhat  limited  by  poor
classification at the species level. The aforementioned limitations can potentially
be overcome by the use of both shotgun metagenomics for greater resolution of
taxonomic  classification  (Quince  et  al.,  2017;  Brumfield  et  al.,  2020) and
metatranscriptomics  uncovering  the  functional  potential  of  the  rumen
microbiome  (Shakya  et  al.,  2019).  Our  current  study  focused  exclusively  on
interrogating  bacterial  and  archaeal  populations  from  the  rumen.  A  more
comprehensive understanding of the contribution of the sheep rumen microbiota
to animal feed efficiency would ideally investigate all major microbial populations
within the rumen, including protozoa and fungi  (Newbold et al., 2015; Tapio et
al., 2017).
Figures

Figure 2.1:  Beta diversity analysis. PCoA ordination plots based on weighted
UniFrac distances for bacteria (A and C) and archaea (B and D) populations, for
liquid  (A  and  B)  and  solid  (C  and  D)  rumen  fractions.  Permanova  P-value
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(Permanova), R2 and homogeneity of dispersion analysis (Disper) is provided for
each  analysis.  Dots  represent  the  different  microbial  samples  and  colours
represent different feed efficient cohorts, HFE (Dark Pink) and LFE (Blue).  HFE
n=13, LFE n=11.

Figure 2.2:  Alpha diversity analysis. Boxplots representing variations in alpha
diversity  in  the  rumen liquid  (A  and B)  and solid  (C  and D)  rumen fractions
between high (Dark Pink) and low (Blue) feed efficiency cohorts. Alpha diversity
metrics include Shannon, Simpson, and observed ASVs for both bacteria (A and
C) and archaea (B and D) populations. HFE n=13, LFE n=11. 
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Figure 2.3: Differential abundance analysis. Bacteria (A) and archaea (B, C, D,
E) taxa found to be differentially abundant between  high (Dark Pink) and low
(Blue)  feed  efficiency  cohorts  for  liquid  (A,  B,  C  and D)  and  solid  (E)  rumen
fractions.  HFE n=13, LFE n=11. 
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Figure 2.4: Relative abundance boxplots. Boxplots representing the variations
in relative abundance of dominant bacterial genera (>1% relative abundance) (A
and B) and archaea genera (C and D) in the rumen of HFE and LFE cohorts for
liquid (A and C) and solid (B and D) rumen fractions. HFE n=13, LFE n=11.

Tables

Table 2.1: Production traits  related to feed efficiency (FCR, ADG, ADI,  TWG)
analyzed per feed efficiency cohort. A Wilcoxon rank sum test was used to test
for significance. HFE n=13, LFE n=13.
Production traits

Production 
Traits

HFE
(mean±sd)

LFE
(mean±sd)

Wilcox.
Pvalue

FCR 3.83±0.40 6.05±0.92 6.41E-10

ADG 0.47±0.08 0.27±0.04 9.43E-09

TWG 17.03±2.79 9.70±1.58 9.43E-09

ADI 1.79±0.25 1.63±0.38 4.50E-02
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Table 2.2: Mean relative abundance and standard deviation of bacterial phyla in
rumen liquid phase for both HFE and LFE cohorts.  P-values are derived from
Wilcoxon rank sum test and adjusted for false discovery rate using B-H method.
Correlation coefficient derived using Spearman correlation to find associations
between relative abundance and FCR. F:B denotes Firmicicutes to Bacteroidetes
ratio. 
Rumen
Fractio
n

Phylum HFE
(mea

n)

HF
E

(sd
)

LFE
(mea

n)

LFE
(sd
)

Wilcoxo
n

Pvalue

BH
FD
R

Spearman
Rho

(FCR)

Spearm
an

Pvalue

Liquid

F:B 0.67 0.25 0.69 0.20 1.00 NS 0.01 0.98

Proteobacteria 0.18 0.13 0.12 0.11 0.07 0.30 -0.26 0.22

Bacteroidetes 0.29 0.06 0.33 0.07 0.23 0.49 0.18 0.41

Firmicutes 0.48 0.14 0.50 0.10 0.57 0.77 0.13 0.55

Actinobacteria 0.04 0.04 0.02 0.01 0.57 0.77 -0.21 0.33

Cyanobacteria 0.00 0.00 0.01 0.01 0.73 0.79 -0.07 0.73

Fibrobacteres 0.00 0.00 0.01 0.02 0.09 0.30 0.44 0.03

Spirochaetes 0.00 0.00 0.01 0.01 0.03 0.30 0.34 0.10

Patescibacteria 0.00 0.00 0.00 0.01 0.65 0.77 -0.00 0.99

Tenericutes 0.00 0.01 0.00 0.00 1.00 1.00 -0.33 0.12

Synergistetes 0.00 0.00 0.00 0.00 0.27 0.50 0.38 0.06

Kiritimatiellaeota 0.00 0.00 0.00 0.00 0.13 0.34 0.39 0.06

Epsilonbacteraeot
a

0.00 0.00 0.00 0.00 0.60 0.77 -0.02 0.93

Elusimicrobia 0.00 0.00 0.00 0.00 0.06 0.30 0.28 0.18

Solid

F:B 0.57 0.21 0.58 0.19 0.91 NS 0.18 0.39

Proteobacteria 0.13 0.09 0.11 0.10 0.42 0.75 -0.06 0.79

Bacteroidetes 0.28 0.07 0.29 0.04 0.91 0.91 0.19 0.38

Firmicutes 0.54 0.12 0.54 0.13 0.91 0.91 -0.14 0.52

Actinobacteria 0.03 0.02 0.01 0.01 0.12 0.39 -0.39 0.06

Cyanobacteria 0.01 0.00 0.01 0.01 0.69 0.91 0.11 0.61

Fibrobacteres 0.01 0.01 0.02 0.03 0.30 0.75 0.28 0.18

Spirochaetes 0.01 0.01 0.01 0.02 0.11 0.39 0.28 0.19

Patescibacteria 0.00 0.00 0.00 0.00 0.91 0.91 -0.10 0.65

Tenericutes 0.01 0.01 0.00 0.00 0.36 0.75 -0.44 0.03
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Synergistetes 0.00 0.00 0.00 0.00 0.05 0.31 0.51 0.01

Epsilonbacteraeot
a

0.00 0.00 0.00 0.00 0.72 0.91 -0.06 0.77

Elusimicrobia 0.00 0.00 0.00 0.00 0.01 0.12 0.43 0.04

Kiritimatiellaeota 0.00 0.00 0.00 0.00 0.46 0.75 0.13 0.54

Table  2.3: Spearman’s  rank  correlation  showing  dominant  bacterial  genera
(>0.1%) that had a significant relationship with either FCR and/or ADG in the
liquid rumen phase. For analysis,  only genera prevalent in more than 40% of
samples were explored. HFE n=13, LFE n=11.

Genus HFE
me
an

HF
E
(s
d)

LFE
(mea

n)

LF
E
(s
d)

Rh
o

(FC
R)

Pval
ue

(FCR
)

Rho
(AD
G)

Pval
ue
(AD
G)

Liqu
id

Prevotella_1 0.01 0.0
1

0.06 0.0
4

0.5
6

0.01 -
0.71

0.00

Fibrobacter 0.00 0.0
1

0.02 0.0
2

0.4
3

0.03 -
0.61

0.00

Treponema_2 0.00 0.0
1

0.01 0.0
1

0.3
4

0.10 -
0.57

0.00

Pseudoramibacter 0.00 0.0
0

0.00 0.0
0

0.3
4

0.10 -
0.56

0.01

Coprococcus_1 0.00 0.0
0

0.00 0.0
1

0.4
3

0.03 -
0.51

0.01

Ruminococcus_1 0.02 0.0
3

0.03 0.0
3

0.4
1

0.05 -
0.50

0.01

Acetitomaculum 0.01 0.0
1

0.01 0.0
1

0.4
1

0.05 -
0.45

0.03

Ruminococcus_2 0.00 0.0
0

0.01 0.0
2

0.3
1

0.15 -
0.43

0.04

Rikenellaceae_RC9_gut_
group

0.00 0.0
0

0.01 0.0
2

0.1
6

0.47 -
0.42

0.04

Bifidobacterium 0.01 0.0
1

0.00 0.0
0

-
0.3
2

0.12 0.41 0.05

Ruminococcaceae_UCG-
014

0.05 0.0
3

0.03 0.0
4

-
0.5
1

0.01 0.19 0.38

Soli
d

Prevotella_1 0.03 0.0
7

0.06 0.0
6

0.3
9

0.06 -
0.56

0.01

Ruminococcus_1 0.03 0.0
4

0.03 0.0
3

0.4
3

0.04 -
0.53

0.01

Pyramidobacter 0.00 0.0
0

0.00 0.0
0

0.5
3

0.01 -
0.52

0.01

Fibrobacter 0.01 0.0
2

0.01 0.0
3

0.2
8

0.18 -
0.51

0.01

Treponema_2 0.01 0.0
1

0.01 0.0
2

0.2
8

0.19 -
0.48

0.02

Roseburia 0.01 0.0
1

0.01 0.0
1

0.3
7

0.08 -
0.45

0.03

Pseudoramibacter 0.00 0.0
0

0.00 0.0
0

0.4
2

0.04 -
0.45

0.03

Bifidobacterium 0.00 0.0
0

0.01 0.0
0

-
0.3
4

0.10 0.44 0.03

Megasphaera 0.03 0.0
1

0.03 0.0
1

-
0.2

0.36 0.43 0.04
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0
Acetitomaculum 0.01 0.0

2
0.01 0.0

1
0.4
2

0.04 -
0.41

0.05

Coprococcus_1 0.00 0.0
0

0.00 0.0
0

0.4
2

0.04 -
0.41

0.05

Olsenella 0.02 0.0
1

0.02 0.0
1

-
0.4
0

0.05 0.33 0.12

Ruminococcaceae_UCG-
014

0.06 0.0
3

0.03 0.0
3

-
0.5
5

0.01 0.29 0.17
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Chapter 2 Supplementary Figures
Figures

Supplementary  Figure  2.1:  Beta  diversity  analysis.  NMDS  ordination  plot
based weighted and unweighted UniFrac distances. Dots represent the different
samples. Colours represent different feed efficient cohorts, HFE (pink) and LFE
(Blue). The plots show outlying samples (10707, 10835), which were removed
prior to downstream analysis. HFE n=13, LFE n=13. 
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Supplementary  Figure  2.2:  Analysis  of  ruminal  fractions. PCoA  ordination
plots with weighted (A) and unweighted (B) UniFrac distances. Alpha diversity
analysis;  Shannon,  Simpson  and  observed  ASV  for  solid  and  liquid  rumen
fractions (C). Colours represent different feed efficient cohorts, HFE (Dark Pink)
and LFE (Blue). Stacked barchart representing the relative abundance of 10 most
abundant genera (D). HFE n=13, LFE n=11.
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Supplementary  Figure  2.3: Beta  diversity  analysis.  PCoA  ordination  plots
based on weighted UniFrac distances for bacteria (A and C) and archaea (B and
D)  populations,  for  liquid  (A  and  B)  and  solid  (C  and  D)  rumen  fractions.
Permanova  P-value  (Permanova),  R2  and  homogeneity  of  dispersion  analysis
(Disper)  is  provided  for  each  analysis.  Dots  represent  the  different  microbial
samples and colours represent different feed efficient cohorts, HFE (Dark Pink)
and LFE (Blue). HFE n=13, LFE n=11.
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Supplementary  Figure  2.4: PCA  plot  comparing  microbiome  functional
profiles, from COWPi, for each sample from the rumen liquid phase. HFE n=13,
LFE n=11.

Supplementary  Figure  2.5: PCA  plot  comparing  microbiome  functional
profiles, from COWPi, for each sample from the rumen solid phase. HFE  n=13,
LFE n=11.

118



119



Chapter 3
Breed and ruminal fraction effects on

bacterial and archaeal community
composition in sheep

Steven  McLoughlin1,2,  Charles  Spillane*2,  Francis  P.  Campion1,  Noel  Claffey1,
Chrystian C. Sosa1, Yvonne McNicholas1, Paul E. Smith1, Michael G. Diskin1, and
Sinéad M. Waters*1,2

1Animal  and  Bioscience  Research  Department,  Animal  and  Grassland
Research  and Innovation Centre,  Teagasc,  Athenry,  Co.  Galway,  H65
R718, Ireland

2Genetics and Biotechnology Laboratory, Plant and AgriBiosciences 
Research Centre (PABC), Ryan Institute, National University of Ireland 
Galway, University Road, Galway H91 REW4, Ireland

Abstract
While  the  breed  of  cattle  can  impact  on  the  composition  and  structure  of
microbial communities in the rumen, breed-specific effects on rumen microbial
communities have rarely been examined in sheep. In addition, rumen microbial
composition  can  differ  between  ruminal  fractions,  and  be  associated  with
ruminant  feed  efficiency  and  methane  emissions.  In  this  study,  16S  rRNA
amplicon sequencing was used to investigate the effects of breed and ruminal
fraction  on  bacterial  and  archaeal  communities  in  sheep.  Solid,  liquid  and
epithelial  rumen  samples  were  obtained  from a  total  of  36  lambs,  across  4
different sheep breeds (Cheviot (n=10), Connemara (n=6), Lanark (n=10) and
Perth (n=10)), undergoing detailed measurements of feed efficiency – who were
offered a nut based cereal ad-libitum supplemented with grass silage. Our results
demonstrate  that  the feed conversion ratio (FCR) was lowest for the Cheviot
(most efficient),  and highest for the Connemara breed (least efficient).  In the
solid fraction,  bacterial  community richness was lowest in the Cheviot breed,
while  Sharpea  azabuensis was  most  abundant  in  the  Perth  breed.  Lanark,
Cheviot and Perth breeds exhibited a significantly higher abundance of epithelial
associated  Succiniclasticum compared  to  the  Connemara  breed.  When
comparing  ruminal  fractions,  Campylobacter,  Family  XIII,  Mogibacterium,  and
Lachnospiraceae UCG-008 were most  abundant  in  the epithelial  fraction.  Our
findings indicate that breed can impact the abundance of specific bacterial taxa
in sheep while having little effect on the overall  composition of the microbial
community. This finding has implications for genetic selection breeding programs

120



aimed  at  improving  feed  conversion  efficiency  of  sheep.  Furthermore,  the
variations  in  the  distribution  of  bacterial  species  identified  between  ruminal
fractions, notably between solid and epithelial fractions, reveals a rumen fraction
bias, which has implications for sheep rumen sampling techniques.

Introduction
Ruminant livestock contribute significantly to food security by converting human
indigestible plant matter, into high quality sources of dairy and meat proteins,
for human consumption (Oltjen and Beckett, 1996). Sustainable supply of animal
derived protein over  the next decades will  be key to meeting the nutritional
requirements of an estimated nine billion people by 2050 (Henchion et al., 2017).
However, livestock production systems are also a major source of anthropogenic
greenhouse gas emissions with enteric fermentation estimated to contribute to
35-40% of global methane emissions (Dopelt et al., 2019). As a result, there is an
urgent need to increase animal protein production to fulfil nutritional demand
while  simultaneously  improving  the  livestock  industry's  environmental
sustainability metrics.  Increasing the feed conversion efficiency of livestock is
proposed  as  a  mitigation  solution  for  the  livestock  industry,  as  more  feed
efficient  ruminants  emit  less  methane  than  their  less  efficient  counterparts
(Hegarty  et  al.,  2007;Fitzsimons  et  al.,  2013;Beauchemin  et  al.,  2020).  In
addition, improvements to feed efficiency are likely to benefit farm profitability
(Kenny et  al.,  2018)  while  reducing  the  quantity  of  global  land  dedicated  to
producing feed for the livestock industry (van Zanten et al., 2016). 
Mountain  or  hill  sheep production  is  a  significant  agricultural  enterprise  that
provides social and economic health in rural areas across the globe, while also
protecting natural  habitats and promoting biodiversity (Byrne et al.,  2017). In
Ireland and the UK, popular hill sheep breeds include the Scottish Blackface (SB)
and the Cheviot. SB are mountain breeds which display adaptive tolerance to
harsh  environmental  conditions  and  challenging  terrains  with  low-energy
vegetation (Carlyle, 1979). The wide distribution of SB breeds across the UK and
Ireland has led to evolutionary changes within the breed, influenced largely by
environmental pressures between different habitats (Carlyle, 1979). As a result,
a range of different strains of SB breed exist today including the Lanark, Perth
and Connemara breed types which all vary in body and wool composition. The
Cheviot breed is also well-suited to highland farming, and while not as resilient
as the SB (Blaxter et al., 1966), they are slightly larger and produce lambs that
mature quickly (Kirton et al., 1995). 
Sheep, like all ruminants, rely on a complex and dynamic microbial ecosystem
(anaerobic bacteria, archaea, fungi and protozoa) within their rumen to derive
energy  from  feed  (Huws  et  al.,  2018).  The  rumen  is  composed  of  three
environmental niches, namely the solid-, liquid-, and epithelial-fractions (Ji et al.,
2017;Li et al., 2020;Ren et al., 2020). The solid fraction, comprised of ingested
feed, is primarily colonised by feed adherent microbes that breakdown fibrous
matter (Li et al., 2020). The liquid fraction consists of the fluid within the rumen
and provides an environment for free living microbes involved in the metabolism
of soluble nutrients (McGovern et al., 2018). Finally, the epithelial fraction refers

121



to the epithelial lining of the rumen, which harbours microbes active in tissue
recycling (Dinsdale et al., 1980), oxygen scavenging (Cheng et al., 1979), and
urea  hydrolysis  (Cheng  and  Wallace,  1979)  and  is  critically  important  for
bioconversions and nutrient uptake as the cellular interface with the host animal.
Previous research in both bovine and ovine models have reported differences in
the microbial taxonomic profiles between ruminal fractions (Li et al., 2020;Ren et
al.,  2020)  with  the  epithelial  being  mostly  distinct  from the  solid  and  liquid
fractions, whereas the solid and liquid fractions tend to more similar (McGovern
et al., 2018;McLoughlin et al., 2020). To date, most studies investigating breed
effects have been conducted using the rumen digesta samples and have not
been explored using the epithelial fraction. 
Previous  research  has  revealed  links  between  the  rumen  microbiota,  feed
efficiency and methane emissions in both cattle and sheep, with differences in
microbial diversity and abundances between divergent animal cohorts (Myer et
al.,  2015;Shabat  et  al.,  2016;Ellison  et  al.,  2017;McLoughlin  et  al.,  2020).
Understanding factors that influence the composition and diversity of the rumen
microbiome is critical  for improving strategies to enhance feed efficiency and
reduce ruminant methane emissions. Recently, studies in cattle have shown that
microbial taxonomic profiles differ between breeds (Li et al., 2019a;Noel et al.,
2019), suggesting that host genetics may regulate the composition of the rumen
microbiome. However, such effects have not been explored in sheep.  
It is unclear whether breed specific findings in cattle can be translated to sheep.
Taxa-specific research is imperative given the importance of the global sheep
industry  from  environmental,  economic  and  social  perspectives.  In  addition,
while cattle studies have provided some indication that breed plays an important
role  in  shaping  the  rumen microbiome,  to  date,  such  effects  have  not  been
investigated  across  all  three  ruminal  fractions.  Hence,  the  objectives  of  the
current study are twofold. Firstly, to investigate the effect of breed on bacterial
and archaeal  populations in the solid,  liquid and epithelial  rumen fractions of
sheep,  and  secondly  to  investigate  the  effect  of  the  ruminal  fraction  on  the
microbial  populations  in  each  of  the  breeds,  using  16S  rRNA  amplicon
sequencing.

Methods
Animal model 
Teagasc Animal Ethics Committee authorised all treatments involving animals in
this  investigation,  which  was  conducted  under  experimental  licence
(No:P19132/P028) from Ireland’s Health Product Regulatory Authority (HPRA) in
compliance  with  ARRIVE  guidelines  and  the  European  Union  protection  of
animals used for scientific purposes regulations 2012 (S.I. No 543 of 2012).
Over a 3-month period, data was collected on 36 ram lambs enrolled in a feed
efficiency measurement test.  Lambs included in this study originated from four
different breeds: Cheviot (n=10), Connemara (n=6), Lanark (n=10) and Perth
(n=10).  After  weaning,  lambs were individually penned on plastic  slat-floored
feeding pens (182cm L x 122cm W). Lambs were allowed tactile, olfactory, and
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visual contact with each other through the pen partitions. The mean body weight
of animals at the beginning of the measurement period was 29.6 kg (SD=3.7).
Throughout the trial period, all lambs were offered a cereal-based nut ad libitum,
with  fresh  concentrates  supplied  daily  and  refusals  removed  (i.e.,  troughs
emptied and cleaned) weekly. Concentrates were weighed daily in the morning,
and daily intake was estimated by subtracting the weekly total intake from the
number of refusals and dividing by seven.  Concentrates were supplemented
with  unrestricted  access  to  perennial  rye-grass  silage  (Lolium  perenne)  to
maintain rumen health (100-g/d DM). Silage was offered fresh daily and refusals
removed twice weekly during morning feeding. At no point were animals without
access  to concentrates  or  silage during the  ad libitum feeding period.  Silage
intake  was  not  measured  as  consumption  was  low.  Table  3.1  contains  the
ingredients  and  chemical  composition  of  concentrate  and  silage  used  in  the
study.  At  all  times throughout the measurement period lambs had access  to
fresh drinking water. The feed intake measurement period ceased when lambs
reached a target  slaughter weight  of  >40kg.  Lambs were slaughtered at  the
Kepak Ltd abattoir in Athleague in Co. Roscommon on three separate dates when
lamb maturity  was reached; 29th November 2017, 13th December 2017 and
17th  January  2018.  The  abattoir  was  approximately  56km (55min)  from  the
Teagasc research farm in Athenry, Co. Galway, Ireland. Prior to slaughter, feed
and water (at the farm) were withheld for 2 hours for all sheep in the study, since
differences  in  time  off  feed  may  have  affected  rumen  microbial  community
composition.
Phenotypic  data  collected  throughout  the  trial  period  included  the  animals
weight at the beginning of the trial period (Start weight); dry matter intake (DMI),
described as the amount of feed (kg) the lambs consumed; average daily gain
(ADG)  was  calculated  by  dividing  the  total  weight  gain  over  the  trial  period
divided  by  the  number  of  days  animals  were  on  trial  before  slaughter;  feed
conversion ratio (FCR) was calculated by dividing DMI by ADG. Live weight (LW)
was the weight of lambs before slaughter. LW gain was the difference in weight
at the beginning and end of the trial period. Carcass weight refers to the weight
of the carcass after the offal has been removed following slaughter. KO% refers
to the weight of the carcass as a percentage of the animal's live weight prior to
slaughter.

Sample collection
Samples of ruminal fractions were collected immediately after slaughter. Rumen
fluid  and  solid  fractions  were  separated  into  25ml  tubes,  by  filtering  rumen
digesta through four  layers  of  sterile  cheesecloth.  To collect  rumen epithelial
samples, papillae were cut from dorsal, ventral, cariad and caudal regions of the
rumen wall using sterilised scissors, approx. 1cm2, and subsequently rinsed with
cold  sterile  saline  solution  (0.9% w/v  NaCl).  Samples  from all  three  ruminal
fractions were frozen immediately in liquid nitrogen after separation and then
stored at −80°C. A total of 90 samples were available for the current study, 28
epithelial samples (Cheviot n=9, Connemara n=3, Lanark n=7, Perth n=9), 30
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liquid  (Cheviot  n=9,  Connemara  n=5,  Lanark  n=9,  Perth  n=7),  and  32  solid
ruminal samples (Cheviot n=8, Connemara n=6, Lanark n=9, Perth n=9). 

Rumen microbial DNA extraction and library preparation
Under liquid nitrogen, each sample was homogenised to a fine frozen powder
using a pestle and mortar. Extraction of microbial DNA from the samples was
performed using the method described by Yu and Morrison (Yu and Morrison,
2004).  Amplicon libraries were created from 25ng of rumen microbial DNA using
two rounds of PCR amplification as described in the Illumina Miseq 16S Sample
Preparation  Guide,  with  minor  alterations  to  cycle  length  as  described  by
McGovern et al. (2018) (McGovern et al., 2018). 515F/806R primers (Caporaso et
al.,  2011),  built  with Nextera over  hang adapters,  and 2x KAPA Hifi HotStart
ReadyMix DNA polymerase were used for the first round of PCR amplification,
targeting  the  V4 hyper-variable  region  of  the  16S rDNA (Roche  Diagnositics,
West Sussex, UK). The first round of PCR was performed at 95°C for 3 minutes,
then 20 cycles of 95°C for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds,
and 72°C for 5 minutes. To enable the attachment of dual indices and Illumina
sequencing adapters using the Nextera XT indexing kit, a second round of PCR
was  conducted  at  95°C  for  3  minutes,  followed  by  8  cycles  at  95°C  for  30
seconds,  55°C for 30 seconds,  72°C for 30 seconds,  and 72°C for 5 minutes
(Illumina, San Diego, CA, USA). Following PCR rounds 1 and 2, the amplicons
were purified using the Qiaquick PCR Purification Kit (Qiagen, Manchester, UK).
To  remove  adaptor  primers,  amplicons  were  pooled  together  in  identical
concentrations  and gel  purified  using  the  Qiagen  Gel  Extraction  Kit  (Qiagen,
Manchester,  UK).  Using the QIAquick PCR purification kit,  the amplicons were
again  purified  to  eliminate  any  agarose  residues  (Qiagen,  Manchester,  UK).
Amplicon  purity  was  measured  using  the  Nanodrop  1000,  followed  by
confirmation using the Qubit fluorometer and the KAPA SYBR FAST universal kit
with  Illumina Primer Premix (Roche Diagnositics,  West  Sussex,  UK).  Amplicon
libraries were diluted and denatured according to the Illumina Miseq 16S Sample
Preparation Guide, and sequencing was performed on the Illumina MiSeq using
the 500 cycle version 2 MiSeq reagent kit (Illumina, San Diego, CA, USA).

Bioinformatics
Amplicon reads were quality assessed using FASTQC (version 0.11.5) (Andrews,
2017).  Adapters  and  ambiguous  basecalls  were  subsequently  removed  using
Cutadapt (version 1.18)(Martin, 2011). The amplicon reads were processed and
analyzed using the Divisive Amplicon Denoising Algorithm 2 (DADA2) (DADA2)
(version 1.18.0), as described in Callahan et al. (2016) (Callahan et al., 2016).
The  DADA2  tutorial  available  at  https://benjjneb.github.io/dada2/tutorial.html
(version 1.12) was followed for read filtering, dereplication,  sample inference,
chimera  elimination,  paired  end read  merging,  and  taxonomy  categorization.
Taxonomic  classification  was  performed to  the  species  level  using  the  SILVA
classification  databases (version 132) (Callahan,  2018).  The final  output from
DADA2 was  an  Amplicon  Sequence  Variant  (ASV)  table  and a  corresponding
taxonomy table. A phylogenetic tree was created using the R package Phangorn
(Schliep, 2011). Prior to downstream analysis, a Phyloseq object including the
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ASV table, taxonomy table, phylogenetic tree, and experimental metadata was
created using the R/Bioconductor package Phyloseq (version 1.26) (McMURDIE
and Holmes, 2012). Six samples (2 solid, 2 liquid and 2 epithelial) were removed
prior  to  downstream  analysis  as  a  result  of  having  a  substantially  reduced
number of reads (<100 reads). 

Compositional and statistical analysis
Animal production trait data were first verified for normality and homogeneity
using  the Shapiro  Wilks  and Levenes tests,  respectively,  and  then  compared
among breeds using a two-way ANOVA followed by a post-hoc Tukey HSD. DMI
records were missing from one animal  in  each of  the Connemara,  Perth  and
Lanark  breeds,  as  a  result  those  animals  were  omitted  from  DMI  and  FCR
comparisons.
To profile dominant bacterial and archaea taxa, raw counts were converted to
relative abundances and the mean and standard deviation relative abundance of
dominant phyla and genera were reported. To examine the effect of breed on
bacterial  and  archaeal  populations  the  data  was  first  stratified  according  to
ruminal  fraction  (i.e.  solid,  liquid  and epithelial)  and then compared between
breeds (i.e Cheviot,  Connemara,  Lanark and Perth).  Similarly,  to examine the
effect of ruminal fraction on microbial profiles data was stratified according to
breed and compared between fractions. For fraction analysis only animals where
all three ruminal fraction were available were considered. Due to low numbers of
biological replicates the Connemara breed was excluded from ruminal fractions
analysis. Prior to diversity analysis raw counts were normalised to even sampling
depth  using  the  scaling  with  ranked  subsampling  (SRS)  method  (Beule  and
Karlovsky, 2020) and rarefaction curves were generated to assess sequencing
effort. Following assessment of rarefaction curves, sample 2083-Solid, which had
a sequencing depth of 13,922, was removed due to a loss in community diversity
when rarefying. Shannon, inverse Simpson, Faiths phylogenetic diversity (PD),
and observed ASVs (richness)  diversity indices were used to generate within-
sample (alpha) diversity metrics. Alpha diversity data were checked for normality
and homogeneity using Shapiro Wilks test and Levenes test prior to statistical
analysis.  A  two-way  ANOVA  was  used  to  test  the  null  hypothesis  that  no
difference on mean alpha diversity measures existed between groups. For beta
diversity analysis, dissimilarities in community composition were measured using
both weighted and unweighted UniFrac distances and visualised using principle
coordinate  analysis  (PcoA).  Differences in  community  composition  was  tested
with  PERMANOVA  and  conducted  with  9999  permutations  using  the  Adonis
function from the R/Bioconductor package Vegan (version 2.5-5) (Dixon, 2003).
Differential  abundance (DA) analysis was conducted using both the likelihood
ratio test (LRT) and the Wald’s test from the DESeq2 package (Love et al., 2014).
Only taxa with a relative abundance larger than 0.01 percent and a prevalence
greater than 50 percent were considered for DA analysis.  An  a priori q-value
threshold  was  set  at  0.05.  The  date  of  sample  collection  was  included as  a
covariate  to  adjust  for  variations  in  abundance  associated  with  different
slaughter dates. Lastly, Spearman correlation coefficients (P< 0.05) were done to
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assess  the  correlation  between  bacterial  and  archaeal  genera  and  animal
production  traits;  FCR and ADG,  in  order  to  identify  potential  feed efficiency
drivers. Only genera with a relative abundance larger than 0.01 percent and a
prevalence greater than 50 percent were considered for correlation analysis. 

Results
Breed differences in animal feed conversion and economic trait 
performance 
Throughout  the  feed  intake  measurement  period,  summary  statistics  shows
animals on test had an average DMI of 1.113Kg/d (SD=0.18), ADG of 0.27Kg/d
(SD=0.1), FCR of 4.04 Kg of DMI/ Kg of ADG (SD=0.1), start weight of 29.6Kg
(SD=3.7),  final  live  weight  of  46.0  Kg  (SD=2.9),  carcass  weight  of  20.2  Kg
(SD=1.6), and a KO% of 44.1% (SD=3.3). ADG (P=0.005), FCR (P=0.035), CW
(P<0.04) and start  weight  (P<0.036) were all  significantly  affected by breed.
Summary  statistics,  along  with  comparisons  amongst  breeds  for  animal
performance,  feed  intake  and  feed  efficiency  are  displayed  in  Table  3.2.  In
summary, the Cheviot breed had the lowest FCR and the highest ADG, carcass
weight,  and start  weight among all  breeds,  with differences in ADG and FCR
being significant  when compared to the Connemara breed and differences in
carcass and start weight being significant when compared to the Lanark breed.
In addition, the Cheviot breed had the fastest maturing lambs with 80% of lambs
reaching maturity within the first 42 days (data not shown) and a mean LW of
47.1kg (Table 3.2). 

Overall microbial community structure 
After data processing, filtering, and removal of chimeras and lowly sequenced
samples a total of 5,411,353 reads remained, with an average of 91.3% of reads
surviving. The average number of reads per sample was 64,420, which mapped
to 2547 ASVs. After removal of taxa unassigned at the phylum level 2434 ASV’s
remained. Analysis of the ASVs across all  samples revealed that bacteria and
archaea represented 95.4 and 4.6% of the microbial population, respectively.  A
total  of  19 bacterial taxa were classified at the phylum level,  with Firmicutes
being  the  most  abundant  (45.8%),  followed  by  Bacteroidetes  (33.4%)  and
Proteobacteria (8.0%). There were 192 taxa classified at the genus level, with
Prevotella_1 (13.1%) and Prevotella_7 (13.1%) being the most dominant followed
by Succinivibrio (6.3%). Methanobrevibacter was shown to be the most abundant
archaeal genus. (78.1%). In this study, no non-methanogenic archaeal taxa were
identified.

Breed effects on bacterial and archaeal populations in the solid 
ruminal fraction
In the solid ruminal fraction, a total of 1706 bacterial ASVs agglomerated to 227
genera,  89  families,  51  orders,  27  classes  and 16 phyla.  Firmicutes  (48.2%)
Bacteroidetes  (30.1%),  Fibrobacterota  (6.1%)  were  the  three  most  abundant
bacteria phyla (Figure 1).  Prevotella_7  (9.7%),  Prevotella_1  (9.2%), unclassified
Lachnospiraceae (7.6%), Fibrobacter  (6.1%) and  Ruminococcus_1  (5.6%) were
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the 5 most dominant bacteria genera (Figure 2). A total  of 27 archaeal ASVs
were  identified  and  agglomerated  to  4  genera  (Methanobrevibacter,
Methanosphera,  Methanimicrococcus and Candidatus methanomethylophilus), 3
families,  3 orders 3 classes and 1 phylum.  Methanobrevibacter was the most
dominant archaeal genus (72.9%). 
Alpha diversity analysis revealed that breed had an effect on solid associated
bacterial and archaeal community richness and bacteria community PD (ANOVA,
P<0.05) (Table 3.3). Such differences were observed between the Cheviot and
Lanark breeds, with the Cheviot exhibiting the least and the Lanark exhibiting
the most rumen microbial diversity among the breeds.  Based on weighted and
unweighted UniFrac distances, beta diversity analysis showed no differences in
overall  community  composition  across  the  breeds  (PERMANOVA,  P>0.05)  for
either bacterial or archaeal communities (Table 3.4).
The abundance of Sharpea at the genus level, Sharpea azabuensis at the species
level and an unclassified ASV (ASV37) belonging to the family Lachnospiraceae
were  affected  by  breed  (LRT,  P.adj<0.05)  (Table  3.5).  Sharpea (Wald,
P.adj<0.001;  Log2FC=4.37)  and  Sharpea  azabuensis  (Wald,  P.adj<0.001;
Log2FC=4.58)  were  higher  in  Perth  compared  to  Cheviot.  ASV37  (family
Lachnospiraceae)  was  more  abundant  in  Cheviot  (Wald,  P.adj<0.01;
Log2FC=3.22) and Perth (Wald,  P.adj<0.001; Log2FC=3.4) compared to Lanark
(Table 3.5). Pairwise analysis between each of the breeds revealed a further 2
bacterial  ASVs  as  differentially  abundant.  ASV48  classified  to  the  genus
Prevotella_9 was  higher  in  Lanark  compared  to  Perth  (Wald,  P.adj<0.0001;
Log2FC=7.88)  and  Cheviot  (Wald,  P.adj<0.01;  Log2FC=9.11),  and  ASV329
classified  to  the  genus  Pyramidobacter was  higher  in  Lanark  compared  to
Cheviot (Wald,  P.adj<0.05; Log2FC=5.52). At the genus level  P-2534-18B5_gut
group (ASV17),  belonging  to  phylum Bacteroidetes,  was  higher  in  the  Perth
(Wald,  P.adj<0.05; Log2FC=5.78) and Lanark (Wald,  P.adj<0.05; Log2FC=6.82)
breeds compared to Cheviot, and  Candidatus Saccharimonas  was higher in the
Lanark compared to the Cheviot (Wald,  P.adj<0.05; Log2FC=5.66). Similarly, at
the family level P-2534-18B5_gut group (ASV17) was higher in the Perth (Wald,
P.adj<0.01; Log2FC=5.88) and Lanark (Wald,  P.adj<0.01; Log2FC=6.80) breeds
compared  to  Cheviot,  and  Saccharimonadaceae  (ASV317)  was  higher  in  the
Lanark  (Wald,  P.adj<0.01;  Log2FC=5.48)  and  Connemara  (Wald,  P.adj<0.05;
Log2FC=6.89)  breeds  compared  to  the  Cheviot.  At  the  order  level
Coriobacteriales  was  higher  in  the  Lanark  compared  to  the  Perth  (Wald,
P.adj<0.05; Log2FC=1.17) (Table 3.6). One archaea ASV belonging to the genus
Candidatus  Methanomethylophilus  (ASV337)  was  higher  in  the  Perth  (Wald,
P.adj<0.01;  Log2FC=3.12)  and  Lanark  (Wald,  P.adj<0.05;  Log2FC=3.21)
compared to Cheviot (Table 3.6). 

Breed effects on bacterial and archaeal populations in the liquid 
ruminal fraction
For the liquid ruminal fraction, a total of 1790 bacteria ASVs agglomerated to
236 genera, 95 families, 57 orders, 29 classes and 17 phyla. Firmicutes (43.1%),
Bacteroidetes (37.1%), and Proteobacteria (8.9%) were the most dominant phyla
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(Figure  1).  Prevotella  7 (12.2%),  Prevotella  1 (11.7%),  unclassified
Lachnospiraceae (6.2%),  Succinivibrio (5.8%) and  Succiniclasticum (4.4%) were
the 5 most dominant genera (Figure 3.2). 26 archaea ASVs were available for
analysis, which agglomerated to 4 genera (Methanobrevibacter, Methanosphera,
unclassified Methanomethylophilaceae and  Candidatus Methanomethylophilus),
2 families, 2 orders 2 classes and 1 phylum. Methanobrevibacter was the most
dominant genus (78.9%). 
Although there was no effect of  breed on alpha diversity indices for bacteria
communities  (ANOVA,  P>0.05),  breed did  have an impact  on the richness of
archaeal communities. (ANOVA,  P<0.05) (Table 3.2). The Lanark breed had the
highest level of archaeal community richness, whereas the Cheviot breed had
the  lowest  level  (Table  3.6).   Based  on  weighted  and  unweighted  UniFrac
distances,  the  analysis  of  beta  diversity  showed  no  differences  in  overall
community  composition  among  breeds  (PERMANOVA,  P>0.05)  for  either
bacterial or archaeal communities (Table 3.4).
The  likelihood  ratio  test  detected  no  breed  effect  (LRT,  P.adj>0.05)  on  the
abundance of  bacterial  or  archaeal  taxa across  all  taxonomic ranks.  Pairwise
analysis  between  each  of  the  breeds  revealed  5  taxa  at  the  ASV  level  as
differentially abundant. Two ASVs, ASV23 (Wald, P.adj<0.01; Log2FC=5.94) and
ASV43 (Wald, P.adj<0.05; Log2FC=2.51) classified to the family Muribaculaceae
were  higher  in  Cheviot  compared  to  Perth,  ASV44  classified  to  the  genus
Acetitomaculum was  higher  in  Cheviot  (Wald,  P.adj<0.05;  Log2FC=10.26)
compared to Connemara, ASV55 classified as Sharpea azabuensis was higher in
Perth  (Wald,  P.adj<0.01;  Log2FC=4.81)  compared  to  Cheviot,  and  ASV20
classified to Lachnospiraceae NK3A20 group  was higher  in  the Lanark  (Wald,
P.adj<0.05; Log2FC=3.06) compared to Connemara. At the genus level Sharpea
(Wald,  P.adj<0.001;  Log2FC=5.05)  was  higher  in  the  Perth  compared  to  the
Cheviot,  ASV223  classified  to  order  Rhodospirillales  (Wald,  P.adj<0.01;
Log2FC=7.03) was higher in the Cheviot compared to the Perth, and ASV461
classified  to  Clostridiales_vadinBB60  group  was  higher  in  the  Lanark  (Wald,
P.adj<0.05;  Log2FC=5.86)  compared  to  the  Connemara.  At  the  family  level
Muribaculaceae  (Wald,  P.adj<0.05;  Log2FC=2.23)  was  higher  in  Cheviot
compared to Perth, ASV223 classified to order Rhodospirillales was higher in the
Cheviot compared to the Connemara (Wald, P.adj<0.05; Log2FC=7.11) and Perth
(Wald,  P.adj<0.01; Log2FC=6.81), ASV461 classified to Clostridiales_vadinBB60
group was higher in the Cheviot (Wald,  P.adj<0.05; Log2FC=5.82) and Lanark
(Wald,  P.adj<0.01;  Log2FC=6.09)  compared  to  the  Connemara,  and  ASV17
classified to P-2534-18B5_gut group was higher in the Perth (Wald,  P.adj<0.05;
Log2FC=4.75)  and Lanark  (Wald,  P.adj<0.05;  Log2FC=5.87)  compared to  the
Cheviot. At the order level Rhodospirillales was higher in the Cheviot compared
to  the  Connemara  (Wald,  P.adj<0.05;  Log2FC=7.29)  and  Perth  (Wald,
P.adj<0.01; Log2FC=6.93), and Betaproteobacteriales was higher in the Cheviot
compared to the Connemara (Wald, P.adj<0.05; Log2FC=3.03). At the class level
the abundance of Alphaproteobacteria was higher in the Cheviot compared to
the Perth (Wald,  P.adj<0.01; Log2FC=7.11) and Connemara (Wald,  P.adj<0.05;
Log2FC=7.52).  Finally at the Phylum level the abundance of Proteobacteria was
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higher  in  the  Perth  compared  to  the  Connemara  (Wald,  P.adj<0.05;
Log2FC=2.62) (Table 3.6).

Breed effects on bacterial and archaeal populations in the 
epithelial ruminal fraction
In the epithelial ruminal fraction, a total of 1891 bacteria ASVs agglomerated to
231 genera, 89 families, 52 orders, 29 classes and 17 phyla. Firmicutes (46.3%),
Bacteroidetes (33.4%),  and  Proteobacteria (10.1%)  were  the  most  dominant
phyla (Figure 1).  Prevotella 1 (10.0%), Prevotella 7 (8.9%), Succinvibrio (5.9%),
unclassified Lachnospiraceae (5.7%),  and  Ruminococcus  2 (5.0%) were the 5
most dominant genera (Figure 2). 28 archaeal ASVs were available for analysis,
which  agglomerated  to  5  genera  (Methanobrevibacter,  Methanosphera,
Methanimicrococcus,  unclassified  Methanomethylophilaceae  and  Candidatus
Methanomethylophilus),  3  families,  3  orders  3  classes  and  1  phylum.
Methanobrevibacter was the most dominant genus (82.0%). 
Alpha diversity analysis revealed that while breed had no effect  on epithelial
associated archaeal community indices, it had a significant effect on bacteria
community richness and inverse Simpson diversity (ANOVA, P<0.05) (Table 3.3).
Beta diversity analysis based on weighted and unweighted UniFrac distances,
found no differences in community composition among the breeds (PERMANOVA,
P>0.05), for either bacterial or archaeal communities (Table 3.4). 
The  abundance  of  Family  XIII at  the  family  level  and  an  unclassified  ASV
(ASV379) belonging to Family XIII at the ASV level were affected by breed (LRT,
P.adj<0.01) (Table 3.5). Family XIII was higher in Lanark compared to Cheviot
(Wald,  P.adj<0.05; Log2FC=1.41) and Perth (Wald,  P.adj<0.05; Log2FC=1.13),
and ASV379, belonging to Family XIII, was higher in the Lanark breed (Wald,
P.adj<0.05; Log2FC=2.88) when compared to Perth breed (Table 3.6).  Pairwise
analysis revealed a further 7 bacterial ASVs as differentially abundant. ASV37
classified  to  the  Lachnospiraceae  family  was  higher  in  the  Perth  (Wald,
P.adj<0.05;  Log2FC=2.72)  compared  to  the  Lanark,  ASV123  classified  to  the
genus  Prevotella_1 was  higher  in  the  Connemara  (Wald,  P.adj<0.01;
Log2FC=7.85)  compared  to  the  Lanark,  ASV633  classified  to  the  genus
Ruminococcacese UCG-010 was  higher  in  the  Perth  (Wald,  P.adj<0.05;
Log2FC=4.0)  compared  to  the  Lanark,  ASV24  classified  to  the  genus
Succiniclasticum was  lower  in  the  Connemara  compared  to  Cheviot  (Wald,
P.adj<0.0001; Log2FC=24.14), Lanark (Wald, P.adj<0.0001; Log2FC=23.67) and
Perth (Wald, P.adj<0.0001; Log2FC=25.98) breeds, ASV74 classified to the genus
Syntrophococcus was higher in the Lanark breed compared to Connemara (Wald,
P.adj<0.05; Log2FC=5.42), ASV33 classified to the genus  Ruminococcus_1 was
higher  in  Perth  (Wald,  P.adj<0.05;  Log2FC=4.81)  and  Connemara  (Wald,
P.adj<0.01; Log2FC=7.80) compared to Cheviot, and ASV118 also classified to
the genus Ruminococcus_1 was higher in Perth (Wald, P.adj<0.05; Log2FC=5.52)
compared  to  Lanark.  At  the  genus  level,  Sharpea was  higher  in  the  Perth
compared to the Cheviot (Wald, P.adj<0.05; Log2FC=3.13), ASV361 classified to
Family  XIII  AD3011  group  was  higher  in  the  Lanark  (Wald,  P.adj<0.01;
Log2FC=2.28)  when  compared  to  the  Cheviot,  while  ASV69  classified  to

129



Ruminococcaceae UCG-014  (Wald,  P.adj<0.05;  Log2FC=2.77)  and  ASV406
classified to Family XIII  UCG-001 (Wald,  P.adj<0.05;  Log2FC=3.10) were both
higher  in  the  Cheviot  when  compared  to  the  Lanark.  At  the  family  level
Atopobiaceae was  higher  in  the  Lanark  (Wald,  P.adj<0.05;  Log2FC=1.96)
compared to Perth, and Synergistaceae was higher in the Lanark compared to
the Cheviot (Wald, P.adj<0.05; Log2FC=2.19) (Table 3.6). 

Effect of ruminal fraction on bacterial and archaeal populations 
across breeds
Bacterial and archaeal populations across ruminal fractions were investigated for
Cheviot,  Lanark and Perth breeds,  and only included animals where all  three
ruminal fractions were available. Firmicutes was the most abundant phylum in
the  Cheviot  (mean,  solid=51%,  liquid=41%,  epithelial=45%),  Lanark  (mean,
solid=44%,  liquid=39%,  epithelial=43%)  and  Perth  (mean,  solid=49%,
liquid=46%,  epithelial=49%)  breeds  (Figure  3).  In  the  epithelial  fraction
Prevotella_7 was the most abundant genus in the Cheviot (10.6%) and Lanark
(8.3%) breeds, while Prevotella_1 (10.0%) was the most dominant genus for the
Perth breed. In the liquid fraction  Prevotella_1 was the most dominant in the
Cheviot (12.1%) breed, while Prevotella_7 was most dominant in Lanark (11.1%)
and  Perth  (13.1%)  breeds.  In  the  solid  ruminal  fraction  unclassified
Lachnospiracheae,  Prevotella_1 and  Prevotella_7 were  most  abundant  in  the
Cheviot (9.9%), Lanark (10.5%) and Perth (11.1%) breeds, respectively (Figure
3.4).
For the Cheviot breed, bacterial community alpha diversity measures were not
affected by ruminal  fraction  (ANOVA,  P>0.1).  For  the Lanark  breed,  bacterial
community Shannon diversity was affected by ruminal fraction (ANOVA, P<0.05).
For  the  Perth  breed,  bacterial  community  richness  (observed  ASV)  and
phylogenetic diversity (PD) were affected by ruminal fraction (ANOVA, P<0.05),
with  the  rumen  epithelial  fraction  exhibiting  greater  diversity  than  solid  and
liquid ruminal  fractions (Table 3.7).  For all  three breeds,  archaeal  community
alpha diversity measures were not affected by ruminal fraction (ANOVA, P>0.1).
Beta  diversity  analysis  showed  that  bacterial  and  archaeal  community
composition were also unaffected by ruminal  fraction for  all  breeds analysed
(PERMANOVA, P>0.1) (Table 3.8). 
Overall,  ruminal  fraction  influenced  36  taxonomic  groups  across  all  ranks,
representing  19  distinct  ASVs,  in  the  three  breeds  studied  (LRT,  P<0.05).
Ruminal fraction influenced the abundance of 18 taxa (11 distinct ASVs) in the
Lanark  breed,  the  most  of  any  of  breeds  studied.  ASV141,  classified  to  the
phylum  Epsilonbacteraeota  and  the  genus  Campylobacter, was  affected  by
ruminal fraction (LRT,  P<0.05) at all taxonomic ranks (i.e phylum to ASV) and
found to be significantly more abundant in the epithelial fraction when compared
to  the  solid  fraction.  The  abundance  of  ASV449,  classified  to  the  genus
Desulfobulbus, was affected by ruminal fraction at the order, family and genus
taxonomic ranks (LRT, P.adj<0.05), found to be significantly more abundan in the
epithelial ruminal fraction. At the genus level the abundance of  Butyrivibrio 2,
Fretibacterium,  Howardella,  and  an  unclassified  ASV  (ASV219)  belonging  to
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family  Neisseriaceae  were all  affected by ruminal  fraction  (LRT,  P<0.05) and
significantly  higher  in  the  epithelial  fraction.  Conversely,  the  abundance  of
Shutterella and two unclassified ASVs belonging to families Family XII  UCG-001
and  Eggerthellaceae  were  highest  in  the  solid  ruminal  fraction  (Wald,
P.adj<0.05). At the ASV level, the abundance of 2 unclassified ASVs; ASV210 and
ASV239, belonging to genus Mogibacterium and family Family XIII were affected
by ruminal fraction  (LRT,  P<0.05) and  highest in the epithelial ruminal fraction
(Wald, P<0.05). In the Cheviot breed, the abundance of 15 taxa (8 unique ASVs)
were  affected  by  ruminal  fraction.  ASV141  (Campylobacter)  from  taxonomic
ranks phylum to genus and ASV449 (Desulfobulbus) from order to genus were
differentially abundant and significantly more abundant in the epithelial ruminal
fraction (Wald,  P<0.05). At the family level, Neisseriaceae and an unclassified
ASV, ASV198, belonging to the order Coriobacteriales, were affected by ruminal
fraction, with the epithelial and solid ruminal fractions, respectively, containing a
higher  proportion  of  these  bacteria.  At  the  genus  level,  the  abundance  of
Mogibacterium,  Butyrivibro  2 and  two  unclassified  ASVs,  ASV142
(F_Erysipelotrichaceae_UCG-004)  and  ASV263  (F_Burkholderiaceae),  were
affected by ruminal fraction (LRT, P<0.05), with highest abundances observed in
the epithelial ruminal fraction. In the Perth breed, the abundance of the bacterial
phylum Tenericutes and an unclassified archaeal genus, ASV475, belonging to
the family Methanomethylophilaceae were impacted by ruminal  fraction (LRT,
P0.05)  (Table  3.9)  Taken  together,  the  majority  of  differences  in  microbial
abundance were observed between the solid and epithelial ruminal fractions, as
shown in Table 10, which summarises all the results of pairwise analysis between
fractions.

Bacterial and archaeal genera associated with FCR and ADG
We performed a Spearman correlation analysis between the relative abundance
of genera and animal production traits; FCR and ADG to find potential drivers of
feed efficiency  in  the solid,  liquid  and epithelial  fractions.  After  adjusting for
repeated  hypotheses  testing,  no  genera  were  determined  to  be  statistically
significant.  Therefore, putative drivers of FCR and ADG were considered to have
a (P<0.05). In the solid fraction, 4 bacterial genera showed significant negative
correlations  with  FCR:  Succinivibrionaceae (ρ=-4.1),  Lachnospira (ρ=-3.9),
Syntrophococcus (ρ=-3.8)  and an unclassified genus (ASV9) belonging to the
order  Gastranaerophilales  (ρ=-4.1).   Ruminococcaceae  UCG-013 (ρ=-4.1)
positively associated with ADG, while Lachnospiraceae  NK3A20 group  (ρ=-3.8)
was  negatively  correlated  with  ADG.  In  the liquid  ruminal  fraction the genus
Acetitomaculum (ρ=-3.8)  an  unclassified  ASV  belonging  to  the  order
Gastranaerophilales  (ρ=-4.4)  and  the  archaeal  genus  Candidatus
Methanomethylophilus  (ρ=-3.8) negatively  correlated  with  FCR.  Prevotella  9
(ρ=3.8), Roseburia (ρ=4.9), and 5 unclassified genera belonging to the families
Ruminococcaceae  -UCG-013 (ρ=4.5),  -UCG-002 (ρ=4.4),  -  UCG-014 (ρ=4.1),  -
UCG-010 (ρ=4.1),  and  Lachnospiraceae  (ρ=3.9),  and  an  unclassified  genus
belonging  to  order  Mollicutes  (ρ=4.9)  positively  associated  with  ADG.  In  the
epithelial fraction we observed no significant associations with FCR. Prevotella 9
(ρ=4.8), 4 unclassified genera belonging to the families Ruminococcaceae -UCG-
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013 (ρ=4.9),  -UCG-009 (ρ=4.7),  -  UCG-014 (ρ=4.1)  and  Lachnospiraceae
(ρ=4.5), an unclassified genus belonging to order Mollicutes_RF39 (ρ=4.6) and
the  archaeal  genus  Methanosphera  (ρ=4.6)  positively  associated  with  ADG.
Mogibacterium (ρ=-4.1)  and  2  unclassified  genera  belonging  to  the  families
Prevotellaceae (ρ=-4.3) and Christensenellaceae (ρ=4.3) negatively associated
with ADG (Table 3.11). 

Discussion
The effects of breed genotype on shaping the composition and diversity of the
rumen microbiota in hill sheep are unknown. However, recent studies in cattle
have  demonstrated  that  microbial  taxonomic  profiles  vary  between  breeds,
where  the  abundance  of  particular  microbial  species  are  regulated  by  host
genetics (Li et al., 2019b). Given that the rumen comprises of 3 interconnecting
microbial  ecosystems;  solid-,  liquid-  and  epithelial  ruminal  fractions,  we
investigated 1) the effect of sheep breed on bacterial and archaeal populations
in  all  three  ruminal  fractions,  and  2)  the  effect  of  ruminal  fraction  on  those
populations in three breeds of sheep (i.e Cheviot, Lanark and Perth). Our results
provide the first report that diversity and abundance of bacterial and archaeal
taxa in the solid, liquid and epithelial rumen fractions of sheep are influenced by
breed.  Our  results  expand and reinforce  previous  research  in  cattle  showing
differences in bacteria populations between breeds and ruminal fractions.
In the current study, breed was found to influence important production traits
related to host feed efficiency, including FCR and ADG. Cheviot lambs were found
to  have  the lowest  mean FCR,  indicating  that  it  was  the most  feed efficient
breed.  However,  the  difference  was  only  significant  when  compared  to  the
Connemara breed, which had the highest mean FCR. Additionally, the Cheviot
breed also  had the  fastest  maturing  lambs in  the  study,  with  80% of  lambs
reaching maturity (>40kg) within the first 42 days of the study, with a mean LW
of 47.1kg. Among the SB strains the Perth had the lowest FCR. No differences in
FCR and ADG between the Cheviot, Lanark and Perth were found. Although this
is the first study to compare FCR and ADG between these mountain/hill sheep
breeds, the findings are in line with a previous study that found that metabolic
differences between six British sheep breeds (i.e. SB, Welsh Mountain, Cheviot,
Suffolk Down, Kent, and Hampshire Down) were mostly similar (Blaxter et al.,
1966). However, when subjected to environmental  stresses such as wind and
rain, differences were apparent, with the SB found to more stress-tolerant than
the Cheviot (Blaxter et al., 1966). 
Metagenomic studies investigating host genetic effects on the rumen microbiota
have to date been performed using original rumen digesta (Paz et al., 2016;Li et
al.,  2019a),  which  comprises  both the liquid  and solid  ruminal  fractions.  The
purpose of this study was to investigate the influence of sheep breed on bacteria
associated  with  each  of  the  three  fractions  independently.  Our  findings
demonstrate that breed contributed to significant variations in alpha diversity
(i.e. observed ASV’s and PD) in the solid, but not in the liquid, ruminal fraction. In
the solid fraction the Cheviot breed harbored a bacterial community that was
less rich and more phylogenetically related than those of the Scottish Blackface
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strains, which was significant when compared to the Lanark breed. Previously,
lower rumen microbial alpha diversity and richness were linked to higher feed
efficiency  in  cattle  (Shabat  et  al.,  2016).  An  efficient  rumen  microbiome  is
considered to be less diverse and more specialised in metabolizing feed and
delivering energy  to  the  host  (Shabat  et  al.,  2016),  which  could  be  a  factor
influencing the greater FCR observed for the Cheviot breed in the current study.
Our beta diversity analysis showed that bacterial communities associated with
the liquid and solid fractions were not affected by breed,  suggesting a large
overlap  of  community  representatives  among  breeds.  Taken  together  our
findings on bacteria diversity and composition contrast with an analogous study
conducted in cattle  (Li  et  al.,  2019a).  Li  et  al.  (2019) reported no significant
differences in alpha diversity among three breeds of cattle; while PcoA based on
Bray Curtis distances revealed that the Kinsella Hybrid breed exhibited a distinct
bacteria community composition to that of the Angus and Charlaois breeds used
in the study (Li et al., 2019a). Conversely, an earlier study in cattle found both
alpha and beta diversities differing between Holstein and Jersey cows (Paz et al.,
2016). Variations in community composition and diversity may be attributed to
differences of animal model,  management practice,  diet,  environment, age or
analytical  approaches  used.  We consider that  a combination of  these factors
might  explain  differences  between  the  current  study  and  those  studies
mentioned. Although no major differences in bacteria community composition
were observed, the abundance of several taxonomic groups were affected by
breed in the solid ruminal  fraction:  Sharpea  at the genus level,  and  Sharpea
azabuensis and an unclassified ASV belonging to the family Lachnospiraceae at
the  species  level.  The  Perth  breed  exhibited  highest  abundance  of  Sharpea
azabuensis  which was significant in comparison to the Cheviot breed.  Sharpea
azabuensis is a strictly anaerobic gram-positive bacterium that can metabolise a
variety  of  sugars  including  D-glucose,  D-fructose,  D-galactose  and  sucrose
producing lactate  as  the primary  end product  (Kumar et  al.,  2018).  Previous
studies  investigating  the  rumen  microbiota  of  sheep  divergent  for  methane
emissions have reported an enrichment of Sharpea azabuensis in lower methane
emitting cohorts (Kittelmann et al., 2014;Kamke et al.,  2016). As a result, we
suspect that the greater abundance of  Sharpea azabuensis in the Perth breed
may be suggestive of lower methane production, however, due to the lack of
methane emissions data recorded in this study, this should be considered with
caution.  Acetitomaculum was identified as a dominant  bacterial  genus in  the
liquid ruminal fraction, with a mean relative abundance of 3.5%. Its abundance
was found to be negatively correlated with FCR, indicating a potential  role in
enhancing host feed efficiency. Indeed, the abundance of an unclassified ASV
within the genus (ASV44) was found to be higher in feed efficient Cheviots, which
was significant when compared to the Connemara breed.  Acetitomaculum has
one known species A. ruminis, an acetogenic bacterium capable of heterotrophic
and  autotrophic  growth  (Le  Van  et  al.,  1998).  It  possible  that  its  higher
abundance may be contributing to Cheviot feed efficiency by shifting H2 away
from methanogenesis and towards acetogenesis,  reducing dietary energy loss
(Karekar  et  al.,  2022).  Alternatively,  Acetitomaculum may  be  contributing  to
Cheviots  improved  FCR  through  metabolic  pathways  other  than  reductive
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acetogenesis  due  to  the  organism’s  ability  to  metabolise  a  wide  range  of
substrates and its inability to compete with methanogens for H2, especially at
low H2 concentrations (Le Van et al., 1998). 
Bacteria associated with the rumen epithelium maintain close interactions with
the host and have been shown to correlate with ruminal epithelial tissue gene
expression (Chen et al., 2012;Liu et al., 2021), suggesting that host genetics may
influence  this  bacterial  population  more  than  those  in  the  solid  and  liquid
fractions. In the current study, sheep breed was found to significantly contribute
to differences in the alpha diversity (i.e. observed ASVs and inverse Simpson),
but not beta diversity of the epithelial-associated bacterial  community. In the
context of  alpha diversity,  the Cheviot breed harbored the fewest  number of
observable  ASVs,  while  the  Connemara  harbored  the  most.  Moreover,  when
compared  to  Connemara  and  Perth,  the  Cheviot  and  Lanark  breeds  had  a
significantly  higher  mean  inverse  Simpson  index.  This  finding  suggests  that,
while  epithelial  community  richness  was  lowest  for  the  Cheviot  breed,  the
community was more uniformly distributed with respect to species abundance
than those of the Connemara and Perth breeds. Firmicutes, Bacteroidetes, and
Proteobacteria were the most predominant bacterial phyla, which is consistent
with  previous  studies  exploring  epithelial  bacterial  communities  in  cattle
(Wetzels  et  al.,  2017;Anderson  et  al.,  2021). ASV24  classified  to  the  genus
Succiniclasticum was shown to be more abundant in the epithelia of the Cheviot,
Lanark,  and  Perth  breeds  when  compared  to  the  Connemara  breed.
Succiniclasticum is  a  gram-negative  rod-shaped  anaerobe  that  ferments
succinate  and  converts  it  to  propionate  (Van  Gylswyk,  1995),  an  important
precursor  of  glucose  in  the  rumen  (Elliot,  1980).  The  higher  abundance  of
Succiniclasticum in those breeds may have contributed to their enhanced FCR
compared to the Connemara breed by supplying enough extra propionate to
boost  gluconeogenesis,  which  is  important  for  animal  growth  and production
(Young, 1977). The abundance of Ruminococcus 1 was significantly higher in the
Perth and Connemara breeds relative to the Cheviot breed.  Ruminococcus spp.
Are  core  members  of  the  rumen  microbiome  (Wirth  et  al.,  2018),  and  its
association with the rumen epithelial could indicate that its abundance is under
host genetic regulation. Indeed, previous research carried out by Li et al (2019)
showed Ruminococcus was heritable in cattle (h2 = 0.16 ± 0.08; mean ± SE), and
variations  in  its  abundance  were  associated  with  a  single  nucleotide
polymorphism (SNP) in the RAPH1 gene(Li et al., 2019b). The genus comprises
some of the most proficient and best described cellulolytic degraders, including
R. albus and R. flavefacians (Yeoman et al., 2021). Consequently, it is probable
that  the  Connemara  and  Perth  breed  are  genetically  selecting  for  a  higher
abundance of Ruminococcus, which may have allowed these SB breeds to evolve
into successful mountain sheep able to thrive in poor grazing areas with low-
energy vegetation.
Bacterial community profiles can differ across ruminal fractions in both bovine
and ovine ruminants (Li et al., 2020;Ren et al., 2020). Therefore, we investigated
the  influence  of  ruminal  fraction  on  bacterial  populations  in  the  Cheviot,
Connemara,  and  Perth  breeds  individually.  Our  findings  show  that  ruminal
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fraction had no effect of alpha diversity measures in the Cheviot breed. However,
in the Lanark breed the liquid fraction exhibited a significantly lower Shannon
diversity, while in the Perth breed the epithelial fraction exhibited a significantly
higher  community  richness  and  PD  when  compared  to  the  other  fractions,
respectively. It is widely reported in the literature that the bacterial community
composition  of  the  epithelial  fraction  is  distinct  from  those  communities
associated with rumen content (Cammack et al., 2018;Li et al., 2020;Ren et al.,
2020). In contrast  to prior studies16,18,  our beta diversity analysis revealed no
significant differences in community composition across ruminal fractions for any
of the breeds studied. The reason for this finding is unclear, though it could be
related  to  variations  in  dietary  management  between  studies  (Petri  et  al.,
2013;Zhang et al.,  2017a;Zhang et al.,  2017b). While no major compositional
differences were seen in this study, ruminal fraction had a significant impact on
the abundance of taxa commonly associated with the rumen epithelium, with the
majority of differences occurring between the epithelial and solid fractions in all
breeds. When considering the Lanark and Cheviot breeds, several taxa within the
order  Clostridiales (Family  XII,  Butyrivibrio  2,  Mogibacterium  and
Lachnospiraceae UCG-008)  were significantly  more abundant  in  the epithelial
ruminal fraction. Clostridiales are obligate anaerobes that have previously been
discovered to interact with the rumen epithelium (Chen et al., 2011;Tan et al.,
2021) and reported to be key components of its core microbiota (Petri  et al.,
2013).  In  addition  to  Clostridiales,  Campylobacter was  also  found  to  be
significantly abundant in the epithelial fraction of the Cheviot and Lanark breeds.
Campylobacter is  an  asaccharolytic  microaerophilic  bacterium  that  has
frequently been identified as associating with the rumen epithelium (Schären et
al.,  2017;Ren et al.,  2020;Pacífico et  al.,  2021),  and its  capacity  to  consume
oxygen  demonstrates  its  functional  significance  in  maintaining  the  rumen’s
anaerobic environment (Mann et al., 2018).
Archaea  are  the  sole  producers  of  methane  within  the  rumen,  which  is  an
important homeostatic process that regulates the partial pressure of hydrogen
(Moss et al., 2000). However, methanogenesis is estimated to result in a 2-12%
loss in feed efficiency to the host  (Johnson and Johnson, 1995),  and is further
supported  by  research  that  has  revealed  associations  between  ruminant
methane emissions and host feed efficiency (Alemu et al., 2017). Moreover, the
abundance  of  methanogenic  archaea  in  the  rumen  has  been  linked  to  both
methane  emissions  (Wallace  et  al.,  2015) and  feed  efficiency  (Zhou  and
Hernandez-Sanabria, 2010). To date, research in cattle has shown that archaea
taxonomic abundances vary between breeds of cattle (Li et al., 2019a) and some
archaeal species have been found to be heritable (Goodrich et al., 2016;Li et al.,
2019b), signalling a potential host genetic effect on the community. Therefore, in
the present study we explored the effect of sheep breed on archaeal populations
associated with the solid, liquid and epithelial fractions. Alpha diversity analysis
showed that breed had a significant effect on the richness of the solid and liquid
associated  communities,  whereby  the  Cheviot  breed  exhibited  the  lowest
community  richness.  Beta  diversity  analysis  revealed  no  significant  effect  of
breed on community  composition,  suggesting the presence of  a  shared  core
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archaea  community  among  breeds.  Similarly,  differential  abundance  analysis
revealed  no  overall  influence  of  breed  on  taxonomic  abundances;  however,
pairwise  comparison  between  breeds  shows  that  the  genus  Candidatus
Methanomethylophilus was  significantly  more  abundant  in  Perth  and  Lanark
breeds compared to the Cheviot breed in the solid ruminal fraction. Furthermore,
results from our correlation analysis showed  Methanosphaera and  Candidatus
Methanomethylophilus associated with improved ADG and feed efficiency in the
epithelial  and  liquid  ruminal  fractions,  respectively.  Candidatus
Methanomethylophilus is  a  H2-dependent  methylotrophic  methanogen,  which
derives its energy from the metabolism of methanol and methylaimines (Borrel
et  al.,  2012;Noel  et  al.,  2016).  In  our  previous study with sheep,  Candidatus
Methanomethylophilus was  identified  in  both  the  solid  and  liquid  ruminal
fractions, but significant correlation was not observed between its abundance
and  FCR  (McLoughlin  et  al.,  2020).  In  contrast,  Li  et  al.  (2019)  found  the
abundance  of  Candidatus  Methanomethylophilus significantly  higher  in  H-RFI
Charlois steers when compared to L-RFI counterparts, however, similar findings
were not observed in the Angus or Hybrid Kinsella breeds used in that same
study(Li  et  al.,  2019a).  Furthermore,  Methanosphaera and  Candidatus
Methanomethylophilus have previously been linked to lower methane emitting in
sheep  and  cattle   (Kittelmann  et  al.,  2014;Martínez-Álvaro  et  al.,  2020),
respectively. However, given the complexity of methane synthesis in the rumen,
associating higher or lower methane production to individual taxonomic groups
may be unrealistic (Greening et al., 2019;Ghanbari Maman et al., 2020).
The results in the current study further support findings in the literature that
breed/host genetics can influence the microbial community structure within the
rumen. This could have applications for breeding programs, where microbiomes
that are better at utilizing feed and producing less methane could potentially be
selected  for  (Difford  et  al.,  2018;Gonzalez-Recio  et  al.,  2018).  However,  the
heritability of rumen microbiome composition across generations needs further
investigation  in  livestock  ruminants,  including  with  microbiome  transplant
experiments.  Because of the functional  redundancy of the rumen microbiome
(Weimer,  2015),  where  phylogenetically  distant  microbes  may  have  identical
metabolic capabilities,  taxonomic differences observed between breeds in the
current study may not necessarily reflect functional divergence. Future research
would  benefit  from  coupling  microbial  community  composition  with  rumen
chemistry,  in  addition  to  multi-omics  approaches  (i.e
meta-genomics/transcriptomics),  which  would  give  a  better  indication  of  the
rumen microbiota's varied metabolic capacity between sheep breeds.

Conclusions
In  summary,  we  demonstrate  that  the  breed of  sheep  has  an  effect  on  the
bacterial and archaea taxonomic abundance within the rumen, which can have
significant  implications  for  improving  feed  efficiency  and  reducing  methane
emissions. However, further research is required to determine if the taxonomic
differences  observed  signifies  functional  variation  between  the  breeds.
Furthermore,  we  observed  differences  in  the  distribution  of  bacterial  taxa
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between  ruminal  fractions,  which  supports  previous  studies  and  highlights  a
rumen fraction bias which may have application for rumen sampling strategies.
Finally,  due to the limited power of the study we urge reader to not to over
interpret the results.

Figures

Figure 3.1: Stack barchart representing the mean relative abundance of the 5
most dominant phyla across breeds (i.e Cheviot, Connemara, Lanark, Perth) for
solid liquid and epithelial ruminal fractions. Solid (Cheviot n=8, Connemara n=5,
Lanark n=9, Perth n=7), liquid (Cheviot n=9, Connemara n=5, Lanark n=9, Perth
n=5), epithelial (Cheviot n=9, Connemara n=3, Lanark n=6, Perth n=8)
 

Figure 3.2: Stack barchart representing the mean relative abundance of the 10
most dominant genera across breeds (i.e Cheviot, Connemara, Lanark, Perth) for
solid liquid and epithelial ruminal fractions. Solid (Cheviot n=8, Connemara n=5,
Lanark n=9, Perth n=7), liquid (Cheviot n=9, Connemara n=5, Lanark n=9, Perth
n=5), epithelial (Cheviot n=9, Connemara n=3, Lanark n=6, Perth n=8)
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Figure 3.3: Stack barchart representing the mean relative abundance of the 5
most dominant phyla across ruminal fractions (i.e solid, liquid and epithelial) for
Cheviot, Lanark and Perth breeds. Cheviot (solid n=7, liquid n=5, epithelial n=5),
Lanark  (solid  n=7,  liquid  n=5,  epithelial  n=5),  Perth  (solid  n=7,  liquid  n=5,
epithelial n=5)

Figure 3.4: Stack barchart representing the mean relative abundance of the 10
most  dominant  bacterial  genera across  ruminal  fractions  (i.e  solid,  liquid and
epithelial) for Cheviot, Lanark and Perth breeds. Cheviot (solid n=7, liquid n=5,
epithelial n=5), Lanark (solid n=7, liquid n=5, epithelial  n=5), Perth (solid n=7,
liquid n=5, epithelial n=5)
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Tables
Table  3.1:  Ingredient  and  chemical  composition  of  concentrate  and  silage
offered to lambs

Concentrate Sila
ge

Ingredient (kg/tonne) 
Maize 30

0
-

Barley 30
0

-

Soya hulls  16
5

-

Soya bean meal 15
5

-

Molasses 50 -
Minerals 30 -

Chemical Composition
DM, g/kg 85

0
255

DMD - 740
Composition of DM, g/kg

CP 17
2

133

NDF 27
8

642

ADF 14
5

364

Ash 62 100
DMD=Dry matter digestibility

Table 3.2: Animal production traits for Cheviot, Connemara, Lanark, and Perth.
Mean±Sd, ANOVA P value and Tukey HSD pairwise comparisons (superscripts)
presented in table. ADG (Average Daily Gain), DMI (Dry Matter Intake) FCR (Feed
Conversion Ratio) LW (Live Weight) CW (Carcass Weight) LW Gain (Live Weight
Gain) and kill out percentage (KO%).  

Cheviot
mean±s
d

Connemar
a
mean±sd

Lanark
mean±sd

Perth
mean±sd

Anova 
Pvalue

Overall
mean±s
d

ADG (Kg/d) 0.3±0.0
6a

0.2±0.06b 0.3±0.08ab 0.3±0.05a 0.005 0.27±0.
1

DMI (Kg/d) 1.151±0
.21

1.125±0.1
6

1.090±0.1
7

1.086±0.1
7

0.843 1.113±0
.18

FCR (DMI/ADG) 3.7±0.5
4b

5.1±1.46a 4.1±0.95ab 3.8±0.75ab 0.035 4.04±0.
1

LW (Kg) 47.1±3.
37

45.6±2.84 44.5±1.47 46.8±3.17 0.161 46.0±2.
9

CW (Kg) 21.3±1.
73a

20.2±0.65a
b

19.4±0.88
b

19.9±1.86
ab

0.040 20.2±1.
6

LW Gain (Kg) 15.1±4.
19

14.3±6.35 14.5±5.16 16.4±4.47 0.717 15.2±4.
8

Start weight 
(Kg)

31.6±3.
88a

29.2±3.19a
b

27.7±2.28
b

29.3±4.10
ab

0.036 29.6±3.
7

KO% 45.4±2.
19

44.5±2.82 43.7±1.88 42.7±1.79 0.072 44.1±2.
3
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Table  3.3:  Alpha  diversity  analysis.  Measures  of  alpha  diversity  (Shannon,
Simpson, Phylogenetic diversity and Observed ASV) for bacterial and archaeal
communities, Mean±Sd. Effect of breed on alpha diversity measures tested using
two way ANOVA. Solid (Cheviot n=8, Connemara n=5, Lanark n=9, Perth n=7),
liquid (Cheviot n=9, Connemara n=5, Lanark n=9, Perth n=5), epithelial (Cheviot
n=9, Connemara n=3, Lanark n=6, Perth n=8)

Bacteria community alpha diversity
Cheviot
Mean±Sd

Connemar
a
Mean±Sd

Lanark
Mean±Sd

Perth
Mean±Sd

Anov
a, 
Pval
ue

Solid Fraction
Shannon 4.1±0.27 3.9±0.24 4.2±0.20 4.2±0.27 0.202
InvSimpso
n

31.0±8.75 20.0±6.06 31.9±7.02 32.8±9.27 0.054

PD 48.3±5.15
b

54.3±4.45a
b

57.9±6.97a 52.5±7.10a
b

0.036

Observed 
ASV

255.0±41.
5b

300.6±33.
73ab

334.9±55.
69a

291.6±55.
98ab

0.028

Liquid fraction
Shannon 3.9±0.27 3.9±0.26 4.1±0.21 3.9±0.39 0.579
InvSimpso
n

23.2±8.12 21.2±7.71 28.1±6.21 22.7±13.0
5

0.464

PD 53.4±7.68 52.6±6.85 59.9±6.81 52.4±7.42 0.164
Observed 
ASV

284.4±57.
44

297.0±49.
15

338.7±57.
30

287.4±51.
21

0.157

Epithelial fraction
Shannon 4.3±0.19 4.1±0.23 4.3±0.28 4.1±0.20 0.083
InvSimpso
n

33.5±7.70
a

17.7±2.18b 34.9±12.6
8a

19.6±5.52b 0.001

PD 56.3±3.53 65.8±10.3
7

60.2±6.19 63.0±4.83 0.055

Observed 
ASV

313.7±33.
08b

417.7±92.
50a

340.0±51.
15ab

396.1±48.
58ab

0.032

Archaea community alpha diversity
Cheviot
Mean±Sd

Connemar
a
Mean±Sd

Lanark
Mean±Sd

Perth
Mean±Sd

Anov
a, 
Pval
ue

Solid fraction
Shannon 1.1±0.25 1.1±0.41 1.3±0.38 1.3±0.25 0.389
InvSimpso
n

2.4±0.52 2.5±1.05 3.1±0.98 3.0±0.70 0.392

PD 1.6±0.05 1.6±0.10 1.7±0.13 1.7±0.15 0.129
Observed 
ASV

5.9±1.13b 7.2±1.10ab 9.3±2.50a 8.9±2.27a 0.001

Liquid fraction
Shannon 1.1±0.30 1.0±0.38 1.2±0.46 1.2±0.36 0.636
InvSimpso
n

2.5±0.74 2.1±0.82 2.9±1.19 3.1±1.04 0.377

PD 1.6±0.07 1.3±0.55 1.7±0.12 1.6±0.07 0.085
Observed 
ASV

6.2±1.39b 7.2±2.49ab 9.4±2.30a 7.0±1.22ab 0.016

Epithelial fraction
Shannon 1.2±0.35 1.2±0.29 1.3±0.31 1.4±0.30 0.785
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InvSimpso
n

2.9±1.27 2.3±0.48 2.7±0.99 3.2±1.04 0.627

PD 1.6±0.06 1.7±0.14 1.7±0.15 1.7±0.18 0.157
Observed 
ASV

7.1±2.47 9.3±3.51 9.2±1.83 9.4±1.92 0.170

Table 3.4:  Beta diversity analysis.  Effect of  breed on bacterial  and archaeal
community  composition  in  solid,  liquid  and  epithelial  ruminal  fractions.
Community  dissimilarities  calculated  using  weighted  and  unweighted  UniFrac
distances and compared among breeds using PERMANOVA, with P values and R2
values reported.  Solid (Cheviot n=8, Connemara n=5, Lanark n=9, Perth n=7),
liquid (Cheviot n=9, Connemara n=5, Lanark n=9, Perth n=5), epithelial (Cheviot
n=9, Connemara n=3, Lanark n=6, Perth n=8)

Weighted 
UniFrac

Unweighted 
UniFrac

Fracti
on

PERMAN
OVA 
P value

R2 PERMAN
OVA 
P value

R2

Bacteria
Solid 0.57 0.1

0
0.24 0.1

1
Liquid 0.59 0.1

0
0.27 0.1

2
Epitheli
al

0.47 0.1
2

0.09 0.1
4

Archaea
Solid 0.72 0.0

8
0.45 0.1

1
Liquid 0.75 0.0

7
0.15 0.1

7
Epitheli
al

0.57 0.1
0

0.19 0.1
6

Table 3.5: Differential abundance analysis investigating the effect of breed on
the abundance bacterial and archaeal taxa in solid, liquid and epithelial ruminal
fractions.  Analysis  was  conducted  across  all  taxonomic  ranks  for  bacterial
populations (Phylum, Class, Order, Family, Genus and ASV), and lower taxonomic
ranks for archaeal populations (Genus and ASV) using the LRT and Wald’s test
from  DESeq2.  Table  reports  significant  findings  along  with  the  log10  of
normalised  counts  (Mean±Sd),  BH  adjusted  P  values,  pairwise  comparisons
(superscripts), taxonomic rank and classification. Solid (Cheviot n=8, Connemara
n=5, Lanark n=9, Perth n=7), liquid (Cheviot n=9, Connemara n=5, Lanark n=9,
Perth n=5), epithelial (Cheviot n=9, Connemara n=3, Lanark n=6, Perth n=8)

Rank Classification Cheviot
Mean±Sd

Connem
ara
Mean±Sd

Lanark
Mean±Sd

Perth
Mean±S
d

P.ad
j

Solid fraction
ASV55 Genu

s
Sharpea 1.37±0.35b 1.90±0.7

1ab
1.55±0.8
4ab

2.28±0.
51a

0.00
9

ASV55 ASV Sharpea 
azabuensis

1.34±0.34b 1.93±0.7
3ab

1.58±0.8
7ab

2.24±0.
51a

0.02
3

ASV37 ASV F_Lachnospiracea
e

2.22±0.46a 2.40±0.4
9ab

1.92±0.5
0b

2.60±0.
53a

0.02
4

Epithelial fraction
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ASV24
7

Famil
y

Family XIII 2.84±0.22b 3.03±0.1
7ab

3.33±0.2
8a

2.95±0.
18b

<0.0
01

ASV37
9

ASV F_Family XIII 1.15±0.39a
b

1.44±0.1
9ab

2.02±0.4
7a

1.05±0.
43b

0.00
5

Table 3.6: Differential abundance analysis investigating the pairwise differences
in bacterial and archaeal abundances between each of the breeds (i.e Cheviot,
Connemara,  Lanark and Perth) in solid,  liquid and epithelial  ruminal fractions.
Analysis  was  conducted  across  all  taxonomic  ranks  for  bacterial  populations
(Phylum, Class, Order, Family, Genus and ASV), and lower taxonomic ranks for
archaeal  populations  (Genus  and  ASV)  using  the  Wald’s  pairwise  test  from
DESeq2. Table reports the log10 of normalised counts (Mean±Sd), BH adjusted P
values, Log2 fold change, taxonomic rank and classification, breeds compared
and the breed the abundance was increased in for significant findings.  Solid
(Cheviot  n=8, Connemara  n=5, Lanark  n=9, Perth  n=7), liquid (Cheviot  n=9,
Connemara  n=5, Lanark  n=9, Perth  n=5), epithelial (Cheviot  n=9, Connemara
n=3, Lanark n=6, Perth n=8)

Kingdo
m

Classification Rank Log2F
C

P.ad
j

Comparison Higher In

Solid
ASV27 Bacteri

a
Coriobacteriales Order 1.17 0.04

1
Perth v Lanark Lanark

ASV17 Bacteri
a

p-2534-18B5_gut_group 
(Bacteroidetes)

Famil
y

5.88 0.00
7

Perth v 
Cheviot

Perth

ASV17 Bacteri
a

p-2534-18B5_gut_group 
(Bacteroidetes)

Famil
y

6.80 0.00
7

Lanark v 
Cheviot

Lanark

ASV31
7

Bacteri
a

Saccharimonadaceae Famil
y

5.48 0.00
7

Lanark v 
Cheviot

Lanark

ASV31
7

Bacteri
a

Saccharimonadaceae Famil
y

6.89 0.02
3

Conn. v 
Cheviot

Connemara

ASV17 Bacteri
a

F_p-2534-18B5_gut_group 
(Bacteroidetes)

Genu
s

5.78 0.01
2

Perth v 
Cheviot

Perth

ASV17 Bacteri
a

F_p-2534-18B5_gut_group 
(Bacteroidetes)

Genu
s

6.82 0.01
4

Lanark v 
Cheviot

Lanark

ASV55 Bacteri
a

Sharpea Genu
s

4.37 0.00
0

Perth v 
Cheviot

Perth

ASV31
7

Bacteri
a

Candidatus_Saccharimonas Genu
s

5.66 0.01
4

Lanark v 
Cheviot

Lanark

ASV37 Bacteri
a

F_Lachnospiraceae ASV 3.22 0.01
0

Lanark v 
Cheviot

Cheviot

ASV48 Bacteri
a

G_Prevotella 9 ASV 9.11 0.01
0

Lanark v 
Cheviot

Lanark

ASV48 Bacteri
a

G_Prevotella 9 ASV 7.88 0.00
9

Perth v Lanark Lanark

ASV37 Bacteri
a

F_Lachnospiraceae ASV 3.38 0.00
0

Perth v Lanark Perth

ASV55 Bacteri
a

Sharpea azabuensis ASV 4.58 0.00
0

Perth v 
Cheviot

Perth

ASV32
9

Bacteri
a

G_Pyramidobacter ASV 5.52 0.01
8

Lanark v 
Cheviot

Lanark

ASV33
7

Archae
a

G_Candidatus 
Methanomethylophilus

ASV 3.21 0.02
3

Lanark v 
Cheviot

Lanark

ASV33
7

Archae
a

G_Candidatus 
Methanomethylophilus

ASV 3.12 0.00
6

Perth v 
Cheviot

Perth

Liquid
ASV2 Bacteri

a
Proteobacteria Phylu

m
2.62 0.01

7
Perth v Conn. Perth

ASV22 Bacteri Alphaproteobacteria Class 7.11 0.00 Perth v Cheviot
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3 a 2 Cheviot
ASV22
3

Bacteri
a

Alphaproteobacteria Class 7.52 0.01
2

Conn. v 
Cheviot

Cheviot

ASV22
3

Bacteri
a

Rhodospirillales Order 6.93 0.00
5

Perth v 
Cheviot

Cheviot

ASV22
3

Bacteri
a

Rhodospirillales Order 7.29 0.02
4

Conn. v 
Cheviot

Cheviot

ASV21
9

Bacteri
a

Betaproteobacteriales Order 3.03 0.04
5

Conn. v 
Cheviot

Cheviot

ASV22
3

Bacteri
a

O_Rhodospirillales Famil
y

7.11 0.02
1

Conn. v 
Cheviot

Cheviot

ASV22
3

Bacteri
a

O_Rhodospirillales Famil
y

6.81 0.00
3

Perth v 
Cheviot

Cheviot

ASV17 Bacteri
a

p-2534-18B5_gut_group 
(Bacteroidetes)

Famil
y

4.75 0.04
7

Perth v 
Cheviot

Perth

ASV17 Bacteri
a

p-2534-18B5_gut_group 
(Bacteroidetes)

Famil
y

5.87 0.01
9

Lanark v 
Cheviot

Lanark

ASV23 Bacteri
a

Muribaculaceae Famil
y

2.23 0.01
5

Perth v 
Cheviot

Cheviot

ASV46
1

Bacteri
a

O_Clostridiales vadinBB60_group Famil
y

5.82 0.04
9

Conn. v 
Cheviot

Cheviot

ASV46
1

Bacteri
a

O_Clostridiales vadinBB60_group Famil
y

6.09 0.00
4

Lanark v 
Conn.

Lanark

ASV55 Bacteri
a

Sharpea Genu
s

5.05 0.00
3

Perth v 
Cheviot

Perth

ASV22
3

Bacteri
a

O_Rhodospirillales Genu
s

7.03 0.00
5

Perth v 
Cheviot

Cheviot

ASV46
1

Bacteri
a

O_Clostridiales vadinBB60_group Genu
s

5.86 0.01
3

Lanark v 
Conn.

Lanark

ASV20 Bacteri
a

F_Lachnospiraceae NK3A20 group ASV 3.06 0.04
9

Lanark v 
Conn.

Lanark

ASV23 Bacteri
a

F_Muribaculaceae ASV 5.94 0.00
2

Perth v 
Cheviot

Cheviot

ASV43 Bacteri
a

F_Muribaculaceae ASV 2.51 0.02
3

Perth v 
Cheviot

Cheviot

ASV44 Bacteri
a

G_Acetitomaculum ASV 10.26 0.03
4

Conn. v 
Cheviot

Cheviot

ASV55 Bacteri
a

Sharpea azabuensis ASV 4.81 0.00
6

Perth v 
Cheviot

Perth

Epithelial
ASV38 Bacteri

a
Atopobiaceae Famil

y
1.96 0.01

4
Perth v Lanark Lanark

ASV16
2

Bacteri
a

Synergistaceae Famil
y

2.19 0.01
8

Lanark v 
Cheviot

Lanark

ASV24
7

Bacteri
a

Family XIII Famil
y

1.41 0.00
0

Lanark v 
Cheviot

Lanark

ASV24
7

Bacteri
a

Family XIII Famil
y

1.13 0.00
8

Perth v Lanark Lanark

ASV55 Bacteri
a

Sharpea Genu
s

3.13 0.02
8

Perth v 
Cheviot

Perth

ASV69 Bacteri
a

F_Ruminococcaceae UCG-014 Genu
s

2.77 0.04
9

Lanark v 
Cheviot

Cheviot

ASV36
1

Bacteri
a

F_Family_XIII AD3011_group Genu
s

2.28 0.00
6

Lanark v 
Cheviot

Lanark

ASV40
6

Bacteri
a

F_Family XIII UCG-001 Genu
s

3.10 0.04
9

Lanark v 
Cheviot

Cheviot

ASV24 Bacteri
a

G_Succiniclasticum ASV 24.14 0.00
0

Conn. v 
Cheviot

Cheviot

ASV24 Bacteri
a

G_Succiniclasticum ASV 23.67 0.00
0

Lanark v 
Conn.

Lanark

ASV24 Bacteri
a

G_Succiniclasticum ASV 25.98 0.00
0

Perth v Conn. Perth

ASV33 Bacteri
a

G_Ruminococcus 1 ASV 7.80 0.00
5

Conn. v 
Cheviot

Connemara
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ASV33 Bacteri
a

G_Ruminococcus 1 ASV 4.81 0.02
3

Perth v 
Cheviot

Perth

ASV37 Bacteri
a

F_Lachnospiraceae ASV 2.72 0.04
6

Perth v Lanark Perth

ASV74 Bacteri
a

G_Syntrophococcus ASV 5.42 0.04
9

Lanark v 
Conn.

Lanark

ASV11
8

Bacteri
a

G_Ruminococcus 1 ASV 5.52 0.04
6

Perth v Lanark Perth

ASV12
3

Bacteri
a

G_Prevotella 1 ASV 7.85 0.00
6

Lanark v 
Conn.

Connemara

ASV37
9

Bacteri
a

F_Family_XIII ASV 2.88 0.01
9

Perth v Lanark Lanark

ASV63
3

Bacteri
a

F_Ruminococcaceae UCG-010 ASV 4.00 0.04
6

Perth v Lanark Perth

Table  3.7:  Alpha  diversity  analysis.  Measures  of  alpha  diversity  (Shannon,
Inverse Simpson,  Phylogenetic  diversity  and Observed ASV)  for  bacterial  and
archaeal communities, reported as Mean±Sd. Effect of breed on alpha diversity
tested  using  2  way  ANOVA.  Cheviot  (solid  n=7,  liquid  n=7,  epithelial  n=7),
Lanark  (solid  n=5,  liquid  n=5,  epithelial  n=5),  Perth  (solid  n=5,  liquid  n=5,
epithelial n=5)

Bacteria community alpha diversity
 Epithelial

Mean±Sd
Liquid
Mean±Sd

Solid
Mean±Sd

Anov
a,
Pval
ue

Cheviot
Shannon 4.2±0.20 4.0±0.28 4.1±0.18 0.118
InvSimpso
n

31.7±6.86 25.0±8.41 33.1±6.78 0.121

PD 55.7±3.01 53.8±8.53 48.7±5.43 0.112
Observed 
ASV

305.4±32.
99

288.1±65.
09

257.4±44.
20

0.21

Lanark
Shannon 4.4±0.16a 4.2±0.16b 4.4±0.13ab 0.037
InvSimpso
n

38.2±10.9
5

29.5±5.97 35.7±4.04 0.174

PD 61.1±6.54 59.6±4.82 59.6±7.59 0.908
Observed 
ASV

344.8±55.
66

341.0±34.
40

354.0±54.
83

0.904

Perth
Shannon 4.1±0.14 3.9±0.39 4.2±0.31 0.476
InvSimpso
n

21.2±5.38 22.7±13.0
5

32.0±10.6
9

0.264

PD 62.1±5.63
a

52.4±7.42
ab

51.5±8.35
b

0.03

Observed 
ASV

362.8±61.
58a

287.4±51.
21b

285.8±65.
14b

0.027

Archaea community alpha diversity
 Epithelial

Mean±Sd
Liquid
Mean±Sd

Solid
Mean±Sd

Anov
a,
Pval
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ue
Cheviot
Shannon 1.2±0.24 1.1±0.30 1.1±0.25 0.752
InvSimpso
n

2.6±0.76 2.5±0.75 2.4±0.53 0.800

PD 1.6±0.06 1.6±0.07 1.5±0.04 0.122
Observed 
ASV

6.4±1.27 6.6±1.27 5.9±1.07 0.517

Lanark
Shannon 1.3±0.31 1.2±0.46 1.3±0.38 0.900
InvSimpso
n

2.7±0.99 2.9±1.19 3.1±0.98 0.847

PD 1.7±0.15 1.7±0.12 1.7±0.13 0.737
Observed 
ASV

9.2±1.83 9.9±2.37 9.3±50 0.818

Perth
Shannon 1.5±0.05 1.2±0.36 1.3±0.30 0.320
InvSimpso
n

3.6±0.50 3.1±1.04 3.1±0.84 0.565

PD 1.8±0.20 1.6±0.07 1.7±0.16 0.534
Observed 
ASV

8.8±2.17 7.0±1.22 8.2±2.17 0.293

Table 3.8:  Beta diversity analysis. Effect of Fraction on bacterial and archaeal
community  composition  for  Cheviot,  Lanark  and  Perth  breeds.  Community
dissimilarities calculated using weighted and unweighted UniFrac distances and
compared among breeds using PERMANOVA.  P values and R2 values reported.
Cheviot (solid  n=7, liquid  n=7, epithelial  n=7), Lanark (solid  n=5, liquid  n=5,
epithelial n=5), Perth (solid n=5, liquid n=5, epithelial n=5)

Weighted 
UniFrac

Unweighted 
UniFrac

Bree
d

PERMAN
OVA
P value

R2 PERMAN
OVA
P value

R2

Bacteria
Chevi
ot

0.49 0.0
9

0.89 0.0
6

Perth 0.68 0.0
9

0.64 0.1
1

Lanar
k

0.8 0.1 0.85 0.0
8

Archaea
Chevi
ot

0.95 0.0
2

0.89 0.0
3

Perth 0.3 0.1
7

0.82 0.0
6

Lanar
k

0.6 0.9 0.83 0.0
6

Table 3.9:  Differential abundance analysis investigating the effect of ruminal
fraction on the abundance bacterial and archaeal taxa in Cheviot, Lanark and
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Perth breeds. Analysis was conducted across all taxonomic ranks for bacterial
populations (Phylum, Class, Order, Family, Genus and ASV), and lower taxonomic
ranks for archaeal  populations (Genus and ASV) using the LRT from DESeq2.
Table  reports  significant  findings  along  with  the  log10  of  normalised  counts
(Mean±Sd),  BH  adjusted  P  values,  pairwise  comparisons  (superscripts).
taxonomic  rank  and  classification.   Cheviot  (solid  n=7,  liquid  n=7,  epithelial
n=7), Lanark (solid n=5, liquid n=5, epithelial n=5), Perth (solid n=5, liquid n=5,
epithelial n=5)

Kingdo
m

Classification Rank P.ad
j

Epithelia
l

Liquid Solid

Chevi
ot
ASV14
1

Bacteri
a

Epsilonbacteraeota Phylu
m

0.00
3

1.72±0.
89a

1.14±0.7
1ab

0.68±0.4
8b

ASV14
1

Bacteri
a

Campylobacteria Class 0.00
2

1.72±0.
89a

1.14±0.7
1ab

0.65±0.4
8b

ASV14
1

Bacteri
a

Campylobacterales Order 0.00
5

1.71±0.
92a

1.11±0.7
0ab

0.67±0.5
0b

ASV21
9

Bacteri
a

Betaproteobacteriales Order 0.02
8

2.32±0.
52a

1.98±0.4
4ab

1.80±0.2
4b

ASV44
9

Bacteri
a

Desulfobacterales Order 0.02
8

1.79±0.
45a

1.19±0.7
1ab

0.84±0.4
5b

ASV14
1

Bacteri
a

Campylobacteraceae Famil
y

0.00
2

1.72±0.
89a

1.12±0.7
1ab

0.64±0.4
8b

ASV19
8

Bacteri
a

O_Coriobacteriales Famil
y

0.00
0

1.50±0.
26b

1.56±0.1
7b

2.03±0.1
3a

ASV21
9

Bacteri
a

Neisseriaceae Famil
y

0.00
0

1.84±0.
60a

1.42±0.5
8b

1.00±0.5
3b

ASV44
9

Bacteri
a

Desulfobulbaceae Famil
y

0.01
4

1.81±0.
49a

1.19±0.7
3ab

0.81±0.4
4b

ASV14
1

Bacteri
a

Campylobacter Genu
s

0.01
1

1.74±0.
97a

1.15±0.7
3ab

0.64±0.5
0b

ASV14
2

Bacteri
a

F_Erysipelotrichaceae 
UCG-004

Genu
s

0.03
0

1.65±0.
75a

1.88±0.8
6b

1.84±0.4
7ab

ASV19
9

Bacteri
a

Mogibacterium Genu
s

0.03
0

1.69±0.
55a

1.38±0.5
2ab

0.94±0.9
2b

ASV25
4

Bacteri
a

Butyrivibrio 2 Genu
s

0.02
2

2.22±0.
62a

1.43±0.7
8ab

0.96±0.6
3b

ASV26
3

Bacteri
a

F_Burkholderiaceae Genu
s

0.02
2

1.52±0.
58a

1.00±0.6
4ab

0.55±0.4
2b

ASV44
9

Bacteri
a

Desulfobulbus Genu
s

0.03
0

1.82±0.
40a

1.22±0.7
5ab

0.80±0.4
3b

Lanar
k
ASV14
1

Bacteri
a

Epsilonbacteraeota Phylu
m

0.00
2

2.94±0.
54a

1.03±0.7
2b

0.57±0.6
1b

ASV14
1

Bacteri
a

Campylobacteria Class 0.00
9

2.36±0.
54a

1.03±0.7
2ab

0.57±0.6
1b

ASV14
1

Bacteri
a

Campylobacterales Order 0.00
3

2.34±0.
58a

1.01±0.6
6b

0.58±0.6
2b

ASV42
1

Bacteri
a

Desulfobacterales Order 0.00
0

2.26±0.
45a

0.84±0.6
1b

0.64±0.4
2b

ASV14
1

Bacteri
a

Campylobacteraceae Famil
y

0.00
3

2.33±0.
58a

1.04±0.6
9b

0.59±0.6
3b

ASV42
1

Bacteri
a

Desulfobulbaceae Famil
y

0.00
0

2.25±0.
42a

0.85±0.6
1b

0.62±0.3
9b

ASV14
1

Bacteri
a

Campylobacter Genu
s

0.00
1

2.41±0.
62a

1.02±0.6
7b

0.53±0.5
6b

ASV21
9

Bacteri
a

F_Neisseriaceae Genu
s

0.01
3

1.70±0.
64a

0.87±0.3
5ab

0.37±0.5
1b

ASV23 Bacteri Butyrivibrio 2 Genu 0.00 2.05±1. 0.79±0.7 0.48±0.5
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ASV39
1

Bacteri
a

Fretibacterium Genu
s

0.00
0

2.02±1.
16a

1.00±0.5
6b

0.40±0.3
9b

ASV40
6

Bacteri
a

Family XIII UCG-001 Genu
s

0.00
0

0.55±0.
54b

0.90±0.5
9ab

1.43±0.4
1a

ASV42
1

Bacteri
a

Desulfobulbus Genu
s

0.00
0

2.33±0.
51a

0.85±0.6
2b

0.59±0.3
8b

ASV52
3

Bacteri
a

F_Eggerthellaceae Genu
s

0.01
2

1.33±0.
20b

1.39±0.1
5ab

1.75±0.1
1a

ASV58
7

Bacteri
a

Shuttleworthia Genu
s

0.01
7

0.69±0.
46b

1.03±0.4
3ab

1.47±0.1
4a

ASV84
6

Bacteri
a

Howardella Genu
s

0.01
8

1.68±0.
13a

0.74±0.7
0ab

0.87±0.2
4b

ASV14
1

Bacteri
a

Campylobacter ASV 0.00
2

2.43±0.
63a

1.01±0.6
5b

0.50±0.5
4b

ASV21
0

Bacteri
a

Mogibacterium ASV 0.02
4

2.28±0.
37a

1.59±0.4
0ab

0.97±0.6
3b

ASV37
9

Bacteri
a

F_Family XIII ASV 0.00
0

2.06±0.
44a

0.82±0.5
3b

0.20±0.2
9b

Perth
ASV12
6

Bacteri
a

Tenericutes Phylu
m

0.01
5

2.33±0.
25b

2.6±0.26a 2.55±0.1
9ab

ASV47
5

Archae
a

F_Methanomethylophilace
ae

Genu
s

0.01
9

1.43±1.
03a

0.52±0.4
8b

0.42±0.4
5b

Table  3.10:  Differential  abundance  analysis  investigating  the  pairwise
differences in bacterial and archaeal abundances between each of the fractions
(i.e solid, liquid and epithelial) in the Cheviot, Lanark and Perth breeds. Analysis
was  conducted  across  all  taxonomic  ranks  for  bacterial  populations  (Phylum,
Class, Order, Family, Genus and ASV), and lower taxonomic ranks for archaeal
populations (Genus and ASV) using the Wald’s pairwise test from DESeq2. Table
reports  significant  findings  along  with  the  log10  of  normalised  counts
(Mean±Sd),  BH  adjusted  P  values,  Log2  fold  change,  taxonomic  rank  and
classification, fractions compared, and the fraction the abundance was increased
in.  Cheviot (solid n=7, liquid n=7, epithelial n=7), Lanark (solid n=5, liquid n=5,
epithelial n=5), Perth (solid n=5, liquid n=5, epithelial n=5)

Kingdo
m

Classification Rank Log2F
C

P.a
dj

Comparison Higher 
in

Chevio
t
ASV141 Bacteri

a
Epsilonbacteraeota Phylu

m
5.42 0.00

0
Solid v 
Epithelial

Epitheli
al

ASV3 Bacteri
a

Firmicutes Phylu
m

0.63 0.02
3

Solid v 
Epithelial

Solid

ASV14 Bacteri
a

Fibrobacter Phylu
m

1.95 0.02
3

Solid v 
Epithelial

Solid

ASV81 Bacteri
a

Spirochaetes Phylu
m

1.97 0.05
0

Solid v 
Epithelial

Solid

ASV141 Bacteri
a

Campylobacteria Class 5.51 0.00
0

Solid v 
Epithelial

Epi

ASV141 Bacteri
a

Campylobacterales Order 5.26 0.00
0

Solid v 
Epithelial

Epi

ASV449 Bacteri
a

Desulfobacterales Order 3.48 0.00
2

Solid v 
Epithelial

Epi

ASV219 Bacteri
a

Betaproteobacteriales Order 2.53 0.00
5

Solid v 
Epithelial

Epi

ASV219 Bacteri Neisseriaceae Famil 3.31 0.00 Liquid v Epi
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a y 2 Epithelial
ASV141 Bacteri

a
Campylobacteraceae Famil

y
5.15 0.00

0
Solid v 
Epithelial

Epi

ASV449 Bacteri
a

Desulfobulbaceae Famil
y

3.74 0.00
1

Solid v 
Epithelial

Epi

ASV219 Bacteri
a

Neisseriaceae Famil
y

3.51 0.00
0

Solid v 
Epithelial

Epi

ASV3 Bacteri
a

Acidaminococcaceae Famil
y

0.98 0.04
2

Solid v 
Epithelial

Solid

ASV198 Bacteri
a

O_Coriobacteriales Famil
y

1.59 0.00
1

Solid v 
Epithelial

Solid

ASV81 Bacteri
a

Spirochaetaceae Famil
y

2.12 0.04
2

Solid v 
Epithelial

Solid

ASV198 Bacteri
a

O_Coriobacteriales Famil
y

1.57 0.00
5

Solid v Liquid Solid

ASV142 Bacteri
a

F_Erysipelotrichaceae UCG-
004

Genu
s

3.50 0.02
5

Liquid v 
Epithelial

Liq

ASV141 Bacteri
a

Campylobacter Genu
s

5.70 0.00
0

Solid v 
Epithelial

Epi

ASV254 Bacteri
a

Butyrivibrio_2 Genu
s

4.16 0.00
1

Solid v 
Epithelial

Epi

ASV263 Bacteri
a

F_Burkholderiaceae Genu
s

4.02 0.00
1

Solid v 
Epithelial

Epi

ASV128 Bacteri
a

F_Lachnospiraceae UCG-008 Genu
s

3.73 0.01
8

Solid v 
Epithelial

Epi

ASV199 Bacteri
a

Mogibacterium Genu
s

3.70 0.00
2

Solid v 
Epithelial

Epi

ASV449 Bacteri
a

Desulfobulbus Genu
s

3.63 0.00
2

Solid v 
Epithelial

Epi

ASV347 Bacteri
a

Family XIII AD3011 group Genu
s

2.56 0.03
2

Solid v 
Epithelial

Epi

ASV141 Bacteri
a

G_Campylobacter ASV 6.15 0.00
1

Solid v 
Epithelial

Epi

ASV263 Bacteri
a

F_Burkholderiaceae ASV 4.32 0.00
6

Solid v 
Epithelial

Epi

Lanark
ASV141 Bacteri

a
Epsilonbacteraeota Phylu

m
4.09 0.02

3
Liquid v 
Epithelial

Epi

ASV141 Bacteri
a

Epsilonbacteraeota Phylu
m

5.88 0.00
0

Solid v 
Epithelial

Epi

ASV41 Bacteri
a

Fibrobacter Phylu
m

1.34 0.03
5

Solid v 
Epithelial

Solid

ASV141 Bacteri
a

Campylobacteria Class 5.68 0.00
1

Solid v 
Epithelial

Epi

ASV421 Bacteri
a

Desulfobacterales Order 4.57 0.00
1

Liquid v 
Epithelial

Epi

ASV141 Bacteri
a

Campylobacterales Order 4.39 0.01
1

Liquid v 
Epithelial

Epi

ASV1 Bacteri
a

Bacteroidales Order 0.63 0.02
1

Liquid v 
Epithelial

Liq

ASV141 Bacteri
a

Campylobacterales Order 5.76 0.00
0

Solid v 
Epithelial

Epi

ASV421 Bacteri
a

Desulfobacterales Order 5.63 0.00
0

Solid v 
Epithelial

Epi

ASV41 Bacteri
a

Fibrobacterales Order 1.55 0.01
1

Solid v 
Epithelial

Solid

ASV421 Bacteri
a

Desulfobulbaceae Famil
y

4.45 0.00
1

Liquid v 
Epithelial

Epi

ASV141 Bacteri
a

Campylobacteraceae Famil
y

4.20 0.02
4

Liquid v 
Epithelial

Epi

ASV141 Bacteri
a

Campylobacteraceae Famil
y

5.77 0.00
0

Solid v 
Epithelial

Epi

ASV421 Bacteri
a

Desulfobulbaceae Famil
y

5.77 0.00
0

Solid v 
Epithelial

Epi
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ASV219 Bacteri
a

Neisseriaceae Famil
y

4.38 0.00
5

Solid v 
Epithelial

Epi

ASV41 Bacteri
a

Fibrobacteraceae Famil
y

1.49 0.01
9

Solid v 
Epithelial

Solid

ASV239 Bacteri
a

Butyrivibrio 2 Genu
s

5.41 0.03
1

Liquid v 
Epithelial

Epi

ASV421 Bacteri
a

Desulfobulbus Genu
s

4.95 0.00
2

Liquid v 
Epithelial

Epi

ASV391 Bacteri
a

Fretibacterium Genu
s

4.78 0.01
4

Liquid v 
Epithelial

Epi

ASV141 Bacteri
a

Campylobacter Genu
s

4.73 0.01
4

Liquid v 
Epithelial

Epi

ASV391 Bacteri
a

Fretibacterium Genu
s

7.48 0.00
0

Solid v 
Epithelial

Epi

ASV239 Bacteri
a

Butyrivibrio 2 Genu
s

7.07 0.00
1

Solid v 
Epithelial

Epi

ASV141 Bacteri
a

Campylobacter Genu
s

6.56 0.00
0

Solid v 
Epithelial

Epi

ASV421 Bacteri
a

Desulfobulbus Genu
s

6.37 0.00
0

Solid v 
Epithelial

Epi

ASV219 Bacteri
a

F_Neisseriaceae Genu
s

5.21 0.00
1

Solid v 
Epithelial

Epi

ASV708 Bacteri
a

Bacteroides Genu
s

3.70 0.02
0

Solid v 
Epithelial

Epi

ASV568 Bacteri
a

Alistipes Genu
s

3.39 0.01
6

Solid v 
Epithelial

Epi

ASV846 Bacteri
a

Howardella Genu
s

2.78 0.01
1

Solid v 
Epithelial

Epi

ASV523 Bacteri
a

F_Eggerthellaceae Genu
s

1.39 0.01
1

Solid v 
Epithelial

Solid

ASV587 Bacteri
a

Shuttleworthia Genu
s

2.49 0.00
5

Solid v 
Epithelial

Solid

ASV406 Bacteri
a

Family XIII UCG-001 Genu
s

3.19 0.00
0

Solid v 
Epithelial

Solid

ASV141 Bacteri
a

G_Campylobacter ASV 5.02 0.01
7

Liquid v 
Epithelial

Epi

ASV379 Bacteri
a

F_Family XIII ASV 4.40 0.01
4

Liquid v 
Epithelial

Epi

ASV379 Bacteri
a

F_Family XIII ASV 7.53 0.00
0

Solid v 
Epithelial

Epi

ASV141 Bacteri
a

G_Campylobacter ASV 6.93 0.00
0

Solid v 
Epithelial

Epi

ASV247 Bacteri
a

F_Family XIII ASV 5.87 0.00
5

Solid v 
Epithelial

Epi

ASV361 Bacteri
a

F_Family XIII AD3011 group ASV 5.72 0.00
4

Solid v 
Epithelial

Epi

ASV210 Bacteri
a

G_Mogibacterium ASV 4.09 0.00
2

Solid v 
Epithelial

Epi

Perth
ASV126 Bacteri

a
Tenericutes Phylu

m
0.97 0.00

3
Liquid v 
Epithelial

Liq

ASV421 Bacteri
a

Desulfobacterales Order 3.73 0.00
7

Solid v 
Epithelial

Epi

ASV102 Bacteri
a

Family XIII Famil
y

1.27 0.05
0

Solid v Liquid Solid

ASV219 Bacteri
a

Neisseriaceae Famil
y

4.24 0.02
7

Solid v 
Epithelial

Epi

ASV391 Bacteri
a

Fretibacterium Genu
s

6.89 0.00
6

Solid v 
Epithelial

Epi

ASV421 Bacteri
a

Desulfobulbus Genu
s

4.25 0.00
6

Solid v 
Epithelial

Epi

ASV276 Bacteri
a

O_Clostridiales ASV 6.27 0.05
0

Solid v 
Epithelial

Epi

ASV128 Bacteri F_Lachnospiraceae UCG-008 ASV 4.63 0.03 Solid v Epi
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a 6 Epithelial

Table 3.11 Spearman's rank correlation of bacterial and archaeal genera in the 
solid, liquid, and epithelial ruminal fractions that had a significant association 
with animal production traits FCR and/or ADG.

Kingdo
m

Classification ρ P 
value

P.adj Trait

Solid
ASV21 Bacteria Succinivibrionaceae -

0.41
0.025 0.707 FCR

ASV71 Bacteria Syntrophococcus -
0.38

0.037 0.707 FCR

ASV149 Bacteria Lachnospira -
0.39

0.033 0.707 FCR

ASV9 Bacteria O_Gastranaerophilales -
0.41

0.026 0.707 FCR

ASV16 Bacteria F_Lachnospiraceae NK3A20 group -
0.38

0.038 0.913 ADG

ASV366 Bacteria F_Ruminococcaceae UCG-013 0.38 0.040 0.913 ADG
Liquid
ASV9 Bacteria O_Gastranaerophilales -

0.44
0.018 0.904 FCR

ASV44 Bacteria Acetitomaculum -
0.38

0.043 0.904 FCR

ASV337 Archaea Candidatus_Methanomethylophilus -
0.38

0.044 0.177 FCR

ASV10 Bacteria F_Lachnospiraceae 0.39 0.038 0.434 ADG
ASV32 Bacteria Prevotella 9 0.38 0.044 0.439 ADG
ASV69 Bacteria F_Ruminococcaceae UCG-014 0.41 0.028 0.397 ADG
ASV82 Bacteria Roseburia 0.49 0.009 0.340 ADG
ASV126 Bacteria O_Mollicutes 0.49 0.008 0.340 ADG
ASV207 Bacteria F_Ruminococcaceae UCG-002 0.44 0.020 0.397 ADG
ASV366 Bacteria F_Ruminococcaceae UCG-013 0.45 0.018 0.397 ADG
ASV633 Bacteria F_Ruminococcaceae UCG-010 0.41 0.030 0.397 ADG
Epithelia
l
ASV10 Bacteria F_Lachnospiraceae 0.45 0.021 0.356 ADG
ASV25 Archaea Methanosphaera 0.44 0.024 0.096 ADG
ASV28 Bacteria F_Prevotellaceae -

0.43
0.028 0.356 ADG

ASV32 Bacteria Prevotella_9 0.48 0.013 0.356 ADG
ASV69 Bacteria Ruminococcaceae UCG-014 0.41 0.036 0.391 ADG
ASV181 Bacteria O_Mollicutes RF39 0.46 0.017 0.356 ADG
ASV210 Bacteria Mogibacterium -

0.41
0.039 0.391 ADG

ASV366 Bacteria F_Ruminococcaceae UCG-013 0.49 0.012 0.356 ADG
ASV426 Bacteria F_Ruminococcaceae UCG-009 0.47 0.016 0.356 ADG
ASV912 Bacteria F_Christensenellaceae -

0.43
0.027 0.356 ADG
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Abstract
Methane emissions from ruminant pasture-based production systems account for
a significant proportion of agricultural greenhouse gas (GHG) emissions. Studies
utilizing portable accumulation chambers (PACs) have shown that time off feed
(TOF) has an influence on methane emissions, where TOF is defined in this study
as the duration of time animals were taken from pasture to entering the PACs. In
this study, we utilised PACs to determine the effect of TOF on daily methane
output  from  sheep,  and  a  meta-omics  approach  to  investigate  associated
bacterial and archaeal populations in the sheep rumen. A total of 94 Belclare
ewes grazed on permanent pasture were used for the purpose of  this study.
Methane emissions and rumen samples were collected over 2 days from animals
spending  varying  TOF  (TOF,  1hr  n=24,  2hr  n=24,  3hr  n=22,  5hr  n=12,  6hr
n=12).  16S rRNA amplicon sequencing was used to taxonomically profile the
rumen bacterial  and archaeal  communities.  Whole shotgun metagenomic and
metranscriptomic sequencing data from a subset of 17 samples were functionally
profiled using Humann3. We demonstrate  that  daily  methane emissions (g/d)
(DME)  decreased  with  increasing  TOF  (P<0.0001).  Bacterial  and  archaeal
community  alpha  diversity  measures  were  unaffected  by  TOF  (P.adj>0.1).
PERMANOVA  analysis  revealed  that  bacterial  community  composition  was
affected by TOF (P<0.05). Maaslin2 (Microbiome Multivariable Associations with
Linear Models) was used to test relationships between TOF and the abundance of
microbial  taxa  (bacteria  and  archaea).  Our  findings  demonstrate  that  core
fibrolytic  members  of  the  rumen  microbiome,  including  Butyrivibrio,
Pseudobutyrivibrio and  Eubacterium  cellulosolevens at  the  genus  level,  and
Ruminococcus albus, Selenomonas ruminantium and  Prevotella spp.at the ASV
(amplicon sequence variant) level, are negatively associated with TOF (P<0.05).
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In  contrast,  non-fibrolytic  bacteria,  including  Eubacterium  coprostanegenes,
Succiniclasticum and  Christensenellaceae R7 group, were positively associated
with TOF (P<0.05). The relative abundance of archaeal taxa at the genus and
ASV  levels  were  not  influenced  by  TOF  (P>0.05),  although  the  relative
abundance of overall archaeal and bacterial communities was found to increase
and decrease with increasing TOF, respectively (P<0.05). TOF was found to have
no  effect  on  either  metacyc  pathways  or  gene  families.  However,  when
accounting  for  gene  copy  numbers  the  transcriptional  activity  of  the
hydrogenotrophic methanogenesis pathway tended to decrease with increasing
TOF (P=0.09). Our study shows that TOF can influence methane emissions and
the composition of the rumen microbiome, which has implications for methane-
microbiome studies involving animals that spend variable amounts of time off
feed prior to measurement.

Introduction
The ability of ruminant livestock to convert low quality plant matter into high-
quality protein products fit for human consumption is critical to supporting food
security (Oltjen and Beckett, 1996). However, ruminant production systems are
an  important  source  of  anthropogenic  greenhouse  gas  (GHG)  emissions,
particularly methane  (Czerkawski, 1969; Johnson and Johnson, 1995), which is
reported to have a global warming effect 28 times greater than that of CO2 over
a 100 year period and is a significant contributor to global warming and climate
change  (IPCC,  2014).  The  IPCC  indicates  that  a  reduction  in  global  methane
emissions is required to mitigate increases in global temperature  (Arias et al.,
2021). Enteric fermentation of feed is the primary source of methane emissions
from agriculture, which accounts for approximately a third of total anthropogenic
methane  emissions  and  ~90%  of  all  livestock  derived  methane  emissions
(Saunois et al., 2020). The demand for animal products is anticipated to rise in
the  future  decades  due  to  a  growing  global  population  and  rising  affluence,
where dietary transitions are anticipated to lead to an increase in atmospheric
methane emissions  (Hayek and Miller, 2021). As a result, ruminant production
systems confront challenging obstacles to reduce emissions while meeting the
growing demand for animal protein products. Therefore, research on methods to
reduce methane emissions from livestock production systems have emerged as
a  pressing  necessity  for  countries  to  fulfil  their  emissions  reduction  pledges
under the Paris agreement (Wollenberg et al., 2016). 
Degradation of plant matter in the rumen is time dependent driven by successive
microbial colonisation events (Huws et al., 2016) and the gradual breakdown of
plant polysaccharides. Plant cell walls are organised in such a way that cellulose,
the most abundant polysaccharide component in plants,  is caged in an outer
matrix of  hemicellulose,  lignin and pectin  (Morrison,  1979).  The rate  and the
extent to which cellulose is utilised in the rumen is known to be dependent on
the  interaction  and  digestibility  of  the  ligno-hemicellulose  complex  (Weimer,
1992;Hatfield, 1993). Enzymatic hydrolysis of cellulose would therefore increase
with  time  as  the  ligno-hemicellulolytic  matrix  is  depolymerised  and  cellulose
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becomes more exposed to cellulase activity. (Waters et al., 2020). In the rumen,
the  degradation  of  hemicellulose  is  carried  out  by  both  highly  specialised
cellulolytic bacteria (e.g  F. succinogenes, R. flavefacians, R. albus) and specific
non-cellulolytic  bacteria  (e.g  B.  fibrosolvens,  P.  ruminis,  P.  ruminantium)
(Weimer,  2022).  These  bacteria  produce  an  array  of  cellulase  and/or
hemicellulases,  which  hydrolyze  glycosidic  linkages  in  plant  polysaccharides
producing shorter oligosaccharide fragments, which are subsequently fermented
by ruminal  microbes to produce VFAs.  In  addition,  fermentation end-products
such  as  hydrogen,  formate,  carbon  dioxide,  acetate  and  various  methyl-
compounds are utilised by methanogenic archaea for the production of methane.
Methane production in the rumen is inextricably linked and dependent on the
coordinated  action  of  both  bacteria  and  archaea.  Methane,  which  cannot  be
utilised by the host for energy, is expelled to the atmosphere and is reported to
result in a loss of dietary energy to the host (Giger-Reverdin and Sauvant, 2000).
Diet  is  an  important  factor  influencing  methane  emissions  from  ruminant
livestock. The quantity, quality and type of feed are all known to exert an effect
on  methane  emissions.  For  instance,  increasing  the  ratio  of  forage  to
concentrates  has  been  shown  to  increase  methane  emissions  in  domestic
livestock  (Aguerre et al., 2011; Li et al., 2019). Furthermore, previous work by
our group found that methane emissions fluctuate in tandem with diurnal feeding
patterns in cattle  (Smith  et  al.,  2021).  Similar  findings were also reported in
sheep  (Lockyer,  1997). In  addition,  diet  also has a substantial  impact  on the
composition of the rumen microbiota  (Carberry et al., 2012; Henderson et al.,
2015). Findings from the global rumen census show that animals offered forage
and concentrate diets harbor distinct bacterial communities  (Henderson et al.,
2015).  In  many  temperate  regions  of  the  world,  including  Ireland  and  New
Zealand,  ruminant  livestock  are  predominantly  forage-fed  on  pasture-based
systems  (Knaus, 2016). Consequently,  methane emissions from pasture-based
systems  can  account  for  a  significant  proportion  of  national  GHG emissions.
However,  there  are  a  dearth  of  methane-microbiome  related  studies  from
pasture grazed animals,  particularly  in  sheep.  This may partly be due to the
difficulties in accounting for dietary intake  (Beauchemin et al.,  2022). Indeed,
previous research in sheep has demonstrated that dry matter intake (DMI) is the
principal factor driving methane production from the rumen (Muetzel and Clark,
2015). Nevertheless, methane-microbiome studies from pasture-fed animals are
required to better understand the factors influencing methane emissions from
current  agricultural  production  systems and guide the development of  future
methane mitigation strategies. 
The ability to accurately quantify methane is required for methane mitigation
solutions.  A  range  of  approaches  have  been  developed to  quantify  methane
emissions  from  ruminant  livestock  (Zhao  et  al.,  2020).  Most  methane-
microbiome studies have used respiration chambers (RCs) due to the precision
and repeatability of measurements and the ability to control DMI (Kittelmann et
al., 2014; Shi et al., 2014; Muetzel and Clark, 2015). However, because animals
are not measured under on farm circumstances, RCs may underestimate daily
methane output relative to what would occur on a farm, due to altered feeding
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behaviour and feed intake (Bickell et al., 2014; Jonker et al., 2014). Alternative
technologies have been developed for  estimating methane emissions on-site,
including  SF6 tracers  (Johnson  et  al.,  1994),  GreenFeed  systems  (Rapid  City,
South Dakota; C-Lock Inc.  (Hammond et al., 2015))  and portable accumulation
chambers (PACs)  (Jonker et al., 2018). In the present study, PACs were utilised
due  to  their  portability,  suitability  for  small  ruminants,  high  throughput,  and
correlation with RCs (Jonker et al., 2018). One notable finding from PAC studies is
that  the  length  of  time sheep are  kept  off  feed  has  a  significant  impact  on
methane output  (Robinson et al.,  2014). However,  the effect of time off feed
(TOF)  on  the  associated  rumen  microbial  populations  have  not  yet  been
explored. To address this knowledge gap, the objectives of this study were to
utilise PACs to investigate the effect of TOF on methane emissions and to use
meta-omics techniques to assess the influence of TOF on rumen bacterial and
archaeal communities in pasture-grazed sheep.

Methods
Animal model, methane measurements and rumen sampling
All  animal  procedures used in this study were conducted under experimental
license from Ireland’s Health Products Regulatory Authority (HPRA, Licence No:
AE19132/P116)  in  accordance  with  the  European  Union  (EU)  protection  of
animals used for scientific purposes regulations 2012 (S.I. No. 543 of 2012).
A total of 94 Belclare non-lactating ewes were used for the purpose of this study.
All animals were grazed on permanent pasture (perennial ryegrass) with a cover
of approximately 5cm at Teagasc Athenry, Co. Galway. Ewe age ranged from 2-7
years with the mean age per ewe of 3.5 years. Methane was measured over 2
consecutive days using PACs (x12). On each day ewes were taken from pasture
at 8:00am and held/enclosed in a concrete yard before entering the PAC. Prior to
entering PACs all ewes were weighed to determine animals body weight (BW). 
The PAC used in this study were air tight chambers made of aluminum sheets
and with an internal volume of 853L (1.1 m width × 1.07 m average height ×
0.77 m length). Each chamber was fitted with a manometer to monitor pressure
and leaks, and a sampling valve to allow methane concentrations to be recorded.
Methane concentrations within the chamber were measured using an RKI Eagle2
monitor (Weatherall Equipment and Instruments Ltd, UK), whereby the probe of
the detector  was  inserted into  the sampling valve and a  stable  reading was
recorded.  After completion of  the gaseous measurements the sampling valve
was closed immediately. To ensure the accuracy of gas measurements, daily gas
checks (at the start and end of the day) of the Eagle 2 monitor were conducted
using  standard  calibration  gases  of  100  ppm,  1,000  ppm,  and  5,000  ppm
methane.
For PAC methane measurements, 5 lots (or groups) of 12 ewes were randomly
selected from a cohort of 60, and 3 lots of ewes from a cohort of 34 ewes on day
1, and day 2, respectively, and randomly assigned to 1 of the 12 individual PACs.
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PAC  measurements  did  not  start  until  1  hour  after  animals  were  taken  off-
pasture (approx. 9:00 a.m.). Methane output in the chamber was measured at 0,
25 and 50 mins (O' Connor et al., 2021). Final methane readings from each lot on
day 1 were obtained at approximately 9:50 a.m., 10:50 a.m., 11:50 a.m., 12:50
p.m.,  and 13:50 p.m.,  corresponding to 1,2,3,5 and 6 hours off feed.  Similar
operations were carried out on day 2, with final methane emissions recorded at
9:50 a.m., 10:50 a.m., and 11:50 a.m., corresponding to 1,2 and 3 hours off feed.
As  soon  as  the  animals  were  removed from the  PACs,  rumen samples  were
obtained  using  a  transoesophageal  intubation  apparatus  and  transferred  to
2x25ml tubes. 500ul aliquots of rumen fluid were aliquoted from 25ml samples
and placed in 1ml tubes for DNA extraction.  All  samples were snap frozen in
liquid nitrogen, then stored at -20 °C during transit before being stored at -80 °C
until DNA was extracted.

Gaseous  measurements  of  CH4 obtained  for  each  animal  were  converted  to
liter/hour (l/hour) using the equation: 

CH 4(l /hour )=( (Methane x−Methane y )
(Time x−Time y )

×60¿× (853−( Bodywig ht ) )¿¿1,000,000)

‘CH4 (l/hour)’  is  the CH4 emissions quantified in liters  per hour,  ‘Methanex’  is
methane output in ppm at time point x, ‘Methaney’ is CH4 output in ppm at time
point y, ‘Timex’ is the time at time point x, ‘Timey’ is the time at time point y, and
‘live-weight’ is the live-weight of the animal in kg
Gas  volume obtained  in  liters  per  hour  were  extrapolated  to  grams per  day
values using an equation analogous to the ideal gas law, as described by Jonker
et al. (2018). 

CH4 (g/day) =  CH 4(l /hour )×(Press ×0.1)/(8.3145× (Temp+273.15 ))×16×1440

‘CH4 (l/hour)’ is CH4 emissions quantified in liters per hour, ‘press’ is the pressure
expressed in hectopascals and ‘temp’ is the temperature expressed in degrees
Celsius, ‘16’ is the molecular weight of CH4, and ‘1,440’ is the number of minutes
in the day.

Microbial DNA extraction, 16S rRNA amplicon library preparation 
and sequencing
Microbial DNA was extracted from 500 µl of frozen rumen fluid sample (n=90)
using a Qiagen DNAeasy Powersoil  kit  (Qiagen, Manchester,  UK).  DNA quality
was assessed using agarose gels (0.8%) and a 1-kb DNA ladder (Bioline GmbH,
Luckenwalde, Germany). The concentration of extracted DNA was quantified on
the Nanodrop 1000 spectrophotometer and diluted to 100ng/µl before running
agarose  gels.  A  blank  extraction  control,  subject  to  the  same procedures  as
rumen fluid samples, was performed for each extraction kit (n=2). The absence
of reagents contamination was visually confirmed on agarose gels and with the
use of the Nanodrop.
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Amplicon libraries were generated targeting the V4 hypervariable region of the
16S rRNA gene using the 515F/806R primers (Caporaso et al., 2011). Two rounds
of  PCR  amplification  were  performed,  as  outlined  in  the  Illumina  Miseq  16S
Sample Preparation Guide, using Herculase II Fusion DNA Polymerase Nextera XT
Index V2 Kit (Illumina, San Diego, CA, United States). Following this libraries were
pooled and sequenced Illumina MiSeq using the 500 cycle version 2 kit (Illumina,
San Diego, CA, United States). 16SrRNA amplicon libraries were generated and
sequenced by Macrogen (Seoul,Rep. Korea).  
Note:  A  total  of  90  rumen  content  samples  were  available  for  amplicon
processing and analysis (TOF, 1h n=23, 2h n=24, 3h n=21, 5h n=12, 6h n=11).

Metagenomics and metatranscriptomic library preparation and 
sequencing
To enhance our understanding of the effects of TOF on the activity of the rumen
microbial community, 17 samples (TOF-1h n=3; -2h n=4; -3h n=4; -5h n=3; -6h
n=3)  collected  on  day  1  of  sampling  were  subjected  to  metagenomics  and
metatranscriptomic sequencing.
Metagenomic  libraries  (rumen  n=17;  controls  n=4)  were  prepared  using  the
Illumina TruSeq DNA PCR-Free kit and sequenced on an Illumina Novaseq (150bp
PE)  sequencing  instrument  by  Macrogen  (Seoul,Rep.  Korea),  at  a  targeted
sequencing  depth  of  100M PE  reads  per  sample.  All  negative  controls  were
pooled and a single library was prepared for sequencing. Three positive internal
sequencing  standards  were  included  with  the  run  and  consisted  of  the
ZymoBIOMICSTM Microbial  Community  Standard  (Zymo Research  Corp.,  Irvine,
CA, United States) and isolated DNA from  Methanobrevibacter olleyae and  M.
millerae. The number of paired end reads generate per sample ranged from 22.3
and 50Gbps, excluding the negative control. 
Under liquid nitrogen,  rumen samples were ground to a fine powder using a
pestle  and mortar.  Microbial  RNA was extracted  from 200ng of  homogenised
frozen rumen digesta using the Qiagen RNeasy plus kit  (Qiagen,  Manchester,
UK). Following this, extracted RNA was DNase treated using a TURBO DNA-free™
Kit (Thermo Fisher Scientific, MA, USA) to remove genomic DNA. DNase treated
RNA was then purified with Zymo RNA clean and concentrate kit (Zymo Research
Corp, Irvine, CA, USA). RNA integrity (RIN) was assessed with the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA) with the concentration and
purity  of  extracted  RNA  assessed  using  the  Qubit™  RNA  BR  Assay  Kit
(BioSciences,  Dublin,  Ireland)  and  Nanodrop  1000  spectrophotometer,
respectively. The absence of genomic DNA was confirmed by qPCR targeting the
rumen methanogen population using the Mlas forward/  mcrA reverse primers
described  by  Poulsen  et  al.  (2013).  The  high  Capacity  cDNA  Reverse
Transcription  Kit  (Thermo  Fisher  Scientific,  MA,  USA)  was  used  for  cDNA
synthesis with qPCR performed using the Fast SYBR® Green Master Mix (Thermo
Fisher  Scientific,  MA,  USA).  A  blank  extraction  control,  subject  to  the  same
procedures as rumen fluid samples, was performed for each extraction kit. The
absence of reagents contamination was visually confirmed with the Agilent 2100
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Bioanalyzer and with the use of the Nanodrop and Qubit. All negative controls
were pooled and a single library was prepared for sequencing. Extracted RNA,
with  a  RIN value of  >7 were forwarded to  Macrogen (Seoul,  Rep.  Korea)  for
library preparation and sequencing. Metatranscriptomic libraries were prepared
with the use of the Illumina Truseq Stranded Total RNA library preparation with
rRNA depletion conducted  with  the use  of  the Ribozero  GOLD rRNA removal
protocol and NEB bacterial rRNA removal kit (New England Biolabs, Ipswich, UK).
Following this sequencing was completed on an Illumina NovaSeq (100bp PE) at
a targeted sequencing depth of 50M PE reads per sample.

Bioinformatic analysis
Amplicon processing
16S rRNA gene amplicons  were  processed  in  R  (version  3.4.2)  using  DADA2
(version 1.9.0) (Callahan et al., 2016) and submitted to the pipeline as described
with  minor  alterations  (https://benjjneb.github.io/dada2/tutorial.html).  The
average Q score for each sample was examined, and quality checks were then
performed to maintain Q scores of > 30 for both forward and reverse reads.
Forward reads were trimmed to a length of 240bp and reverse reads trimmed to
200bp.  The  removal  of  primer  sequences  was  conducted  using  the  trimLeft
function.  Identical  sequences  were combined using the dereplication  function
followed  by  the  merging  of  forward  and  reverse  reads.  Following  this  an
amplicon  sequence  variant  (ASV)  table  was  constructed  after  which  chimeric
sequences were removed and taxonomy assigned to sequences variants using
the SILVA database (version 132)  (Quast et al., 2012; Glöckner, 2019). Sample
metadata, sequence taxonomy, and ASVs were combined into a phyloseq object
using phyloseq (version 1.22.3)  (McMurdie and Holmes, 2013) for downstream
analysis. 

Metagenomic and metatranscriptomic analysis
Raw sequenced Illumina paired-end reads were quality assessed using FASTQC
(version 0.11.8)  (Andrews,  2010). Illumina Truseq Adapters,  low quality bases
and poly-g tails were removed using the FASTP algorithm (Version X)  (Chen et
al., 2018). Processed reads were mapped to the sheep reference genome (Oar
v4.0) using bowtie2 (Langmead and Salzberg, 2012) and mapped reads (~0.5%)
were subsequently removed to deplete host contamination.  Metaphlan 3 was
used to assess the performance of the metagenomic pipeline by comparing the
microbiological  relative  abundance  of  the  ZymoBIOMICSTM standards  to  the
theoretical  relative  abundance,  which  showed  high  correspondence
(Supplementary Figure 1).  For  metatranscriptome data,  SortMeRNA (v2.1b)
(Kopylova et al., 2012) was used to separate rRNA and tRNA from mRNA reads.
Trimmed  and  filtered  metagenomic  and  metatranscriptomic  data  were
functionally profiled using Humann3 (Franzosa et al., 2018), which was run with
default  parameters  with  translated  search  against  the  UniRef50  database.
Taxonomy profiles derived from metagenome data were utilised when running
Humann3 on metatranscriptome data. 
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Community and Statistical analysis
Compositional  and  statistical  analysis  were  conducted  using  various
libraries/packages in RStudio (running R version 4.2.0). The effect of TOF, ewe
age and bodyweight on DME was tested using a linear model. Prior to taxonomic
analysis, ASVs unassigned at the kingdom and phylum level, and ASVs with a
relative abundance <0.001% and not prevalent in >5% of samples (n=6) were
filtered from the data. Bacterial and archaeal ASV data were separated for the
independent  analysis  of  each  microbial  community.  Alpha  and beta  diversity
analysis was conducted on bacterial (genus and ASV level) and archaeal (ASV
level)  communities  with  counts  normalised  using  the  scaling  with  ranked
subsampling  (SRS)  method  (Beule  and  Karlovsky,  2020).  For  alpha  diversity,
Shannon and inverse Simpson diversity indices for each sample were obtained
using diversity function from the R/Bioconductor package Vegan (Oksanen et al.,
2013).  Microbiome  Multivariable  Associations  with  Linear  Models  (Maaslin2)
(Mallick et al., 2021) was used test associations between TOF and alpha diversity
measures.  For  beta  diversity  analysis,  Bray  Curtis  distances  were  used  to
calculate  the  dissimilarity  in  community  composition  between  samples.  The
effect of TOF on bacterial and archaeal community composition was tested using
the PERMANOVA test with 9999 permutations using the adonis function in Vegan
(Oksanen et al., 2013). To profile dominant taxa at the phylum and genus levels
feature counts were converted to relative abundances. Maaslin2 was used to test
for associations between bacterial (phylum, genus, and ASV taxonomic ranks)
and archaeal (genus, and ASV taxonomic ranks) taxa and TOF.  This analysis was
limited to taxa with relative abundances >0.01% and prevalence >50%. Basic
local alignment search tool (BLAST) against the rRNA/ITS database was used to
further classify taxa at the ASV level that exhibited a significant association with
TOF. Similarly, relationship between gene families and metacyc pathways with
TOF were tested Maaslin2. The BH method was used to adjust p-values for all
multiple hypothesis testing, and significant relationships were defined as having
a  P.adj < 0.05. For all microbial statistical analysis ewe age was included as a
fixed effect to control for variations attributable to animals age. 

Results
Methane output from sheep is affected by time off feed
Animals body weight (BW) ranged from 63.0kg to 106.5kg, with a mean BW of
78.98kg, a median of 78.0kg and a standard deviation of 8.38kg. Ewe BW was
found to have a significant effect on DME (lm, P=0.04). DME ranged from 3.88g/d
to 13.88g/d, with a mean of 7.82g/d, a median of 7.40 and a standard deviation
of 2.20g/d. Average DME was 9.43, 8.13, 7.31, 6.55 and 6.14 (g/d) for 1, 2, 3, 5
and 6 hours off feed, respectively, and was found to be significantly affected by
TOF (lm, P<0.0001) (Figure 4.1).

Over 10,000 Unique Amplicon Sequence Variants (ASVs) 
identified in the rumen of sheep
Following data processing, quality filtering and chimera removal, and a total of
8,630,693  amplicon  reads  remained,  representing  10,663  uniquely  identified
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ASVs. The min number of reads per sample was 68,824 and the max number of
reads was 135,982,  with an average read count per sample of  95,896.  After
removal  of  unassigned  taxa  at  the  kingdom  and  phylum  level  a  total  of
8,537,203 amplicon reads remained for analysis,  representing 9,457 uniquely
identified ASVs remained, 65 archaea ASVs and 9,392 bacteria ASVs. The min
number of reads was 68,005 and the max number of reads was 134,632, with an
average number of reads per sample of 94,857. Lastly, after filtering ASVs with a
relative  abundance  <0.001% and  not  present  in  >5% of  samples  a  total  of
8,252,081  reads  remained,  representing  3468  uniquely  identified  ASVs;  33
archaea ASVs and 3435 bacteria ASVs. 

Bacterial community composition in sheep is affected by time off 
feed
Bacterial  and  archaeal  community  Shannon  and  inverse  Simpson  diversity
measures were not affected by TOF, when assessed at the genus and ASV levels
(Table 4.1). According to our beta diversity analysis, TOF had no impact on the
bacterial and archaeal community compositions at the ASV level. (Permanova:
Bacteria P=0.07, Archaea P=0.9). However, bacterial community composition at
the  genus  level  was  found  to  be  significantly  affected  by  TOF  (Permanova,
P=0.008) (Table 4.2). Pairwise permanova revealed that differences in bacterial
community composition was primarily driven by differences between 1 and 6
hours off feed (Pairwise Permanova, P=0.03) (Supplementary Table 4.1).

Firmicutes and Prevotella dominate the rumen microbial 
communities at phylum and genus levels
In the rumen, bacteria made up on average of 92.8% of the microbial population,
whereas  archaea  made up  7.2% of  the  microbial  population.  3,435 bacterial
ASVs agglomerated to 20 phyla,  37 classes,  75 orders,  121 families and 236
genera. Our findings showed that Firmicutes (mean, 54.2%), Bacteroidota (mean,
38.3%),  Verrucomicrobiota  (mean,  2.0%),  Actinobacteriota  (mean,  1.3%)  and
Fibrobacterota  (mean,  0.6%)  were  the  5  most  abundant  bacterial  phyla.
Prevotella (mean, 23.2%),  Christensenellaceae R7 gut group (mean, 8.1%), an
unclassified  Lachnospiraceae (mean,  5.8%),  NK4214 group (mean,  3.8%) and
Rikenellaceae RC9 gut group (mean, 3.7%) were identified as the most abundant
bacterial genera (Figure 4.2). Additionally, 33 archaeal ASVs agglomerated to 2
phyla, 2 classes, 2 orders, 2 families and 3 genera. Euryarchaeota (99.3%) and
Thermoplasmatota  (0.7%)  were  the  three  archaeal  phyla  identified,  while
Methanobrevibacter (88.3%),  Methanosphaera (11.1%)  and  an  unclassified
genus belonging to family Methanomethylophilaceae (0.6%) were the 3 genera
identified. 

Microbial associations with Time off Feed (TOF)
The  relative  abundance  of  the  overall  bacterial  community  was  found  to
negatively  associate  with  TOF  (Maaslin2,  P.adj <0.0001),  while  the  relative
abundance of archaeal community was found to positively associate with TOF
(P.adj<0.0001)  (Table  4.3).  At  the  phylum  level,  the  relative  abundance  of
Verrucomicrobiota  (P.adj =  0.004),  Actinobacteriota  (P.adj =  0.02)  and
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Planctomyceota (P.adj, 0.02) were found to positively associate with TOF (Table
4.3). At the genus level the abundance of FD2005 (Lachnospiraceae) (P.adj =
0.04),  Eubacterium cellulosolvens group (P.adj = 0.02),  Anaeroplasma (P.adj =
0.02),  Shuttleworthia (P.adj =  0.01),  Butyrivibrio (P.adj =  0.02),
Pseudobutyrivibrio (P.adj = 0.01),  Selenomonas (P.adj = 0.04) and unclassified
Ruminococcaceae (P.adj = 0.02) were found to negatively associate with TOF.
The relative abundance of  Succiniclasticum (P.adj = 0.04), Christensenellaceae
R-7  group  (P.adj =  0.02),  Ruminococcus  gauvreauii group  (P.adj =  0.004),
Eubacterium  nodatum group  (P.adj =  0.04),  Eubacterium  coprostanoligenes
group (P.adj = 0.02), WCHB1.41 (class Kiritimatiellae) (P.adj = 0.004), P-1088.a5
gut group (family Pirellulaceae) (P.adj = 0.04) and an unclassified Oscillospirales
(UCG-010) (P.adj = 0.006) were found to positively associate with TOF (Table
4.3). At the ASV level the abundance of 10 bacterial ASV associated negatively
with  TOF,  while  7  associated  positively  with  TOF.  Results  are  summarised  in
Table 4.4.  

Activity of methanogenesis pathway decreased with increasing 
TOF
We performed an exploratory analysis on metabolic pathways and gene families
utilising meta-genomic and -transcriptomic data from an ongoing larger study
(collected on day 1 of sampling) (n=17: TOF-1h n=3; -2h n=4; -3h n=4; -5h n=3;
-6h n=3). While a significant association between methane and TOF was found
(lm,  P=0.04) (Supplementary Figure 4.2), no significant effects were observed
between  between  TOF  and  metabolic  pathways,  or  TOF  and  gene  families
(P>0.05) were observed in the current study (Supplementary Figure 4.3 and 4.4).
Although not significant, the abundance of the methanogenesis from hydrogen
and carbon  dioxide  pathway  (hydrogenotrophic  methanogenesis)  (Maaslin2,
P=0.12) and the abundance of  the  MCRA gene (Maaslin2,  P=0.11) tended to
increase with increasing TOF. However, when accounting for gene copy number
(RNA/DNA)  the  transcript  abundance  of  hydrogenotrophic  methanogenesis
pathway  (Maaslin2,  P=0.09)  and  MCRA gene  (Maaslin2,  P=0.14)  tended  to
decrease with increasing TOF (Supplementary Figure 4.5 and 4.6).

Discussion
This study aimed to examine the influence of TOF on DME and the composition of
rumen  bacterial  and  archaeal  populations  in  pasture-fed  sheep.  The  results
demonstrated significant effects of TOF on both DME and the rumen microbiome.
Robinson et al. (2014) analysed PAC methane data collected from pasture fed
sheep and found methane emission  to  linearly  decrease  with  increasing TOF
(Robinson  et  al.,  2014).  Similarly,  Sollinger  et  al.  (2018)  found  methane
emissions to continually decrease from 1 hour post feeding in lactating dairy
cows  (Söllinger et al.,  2018). The findings from the current study corroborate
with previous studies in both sheep and cattle where methane output linearly
decreased  with  increasing  TOF.  Our  results  showed  that  there  was  a  ~35%
decrease in average DME between sheep held 1 and 6 hours off feed. Although,
TOF  has  been  shown  to  influence  methane  emissions  (Robinson  et  al.,
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2014;Söllinger  et  al.,  2018),  no  research  has  yet  investigated  accompanying
changes in the associated rumen microbiome in sheep.
Bacterial and archaeal population were taxonomically profiled in this study using
16S rRNA sequencing. Consistent with previous studies on ruminant livestock,
our analysis identified Firmicutes and Bacteroidota as the two most prevalent
bacterial  phyla,  which  together  accounted  for  ~92% of  the  rumen  microbial
population.  Interestingly,  Proteobacteria,  which  is  commonly  reported  as  the
third most dominant bacterial phylum in the rumen, was not identified among
the top 10 most abundant phyla in the present study, accounting for only ~0.3%
of the bacterial population. Verrucamicrobiota was found to be the third most
abundant bacterial  phyla. Verrucomicrobiota has been identified in the rumen
and its abundance shown to positively associate with cellulose content in the diet
(Gharechahi  et  al.,  2021).  Thus,  the  prominence  of  Verrucomicrobiota  in  the
current study could be dietary related. At the genus level, Prevotella was found
to be the most dominant bacterial genus accounting for ~23% of the bacterial
community followed by  Christensenellaceae R7 group (8.1%) and unclassified
Lachnospiraceae (5.8%). Our findings are in line with findings from the global
rumen census (Henderson et al., 2015), whereby Prevotella was found to account
for  on  average  21.5%  of  the  rumen  bacterial  population  and  unclassified
Lachnospiraceae represented  6.0%.  While  Christensenellaceae are  core
representatives of the rumen microbiome in sheep (Henderson et al., 2015), the
prominence of the Christensenellaceae R7 group in the current study could also
be dietary.
The effect of TOF on the rumen microbiome has previously been analysed in
cattle.  Kim et  al.  (2019)  examined the effects  of  24hr  fasting on the  rumen
microbiota in Holstein steers fed a rice straw and concentrate diet  (Kim et al.,
2019). Kim et al. (2019) showed that fasting had an effect on the abundance of
bacteria but not archaea,  fungi or protozoa when examined using Denaturing
Gradient  Gel  Electrophoresis  (DGGE).  In  another  study,  Welch  et  al.  (2021)
examined the effects of pre-slaughter fasting on the rumen bacterial population
in cattle fed a finishing diet using 16S rRNA gene sequencing. The researchers
observed significant  increase  in  bacterial  community  diversity  following  a  24
hour  fast  in  HRFI  and  LRFI  cohorts  and  changes  in  bacterial  and  archaeal
abundances.  Moreover,  no  significant  impact  on  VFA  concentrations  were
observed. However, Welch et al. (2021) did note a marked reduction in butyrate
concentrations, although not statistically significant  (Welch et al., 2021). Taken
together, the results from both studies indicate that TOF can influence the rumen
microbiome  and  fermentation  profiles  following  a  24h  fast.  Over  a  shorter
timeframe,  Söllinger  et  al.  (2018)  found  that  rumen  bacterial  community
remained relatively  stable  following 6 hours post  feeding in 4  lactating dairy
cows (Söllinger et al., 2018). However, the impact of time off feed (TOF) on the
rumen  microbiome  in  pasture-grazed  sheep  remains  largely  unexplored.  To
address this gap, we employed 16S rRNA sequencing to investigate the bacterial
and archaeal populations in pasture-fed sheep during the period of 1-6 hours off
feed.  Our  analysis  revealed  that  TOF  did  not  significantly  affect  the  alpha
diversity measures for both bacterial and archaeal communities. However, beta
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diversity analysis revealed that the composition of the bacterial community was
shifting  with  increasing  TOF,  mostly  driven  by  compositional  dissimilarities
between 1 and 6 hours off feed. Thus, the findings from our study aligns with
previous work by Kim et al. (2019) and Welch et al. (2021) in that fasting can
impact on bacterial community composition in the rumen. The effects of TOF on
the sheep rumen microbiota composition became apparent after approximately
6-7 hours without  feed.  The observed compositional  changes in the bacterial
community composition during increasing TOF could potentially be attributed to
changes in substrate availability. As sheep remain off feed, there is a decline in
the availability of nutrients and substrates in the rumen, which may trigger shifts
in the growth and metabolism of specific bacterial taxa, subsequently influencing
the overall community composition.
In the current study, at both the genus and ASV level, the abundance of core
ruminal  bacteria  primarily  involved  in  the  degradation  and  utilsation  of
hemicellulose were found to negatively associate with TOF, including species of
Prevotella and Pseudobutyrivibrio,  Butyrivibrio fibrisolvens, Ruminococcus albus
and Eubacterium cellulosolvens.  Prevotella  spp.  belong to the most  dominant
genus  in  the  rumen and  are  capable  of  utilising  a  variety  of  substrates  for
energy, including starch, protein, peptides, hemicellulose, and pectin (Flint et al.,
2000;Emerson and Weimer, 2017). In  in vitro  studies, Prevotella species have
been shown to breakdown plant cell wall hemicellulose components xylan, beta-
glucan, glucomannan, and xyloglucan (Emerson and Weimer, 2017). Butyrivibrio
fibrisolvens  and  Pseudobutyrivibrio  spp. are  recognised  highly  efficient
hemicellulolytic degraders in the rumen (Grilli et al., 2015; Emerson and Weimer,
2017).  They possess  a large repertoire of  polysaccharide degrading enzymes
principally involved in the breakdown xylans and pectin  (Palevich et al., 2019).
Ruminococcus  albus comprise  strains  that  are  both  cellulolytic  and
hemicellulolytic,  however,  microbiological  studies have reported that  R.  albus
may rely more on hemicellulose rather than cellulose for growth and survival in
the rumen (van der Toorn and van Gylswyk, 1985).  Eubacterium cellulosolvens
also possesses hemicellulolytic and cellulotyic activities through the production
of  a  diverse  set  of  glycosidic  hydrolases  (Luís  et  al.,  2011).  However,  while
known  to  be  celluloltyic  Anderson  and  Blair  (1996)  found  that  cellulose
metabolism  by  E.  cellulosolvens was  inhibited  in  the  presence  of  a  glucose
analogue, leading the authors to suggest that glucose could be the preferred
substrate (Anderson and Blair, 1996). Selenomonas ruminantium was among the
non-fibrolytic bacteria negatively associating with TOF. Although S. ruminantium
is  involved  in  the  metabolism  of  non-structural  carbohydrates,  multiple
investigations  have  revealed  that  S.  ruminantium interacts  with  fibrolytic
bacteria  to  enhance  fibre  digestion  and  utilsation  (Sawanon  and  kobayashl,
2006; Sawanon et al.,  2011).  For  instance,  when grown on a variety of  fiber
sources the degradative abilities  of  Ruminococcus  flavefacians were found to
significantly increase when co-cultured with S. ruminantium, as compared to R.
flavefacians  mono-cultures  (Sawanon  and  kobayashl,  2006).  Thus,  S.
ruminantium's negative correlation with TOF may be due to its close interaction
with fibrolytic bacteria. When considered collectively, these results could be a
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natural  reflection of,  and happening as a result of, the gradual breakdown of
hemicellulose and exposure of cellulose overtime. 
A  number  of  bacteria  negatively  associating  with  TOF  have  previously  been
linked with increased methane emissions in sheep and cattle.  In vivo findings
from our  group  and  others  have  provided  associations  between  Butyrivibrio,
Pseudobutyrivibrio  and Ruminococcus  with  higher  methane  emitting  animals
(Kittelmann et al., 2014; Auffret et al., 2018; Smith et al., 2022). Moreover,  in
vitro studies have verified symbiotic interaction between hydrogen and formate
producing  Butyrivibria and  Ruminococcus species  and hydrogen and  formate
utilising Methanobrevibacter species. For instance, Leahy et al. (2010) observed
a  >2  fold  increase  in  methanogneseis  genes  when  M.  ruminantium was  co-
cultured  with  Butyrivibrio  proteoclasticus grown  in  xylan  compared  to  M.
ruminantium grown in monocultures with hydrogen and carbon dioxide.  (Leahy
et al., 2010). Furthermore, Ng et al. (2017) demonstrated that adhesion proteins
encoded by  M. ruminantium are capable of attaching to  Butrivibrio  (Ng et al.,
2016),  indicating  a  potential  evolutionary  mechanism  facilitating  hydrogen
transfer between these hydrogen generating and hydrogen using microbes. In
addition,  hydrogen  transfer  from  Ruminococcus  albus to  methanogens  and
subsequent methane production have also been observed in vitro (Pavlostathis
et al., 1990; Hino et al., 1995). Therefore, it is probable that the reduction in
methane  emissions  with  increasing  TOF  may  be  related  to  a  decrease  in
hydrogen production and transfer from fibrolytic bacteria to methanogens. 
Plant  biomass  in  the  rumen  is  broken  down  into  monomeric  and  oligomeric
components,  which  are  subsequently  fermented  by  a  variety  of  rumen
microorganisms (Stevens and Hume, 1998). In the current study, bacterial taxa
at the genus and ASV level showing positive associations with TOF are primarily
non-fibrolytic  and  specialised  in  the  fermentation  of  oligosaccharides,  amino
acids, and lipids. At the genus level, TOF was found to promote the abundance of
Eubacterium  coprostanoligenes  group,  Eubacterium  nodatum group,
Ruminococcus  gauvreauii group,  Succiniclasticum,  WCHB1-41  (phylum
Virrucomicrobiota),  Family  Oscillospiraceae_UCG-010,  Christensenellaceae  R7
group,  and  p-1088-a5 gut  group (family  Pirelluaceae).  Culture-based analysis
suggests  that  E.  coprostanoligenes plays  a  role  in  converting  cholesterol  to
coprostanol,  and  shown  to  weakly  ferment  cellobiose,  fructose,  and  glucose,
producing acetic, fomic, and succinic acids (Freier et al., 1994). E. nodatum is a
known  amino  acid-metabolizing,  acetate-  and  butyrate-producing,  non-
saccharolytic bacteria  (Uematsu and Hoshino, 1996).  Ruminococcus gauvreauii
group are principally involved in the metabolism of simple sugars and produce
acetate as a primary end product (Domingo et al., 2008). Unclassified WCHB1-41
genus is  a  member  of  the  Kiritimatiellae  class  within  the  phylum
Verrucomicrobiota. While, the metabolic activities of WCHB1-41 are not presently
understood  a  recent  in  vitro  study  found  WCHB1-41 abundance  inversely
correlated with butyrate production and positively correlated with acetate and
propionate  production  (Zhou  et  al.,  2022).  Additionally,  the  abundance  of
Kiritimatiellae was found negatively correlated with DMI in sheep (Zhang et al.,
2021),  which  is  in  line  with  the  findings  from  the  current  study.
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Christensenellaceae are  known  to  metabolise  a  variety  of  sugars  producing
acetate  and  butyrate  as  fermentation  end-products  (Morotomi  et  al.,  2012).
Some members of the Christensenellaceae family have been shown to possess
the  fibrolytic  digesting  enzymes  beta-arabinosidase,  beta-galactosidase,  and
beta-glucosidase (Morotomi et al., 2012), suggesting that a Christensenellaceae
R7 group also have fibre degradation abilities in the rumen. Succiniclasticum is a
specialised bacteria that plays a key role in the rumen by fermenting succinate
and  converting  it  to  propionate  (Van  Gylswyk,  1995).  At  the  ASV  level,
Mediterraneibacter lactaris,  Faecalimonas  umbilicata,  Synthrococcus
sucromutans Kiritimatiella glycovorans and Olsenella intestinalis showed positive
associations with TOF. Syntropococcus sucromutans is an acetogenic bacterium
that ferments carbohydrates or pyruvate in the presence of  formate (Doré and
Bryant,  1990).  Olsenella intestinalis is a recently identified bacterium isolated
from cow faeces;  it  is  catalase-negative and possesses alkaline phosphatase,
beta-glucosidase,  and arginine dihydeolase  (Guan et al.,  2022). Faecalimonas
umbilicata  is a saccharolytic bacterium associated with acetate production and
vitamin B12 biosynthesis (Sakamoto et al., 2018). Mediterraneibacter lactaris is a
carbohydrate-metabolizing bacterium that has been known to quickly ferment
lactose (Togo et al., 2018). Kiritimatiella glycovorans is a member of the phylum
Viruccomicrobiota  and  ferments  simple  carbohydrates  and  sulfated
polysaccharides. (Spring et al., 2016; van Vliet et al., 2020). 
Although, archaea represent ~1-4% of the microbial  population in the rumen
(Wallace et al.,  2017), they are the sole producers of methane  (Leahy et al.,
2013). Therefore, it is possible to reason, at least on a simplistic level, that the
relative  abundance  of  archaea  in  the  present  study  would  decrease  in
conjunction  with  the observed decrease  in  methane emissions.  However,  the
relative  abundance  of  the  archaeal  community  was  found  to  increase  with
increasing  TOF,  contrasting  with  the  decrease  in  CH4 emissions.  A  possible
explanation for  the increasing relative abundance of  the archaeal  community
may be due to a decreasing relative abundance of  the bacterial  community.
Alternatively, studies in cattle have found that the abundance of methanogens
increased in the rumen of cattle under restricted dietary intake (McCabe et al.,
2015),  which was  suggested  to  be  related  to  a  slower  passage  rate  of  feed
through the rumen  (Janssen,  2010; McCabe et al.,  2015).  Moreover,  previous
research in sheep have found no clear associations between the overall archaeal
abundance and methane emissions (Kittelmann et al., 2014; Shi et al., 2014). It
has been considered that  the composition of  the archaeal  community  at  the
species level is more closely related to methane emissions (Tapio et al., 2017).
However, in the current study no significant relationships were found between
TOF and the abundance of archaeal taxa at either the genus or ASV taxonomic
ranks.  Methane  is  produced  via  three  pathways  in  the  rumen;  the
hydrogenotrophic,  aectoclastic  and  methylotrophic  pathways  (Lambie  et  al.,
2015). The hydrogenotrophic pathway is the dominant methanogenesis pathway
(Wirth et al., 2018) that converts carbon dioxide to methane using electrons from
hydrogen or, to a lesser degree, formate  (Friedman et al., 2017). Although not
found to  be  significant,  our  preliminary  research  revealed  that,  like  archaeal
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abundance,  the  abundance  of  MCRA  genes  and  the  hydrogenogenotrophic
methanogenesis pathway tended to increase with rising TOF.  However,  when
transcript  abundances  were  adjusted  for  gene  copy  number,  the  rate  of
methanogenesis tended to decrease with rising TOF. This finding could help to
explain why methane emissions were decreasing with TOF in the current study.
However,  more research with  a larger  sample size  is  needed.  Indeed,  earlier
research by Shi et al. (2014), found differences in the transcriptional abundance
of  the  hydrogenotrophic  methanogenesis  pathway  between  high  and  low
methane  emitting  sheep,  despite  finding  no  differences  in  overall  archaeal
abundance or gene abundance of enzymes involved in methanogenesis  (Shi et
al., 2014). 

Conclusion
In summary, our study demonstrates that TOF has an impact on both methane
emissions  and  the  composition  of  rumen  bacterial  population.  This  study
supports previous research that showed a decrease in methane emissions the
longer animals are kept off feed.  In  addition, the abundance of  key fibrolytic
bacteria were found to decrease with increasing TOF in the current study. Our
findings have implications for methane-microbiome studies in which animals are
kept off feed for varying lengths of time, such as those using PACs, and future
studies should seek to control for temporal effects.

Figures 

Figure 4.1: Figure presents the results of the linear model analysis 
conducted to examine the impact of TOF and BW on daily methane 
emissions. The x-axis represents the TOF (1-6h) (A), and animal’s 
bodyweight (kg) (B), while the y-axis represents methane emissions (g/d).

172



Figure 4.2: Boxplots representing the relative abundance of dominant 
bacterial genera in pasture grazed sheep.
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Tables
Table 4.1: Table presents the associations between alpha diversity measures,
specifically Shannon and inverse Simpson diversity, and time of feeding (TOF)
using Maaslin2.
Diversity 
metric

Taxonomy & 
Rank

Coef P.val
ue

Q.val
ue

Inverse 
Simpson

Bacteria 
Genus

0.355 0.028 0.112

Shannon Bacteria 
Genus

0.012 0.066 0.124

Inverse 
Simpson

Bacteria ASV 2.848 0.558 0.744

Shannon Bacteria ASV -0.002 0.894 0.894
Inverse 
Simpson

Archaea ASV -0.034 0.620 0.827

Shannon Archaea ASV 0.000 0.969 0.969

Table  4.2: Table  summarises  the  results  of  the  beta  diversity  analysis,
investigating  the  influence  of  Time  of  Feeding  (TOF)  on  the  composition  of
bacterial and archaeal communities. Community dissimilarities were calculated
using Bray Curtis distances, and the statistical significance of the differences was
tested using Permanova. Homogeneity of variance was assessed using Permdisp.
Permanova R2 P.val

ue
Permdisp 
P.value

Bacterial Genus 0.07
2

0.008 0.627

Bacterial ASV 0.05
0

0.073 0.731

Archaeal ASV 0.03
1

0.714 0.993

Table 4.3: Table presents the results of the Maaslin2 analysis, highlighting the
significant associations between bacterial ASVs with Time of Feeding (TOF). ASVs
were classified using BLAST. 

featur
e

Blast Classification %ID coef stde
rr

N N.not.
0

P.val
ue

Q.val
ue

ASV64 Pseudobutyrivibrio ruminis; 
xylanivorans

97.24
%;

97.22
%

-
0.261

0.07
1

9
0

89 0.000 0.008

ASV87 Prevotella brevis 92.10
%

-
0.256

0.06
3

9
0

87 0.000 0.003

ASV68 Prevotella ruminocola 96.44
%

-
0.238

0.08
3

9
0

85 0.005 0.042

ASV88 Pseudobutyrivibrio ruminis 98.81
%

-
0.210

0.04
2

9
0

90 0.000 0.000

ASV10
7

Ruminococcus albus 97.23
%

-
0.193

0.04
4

9
0

90 0.000 0.002
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ASV44 Butyrivibrio fibrisolvens 99.60
%

-
0.176

0.05
4

9
0

90 0.002 0.023

ASV11
3

Gallalistipes aquisgranensis 84.40
%

-
0.152

0.05
1

9
0

89 0.004 0.036

ASV98 Shuttleworthia satelles 91.70
%

-
0.135

0.04
5

9
0

90 0.003 0.033

ASV9 Selenomonas ruminantium 100.0
0%

-
0.096

0.03
4

9
0

90 0.005 0.042

ASV99 Marseillibacter massiliensis 92.50
%

-
0.094

0.03
1

9
0

90 0.003 0.033

ASV40 Faecalimonas umbilicata 96.10
%

0.107 0.03
6

9
0

89 0.004 0.036

ASV57 Ruminococcus Lactaris 93.20
%

0.119 0.03
8

9
0

90 0.002 0.027

ASV10
6

Syntrophococcus sucromutans 96.40
%

0.127 0.04
4

9
0

80 0.005 0.042

ASV14
7

Ruminococcus Lactaris 94.50
%

0.138 0.04
7

9
0

90 0.004 0.036

ASV58 Kiritimatiella glycovorans 80.70
%

0.172 0.03
9

9
0

90 0.000 0.002

ASV13
7

Ruminococcus Lactaris 93.70
%

0.189 0.05
7

9
0

81 0.001 0.020

ASV39 Olsenella intestinalis 98.02
%

0.307 0.09
1

9
0

87 0.001 0.016

Table  4.4:  Table  presents  the  results  of  the  Maaslin2  analysis,  highlighting
significant associations between kingdoms bacteria and archaea, and bacterial
phyla and genera with Time of Feeding (TOF).

feature Coef stde
rr

N N.not.
0

P.valu
e

Q.valu
e

Kingdom
Bacteria 0.006 0.00

1
9
0

90 <0.00
1

<0.00
1

Archaea 0.088 0.02
0

9
0

90 <0.00
1

<0.00
1

Phylum
Verrucomicrobiota 0.155 0.03

9
9
0

90 <0.00
1

0.004

Actinobacteriota 0.114 0.03
6

9
0

90 0.002 0.020

Planctomycetota 0.166 0.05
3

9
0

90 0.002 0.020

Genus
FD2005 (Lachnospiraceae) -

0.208
0.07

2
9
0

89 0.005 0.039

Eubacterium..cellulosolvens.group -
0.206

0.06
1

9
0

90 0.001 0.015

Anaeroplasma -
0.156

0.04
2

9
0

90 <0.00
1

0.007

Shuttleworthia -
0.144

0.04
1

9
0

90 0.001 0.010

Butyrivibrio -
0.117

0.03
8

9
0

90 0.002 0.021

Pseudobutyrivibrio - 0.03 9 90 0.001 0.014
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0.107 1 0
Family_Ruminococcaceae -

0.087
0.02

8
9
0

90 0.003 0.022

Selenomonas -
0.076

0.02
8

9
0

90 0.007 0.040

Succiniclasticum 0.051 0.01
9

9
0

90 0.008 0.043

Christensenellaceae.R.7.group 0.053 0.01
6

9
0

90 0.001 0.015

Family_.Eubacterium..coprostanoligenes.
group

0.069 0.02
1

9
0

90 0.002 0.017

Family_UCG.010 0.089 0.02
3

9
0

90 0.000 0.006

Ruminococcus..gauvreauii.group 0.090 0.02
2

9
0

90 0.000 0.004

Eubacterium..nodatum.group 0.101 0.03
6

9
0

90 0.006 0.040

Order_WCHB1.41 0.162 0.03
9

9
0

90 0.000 0.004

p.1088.a5.gut.group 0.167 0.04
0

9
0

90 0.000 0.004
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Chapter 4 Supplementary Figures and Tables

Supplementary Figures

Supplementary  Figure  4.1: Comparison  of  relative  the  abundance  of
ZymoBIOTICSTM  standards  run  through  our  metagenomics  pipeline  with
ZymoBIOTICSTM  theoretical  relative  abundances.  Species  classified  using
Metaphlan 3. 
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Supplementary Figure 4.2: Figure presents the results of the linear model
analysis  conducted  to  examine  the  impact  of  TOF  on  daily  methane
emissions. The x-axis represents the TOF (1-6h) and the y-axis represents
methane emissions (g/d). 

Supplementary Figure 4.3: PCoA on Bray Curtis distances for gene families
identified by Humann3 on the metagenomic data set (A) and metranscriptomic
dataset (B). Differences between groups were tested using Permanova.
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Supplementary  Figure  4.4:  PCoA  on  Bray  Curtis  distances  for  meta-cyc
pathways  identified  by  Humann3  on  the  metagenomic  data  set  (A)  and
metranscriptomic  dataset  (B).  Differences  between  groups  were  tested  using
Permanova.

Supplementary  Figure  4.5:  Figure  illustrating  the  results  from  Maaslin2
showing  association  between  TOF  and  the  hydrogenotrophic  methanogenesis
pathway at the DNA level (A), RNA level (B) and RNA transcripts adjusted for
gene copy numbers (C). 
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Supplementary  Figure  4.6:  Figure  illustrating  the  results  from  Maaslin2
showing association between TOF and Methyl-coenzyme-M reductase at the DNA
level (A), RNA level (B) and RNA transcripts adjusted for gene copy numbers (C). 

Supplementary Tables
Supplementary Table 4.1: Table present results from pairwise PERMANOVA.
Comparisons  made  between  TOF  groups,  testing  the  differences  in  bacterial
community composition at the genus level
Pairwise Permanova: Bacterial Genera
Pairs Sums

OfSqs
F.Mo
del

R2 P.val
ue

P.adju
sted

3 vs 1 0.037 2.20
7

0.0
51

0.02
4

0.079

3 vs 2 0.021 1.39
2

0.0
32

0.17
1

0.284

3 vs 6 0.032 1.94
8

0.0
63

0.04
2

0.104

3 vs 5 0.010 0.58
1

0.0
19

0.84
9

0.849

1 vs 2 0.012 0.73
6

0.0
16

0.71
6

0.795

1 vs 6 0.059 3.50
2

0.0
99

0.00
0

0.003

1 vs 5 0.030 1.71
6

0.0
49

0.07
5

0.151

2 vs 6 0.038 2.49
8

0.0
70

0.00
8

0.042

2 vs 5 0.014 0.86
6

0.0
25

0.53
7

0.671

6 vs 5 0.017 0.93
4

0.0
43

0.47
4

0.671

Supplementary Table 4.2: Table present results from pairwise PERMANOVA.
Comparisons  made  between  TOF  groups,  testing  the  differences  in  bacterial
community composition at the ASV level.
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Pairwise Permanova: Bacterial ASVs
pairs Sums

OfSqs
F.Mo
del

R2 p.val
ue

p.adju
sted

3 vs 1 0.121 1.11
3

0.0
26

0.22
6

0.453

3 vs 2 0.115 1.13
4

0.0
26

0.20
3
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3 vs 6 0.130 1.16
2

0.0
39

0.17
0

0.453

3 vs 5 0.102 0.91
9

0.0
30
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4
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51
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0

0.0
39
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7
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Supplementary Table 4.3: Table present results from pairwise PERMANOVA.
Comparisons  made  between  TOF  groups,  testing  the  differences  in  archaeal
community composition at the ASV level. 
Pairwise Permanova: Archaeal ASVs
pairs Sums

OfSqs
F.Mo
del

R2 p.val
ue

p.adju
sted

3 vs 1 0.031 0.66
8

0.0
16

0.61
4

0.883

3 vs 2 0.020 0.42
3

0.0
10

0.79
4

0.883

3 vs 6 0.027 0.57
0

0.0
19

0.66
9

0.883

3 vs 5 0.038 0.79
0

0.0
26

0.51
7

0.883

1 vs 2 0.052 1.08
5

0.0
24

0.30
6

0.883

1 vs 6 0.014 0.28
3

0.0
09

0.92
7

0.927

1 vs 5 0.025 0.49
3

0.0
15

0.79
5

0.883

2 vs 6 0.024 0.48
0

0.0
14

0.74
6

0.883

2 vs 5 0.061 1.21
6

0.0
35

0.26
9

0.883

6 vs 5 0.028 0.53
7

0.0
25

0.73
9

0.883
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Chapter 5
Discussion

Overall summary 
This PhD thesis research aimed to understand the role of the rumen microbiome
for  enhancing  feed  efficiency  and  reducing  methane  emissions  in  sheep.  In
Chapter 1, an extensive review of the literature was conducted on the current
state-of-the-art. The chapter provides insights into the evolution of sheep, their
global  and  national  economic  importance,  and  their  contribution  to
anthropogenic GHG and methane emissions. Additionally, the chapter overviews
feed digestion in the sheep rumen, including details on the digestive anatomy,
providing a comprehensive overview of the rumen microbiome, fermentation and
methanogenesis.  Furthermore,  Chapter  1  indicates  the  methods  that  are
employed  to  measure  methane  emissions,  the  factors  that  impact  methane
production from ruminants, and the strategies to reduce methane emissions in
sheep and other ruminants. Finally, it provides an overview of how the rumen
microbiome can  be  studied  and the  intricacies  of  typical  research  workflows
associated with rumen studies, from sample collection to data analysis.
Chapter 2 investigated the bacterial and archaeal populations in sheep breeds
that are divergent for feed efficiency (as a measured phenotype), connecting the
feed conversion ratio (FCR) to the microbiome composition of the rumen using
16S rRNA gene sequencing. The research findings from Chapter 2 revealed no
major changes in the overall composition of the bacterial community between
high  and  low  feed  efficient  sheep,  but  did  discover  significant  relationships
between the abundance of specific bacterial taxa and the feed efficiency traits
FCR and ADG. For example, the abundances of  Fibrobacter and  Ruminococcus
were  negatively  associated  with  the  FCR,  indicating  that  these  prominent
fibrolytic bacteria may be conferring inefficiency in terms of energy utilisation
when sheep are fed a high concentrate diet. On the other hand Bifidobacterium
and Megasphaera were associated with increased ADG, while Ruminococcaceae
UCG-014  and  Olsenella were associated with improved FCR. Notably, this PhD
research demonstrates that the composition of the archaeal community differed
between  the  high  and  low  feed  efficiency  cohorts.  The  composition  of  the
archaeal community had previously been shown to be associated with methane
production in ruminant livestock (Shi et al., 2014), and methanogenesis is known
to result in a loss of dietary energy to the host  (Giger-Reverdin and Sauvant,
2000). Therefore, differences in the composition of the archaeal community may
have been a contributing factor driving the observed differences in FCR between
the  divergent  cohorts.  The  overall  findings  from  this  PhD  research  supports
interventions for manipulating the rumen microbial community to improve feed
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efficiency and reduce methane emissions, such as the use of feed additives (Eger
et al., 2018) or through selective breeding programs (Li et al., 2019b). 
Understanding the factors that shape the composition and diversity of the rumen
microbiome in sheep is critical for informing the rational development of more
effective strategies to enhance feed efficiency and mitigate ruminant methane
emissions.  Previous  studies  in  cattle  have  shown  that  breed/host  genetic
variation (i.e. genotypes) can contribute to variation in the composition of the
rumen microbiome (Li et al., 2019a; Noel et al., 2019). However, breed effects on
the rumen microbiome of sheep have not been widely investigated. Chapter 3,
therefore investigated whether sheep breed `(as a genetic factor) could have an
effect on the rumen bacterial and archaeal populations in the associated various
fractions of the rumen (i.e solid, liquid and epithelial) from four popular hill sheep
breeds in Ireland; the Cheviot, Connemara, Lanark and Perth (the latter three
being strains of Scottish Blackface). This PhD study indicates that the Cheviot
breed produceds the fastest maturing lambs, and had the lowest FCR (most feed
efficient). However, the difference in FCR was only significant when compared to
the Connemara sheep breed. The production traits between the Cheviot, Lanark
and  Perth  breeds  were  largely  similar,  suggesting  that  the  choice  of  breed
utilised by producers may not have a major impact on production outcomes.
However, factors such as environmental conditions are important to consider for
hill  producers,  and  could  have  potential  implications  for  productivity  and
profitability. For example, a study carried out by Blaxter et al. (1966) showed
that while metabolic differences between six different sheep breeds were small,
the Scottish Blackface breed was found to be more tolerant to environmental
stresses when compared to the Cheviot breed (Blaxter et al., 1966), which could
have an influence on production outcomes. 
In  Chapter  3,  the impact  of  breed on  the  bacterial  and archaeal  community
composition associated with the solid, liquid, and epithelial ruminal fractions was
found not to be statistically significant, with only a minor proportion of variation
in community composition being attributed to breed, i.e. ~10%. However, it was
observed that breed had a marginally higher influence on the composition of the
epithelial-associated  communities,  which  could  be  of  importance  for  future
studies  aimed  at  modulating  the  rumen  microbiome  for  enhancing  feed
efficiency through selective breeding programs. Indeed, bacteria associated with
the rumen epithelium maintain close interactions with the host and have been
shown to correlate with ruminal epithelial tissue gene expression (Chen and Oba,
2012;  Liu  et  al.,  2021).  Despite  having  no  effect  on  the  overall  community
composition, breed was found to have an effect on the abundance of specific
ruminal  taxa  that  could  be  related  to  feed  efficiency.  For  instance,  the
abundance of the acetogenic bacterium Acetitomaculum was significantly higher
in the Cheviot breed compared to the Connemara in the liquid ruminal fraction,
which  could  be  contributing  to  the  enhanced  FCR  in  the  Cheviot  breed  by
directing  H2 away  from  methanogenesis  and  towards  acetate  production.  In
addition,  the  study  observed  that  the  abundance  of  Succiniclasticum in  the
epithelial ruminal fraction was greater in the Cheviot, Perth, and Lanark breeds
in  comparison  to  the  Connemara  breed.  Succiniclasticum is  a  specialised
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bacterium  that  facilitates  the  conversion  of  succinate  to  propionate  (Van
Gylswyk, 1995). The higher abundance of this bacterium and its proximity to the
rumen epithelium in these breeds could have contributed to their improved FCR
by providing additional propionate, an essential glucogenic precursor required
for growth and production  (Young, 1977). The findings from this PhD research
demonstrate  that  breed/host  genetics  can  influence  the  rumen  microbial
community structure and has potential  implications for breeding programs to
select for microbiomes that can better utilise feed and produce less methane. 
Chapter 2 and Chapter 3 also investigated the effect of the ruminal fraction on
the composition of the rumen bacterial  and archaeal  populations.  The results
from both studies showed a high degree of similarity between solid and liquid
ruminal fractions. Several studies have shown that these two fractions also tend
to  be  more  similar  in  composition  when  compared  to  the  epithelial  ruminal
fraction (Schaeren et al., 2017; Li et al., 2020), which could be a consequence of
the  separation  method  used  separate  the  two  ruminal  fractions  or  could  be
reflective  of  the  frequent  interchange  of  microbes  between  those  ruminal
fractions.  Based  on   the  beta  diversity  analysis,  Chapter  3  found  no
compositional  differences  between  the  solid,  liquid  and  epithelial  ruminal
fractions, however, the abundance of numerous bacterial taxa were found to be
differentially  abundant,  particularly between the solid and epithelial  fractions,
including specific ruminal taxa known to be associated with the ruminal epithelial
fraction such as  Campylobacter,  Neisseriaceae,  Desulfobulbus and  Butyrivibrio
(Anderson et al., 2021). The bias of bacterial species distribution among ruminal
fractions, particularly between solid and epithelial fractions, has implications for
sheep rumen sampling techniques. 
In  Ireland,  and  many  temperate  regions  of  the  world,  livestock  production
systems are pasture-based  (Knaus,  2016; O'Brien et  al.,  2018;  O′Mara et al.,
2021). Therefore, to improve our understanding of the factors driving methane
emissions  in  current  agricultural  production  systems,  and  inform  the
development  of  effective  methane  mitigation  strategies,  it  is  imperative  to
conduct  methane-microbiome related studies  on pasture-fed  animals.  Studies
utilising portable accumulation chambers (PACs) have shown that the duration
animals are retained off feed results in a decrease in methane output (Robinson
et  al.,  2014).  However,  the  impact  of  time  off  feed  (TOF)  on  the  rumen
microbiome has not been investigated in sheep. Hence, Chapter 4 of this PhD
thesis investigated the impact of time off feed (TOF) on methane emissions, as
well  as  the  taxonomic  composition  and  functional  activity  of  the  rumen
microbiome  in  pasture-grazed  sheep.  PACs  were  used  to  quantify  methane
output, and a multi-omics approach was adopted to characterise the composition
and function of the rumen microbiome. Consistent with earlier studies (Robinson
et  al.,  2014),  our  findings reveal  a  linear  decline in  methane emissions  with
increasing TOF.  The abundance of  major  ruminal  fibrolytic  bacteria,  including
species of  Prevotella,  Butyrivibrio,  Pseudobutyribirio,  Ruminococcus albus, and
Eubacterium  cellulosolvens, showed  a  negative  correlation  with  TOF,  which
aligned  with  the  observed  decrease  in  methane emissions  during  the  study.
These bacteria play a significant role in hemicellulose degradation (Emerson and
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Weimer, 2017), relying on fermentable fiber as a nutrient source for their growth
and proliferation. The study suggests that the decline in the abundance of these
bacteria with increasing TOF could be attributed to the insufficient intake of fiber,
leading to nutrient scarcity over time and potentially limiting their growth. This
decline in abundance of key fibrolytic bacteria may be linked to the observed
reduction  in  methane  emissions  as  a  number  of  the  bacteria  are  known  to
produce  hydrogen  and/or  formate  during  fermentation,  including  Butyrivibrio,
Pseudobutyrivibrio, Eubacterium cellulosolvens and Ruminococcus albus (Prins et
al., 1972; Van Gylswyk et al., 1996; Sengupta et al., 2022), which are utilised by
methanogens for  methanogenesis.  Indeed,  the decrease in the abundance of
these  fibrolytic  bacteria  during  TOF  could  be  a  contributing  factor  to  the
observed decrease in methane emissions. Metagenomic and metatranscriptomic
analysis  revealed  no  significant  differences  in  gene  abundance,  transcript
abundance or the abundance or activity of metabolic pathways.  Interestingly,
when controlling for gene copy number the transcript abundance of the methyl-
coenzyme-M  reductase  gene  and  the  hydrogenotrophic  methanogenesis
pathway tended to decrease with increasing TOF. A graphical summary of the
key finding from each of the chapters can be seen below in Figure 5.1.

Figue 5.1: Graphic summarising key findings from each of the chapters. 

Limitations and recommendations for future studies
All research carried out as part of this PhD thesis centred on partial sequencing
of the 16S rRNA gene to conduct metataxonomic analysis of the rumen bacterial
and archaeal populations in sheep. This approach was chosen due to its culture
independence, cost-effectiveness, and the ability to generate large amounts of
microbial  genomic  data.  However,  while  this  technique  was  able  provide
informative data relating to taxonomy, it was unable to provide sufficient insights
into the functional activity of the rumen microbiome. Given that feed efficiency
and  methane  emissions  are  complex  and  dynamic  traits  regulated  by  the
presence and activity of various biochemical pathways  (Greening et al., 2019),
the use of 16S rRNA gene sequencing could therefore be considered a limitation
in Chapters 2 and 3. A more comprehensive and detailed understanding of the
rumen microbiome and feed efficiency could have been provided with the use of
metagenomics and/or metatranscriptomics sequencing.  However, due to high
costs  associated  with  these  approaches,  16S  rRNA  gene  sequencing  was
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considered a more practical  choice for providing an initial  assessment of  the
rumen microbiome and its relationship with feed efficiency. In addition, although
metagenomic and metatranscriptomic approaches were utilised for analysis in
Chapter 4 to examine the functional activity of the rumen microbiome in relation
to methane emissions and TOF, the number of samples available for analysis was
considerably low, which impacted on the statistical  power to detect biological
effects,  despite  revealing  taxonomic  associations  with  TOF  using  16S  rRNA
sequencing.
The research conducted in Chapters 2, 3 and 4 did not include examination of
protozoa and fungi, which are also integral members of the rumen microbiota
and hold crucial  functions in feed digestion and the generation of  substrates
essential for methanogenesis  (Bauchop, 1981; Guyader et al., 2014). However,
due  to  the  limited  representation  of  rumen  protozoa  and  fungi  in  publicly
available databases and the predominant role of both bacterial and archaea play
in  feed  utilisation  and  methane  production,  respectively,  only  bacterial  and
archaeal groups were targeted for study as part of this PhD thesis. Future studies
should involve targeting protozoa and fungi to provide a more comprehensive
view of the rumen microbiome.
Targeted sequencing of the V4 region of the 16S rRNA gene allowed for sufficient
taxonomic  classification  of  the  bacterial  and  archaeal  communities  at  higher
taxonomic ranks (i.e phylum to genus) in Chapters 2, 3 and 4. However, there
was  poor  taxonomic  resolution  at  the  species  level  in  each  of  the  studies.
Greater taxonomic resolution could have been provided through metagenomic
sequencing, although, as revealed when conducting analysis in Chapter 4, the
mapping rates of rumen metagenome sequences were notably low, underscoring
the inherent constraints associated with reference databases for classifying the
rumen microbiome. Other approaches utilizing core genes have been proposed
to increase discriminatory  power at  the species level.  For  instance,  the  rpoB
gene, which encodes for the subunit of the bacterial RNA polymerase enzyme,
has been suggested as a suitable candidate for phylogenetic analysis  (Case et
al., 2007; Ogier et al., 2019; Hassler et al., 2022). Studies have shown the rpoB
gene to have superior discriminatory ability at the species level when compared
to the 16S gene (Ogier et al., 2019; Hassler et al., 2022). However, this approach
has not been widely utilised in the context of the rumen and work would be
required to determine the suitability of this method for phylogenetic analysis of
the rumen microbiota. 
FCR was used in Chapters 2 and 3 to measure the feed efficiency of sheep, and
to  investigate  the  relationship  between the  rumen microbiota  and FCR.  FCR,
calculated as the ratio of dry matter intake (DMI) to average daily gain (ADG), is
a widely employed metric used to assess an animal's ability to convert feed into
body mass (Fahmy et al., 1992). Studies have found FCR to be a heritable trait in
sheep  (Tortereau et al.,  2020), suggesting that selective breeding for animals
with  superior  FCR  values  could  lead  to  improvements  in  the  trait  in  future
generations. Moreover, Li et al. (2020) found that specific microbial features that
were heritable in cattle were also correlated with FCR, ADG and DMI, indicating
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that breeding could be used to manipulate and select for efficient microbiomes in
ruminants (Li et al., 2019b). While the research findings from Chapters 2 and 3
indicate  relationships  between  the  rumen  microbiome  and  FCR,  there  are
potential limitations to using FCR as a selection trait for breeding programs, as it
is correlated with an animal's body weight and ADG  (Tortereau et al., 2020).
Therefore, selective breeding for enhanced FCR values may inadvertently result
in  selecting  larger  and  faster-growing  animals  with  increased  nutritional
requirements for maintenance (Arthur et al., 2004; Santana et al., 2012;Zhang et
al., 2017), which could have negative implications for the sustainability of the
industry in the long term. To address these limitations, residual feed intake (RFI)
could be used as an alternative measure of feed efficiency. RFI quantifies the
difference between the expected feed intake for maintenance and growth and
the actual feed intake, and is independent of an animal's body weight and ADG
(Zhang  et  al.,  2017).  Furthermore,  RFI  has  been  shown  to  have  a  higher
heritability estimate than FCR (Tortereau et al., 2020; Zhao et al., 2022). These
properties  make  RFI  a  more  reliable  indicator  of  feed  efficiency  and  more
suitable  for  selective  breeding  programs.  Therefore,  future  FE-microbiome
related studies would benefit from utilizing RFI as a measure of feed efficiency,
as  it  offers  a more robust  and a  sustainable  alternative to  FCR for  breeding
programs. 
Chapter 3 of this PhD thesis represents the first investigation into the impact of
breed on bacterial and archaeal populations across all three ruminal fractions.
The  research  findings  demonstrate  that  breed  can  have  an  effect  on  the
abundance  of  specific  bacterial  taxa  rather  than  on  the  overall  community
composition in the solid, liquid and epithelial ruminal fractions. A limitation of the
study was the relatively small number of samples available for analysis, which
was further reduced by the exclusion of samples due to poor sequencing quality.
As  a  result,  the  statistical  power  of  the  study  may  have  been  diminished
(Andrade,  2020),  and  the  findings  need to  be underpinned by  a  larger-scale
investigation. Despite these limitations, the study provides valuable insights into
the impact of breed on rumen microbial populations and highlights the need for
further research in this area. 
Chapter 4 demonstrated that TOF influenced methane emissions and the rumen
microbiota  in  pasture  grazed  sheep,  held  from  1  to  6  hours  off  feed.  One
limitation was that information on when individual animals were last fed prior to
removal from pasture or the quantity of feed intake for each animal could not be
accurately  obtained.  It  is  well  established  that  dietary  intake  can  have  a
significant  influence  on  both  the  rumen  microbiome  and  methane  emissions
(Janssen, 2010). This would have introduced variation into the data which could
not be accounted for. Various approaches have been developed to estimate feed
intake including mathematical models or the use of internal and external marker
such as the n-alkane approach (Andriarimalala et al., 2020; Wright et al., 2020).
However,  it  currently  remains  difficult  to  accurately  determine  intake  from
animals  grazed on pasture.  One alternative approach  would be to conduct  a
feeding trial similar to that of Fraser et al. (2015), where animals spent a period
of time grazing on pasture prior to being housed and offered freshly cut forage,
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from the  same pasture,  allowing  feed  intake  to  be  measured  (Fraser  et  al.,
2015). In addition, Chapter 4 was limited by the number of metagenome and
metatranscriptome samples  for  functional  analysis  of  the  rumen microbiome,
which would have impacted on the statistical power on that aspect of the study. 

Recommendations and considerations for follow-up 
studies
Chapter 2 indicates that the composition of the rumen microbiome in sheep is
altered between high and low feed efficient sheep. However, the functional basis
underpinning  rumen microbiome differences  between the high  and low feed-
efficient cohorts was not investigated. Therefore, a potential future study could
employ a multi-omics approach, including metagenomics, metatranscriptomics,
and metabolomics, to shed light on possible functional possibilities underlying
the phenotypic differences between the divergent cohorts. In addition, given that
the rumen microbiome is a dynamic ecosystem that is constantly changing in
response  to  the  prevailing  conditions  in  the  rumen  (Janssen,  2010),  future
research  aimed  at  understanding  the  relationship  between  the  rumen
microbiome  and  feed  efficiency  could  examine  the  stability  of  feed-efficient
microbiomes over time through longitudinal-based studies. While such studies
may  be  expensive,  they  would  provide  valuable  insights  into  the  dynamic
relationship between the rumen microbiome and feed efficiency. 
The findings of  Chapters  2  and 3 of  this  PhD thesis  indicate  that  there is  a
potential for breeding programs to select for more feed efficient microbiomes to
improve  feed  efficiency  and  sustainability  within  the  sheep  industry.  Indeed,
Chapter 3 reveals the impact of sheep breed on specific microbial taxa within the
rumen,  while  Chapters  2  and  3  identified  associations  between  the  rumen
microbiome  and  FCR.  However,  there  is  a  need  for  further  investigation  to
determine  the  heritability  of  rumen  microbial  phenotypes  in  sheep  and  to
identify  the  genotypes  associated  with  these  phenotypes  to  facilitate  the
development of genomic selection programs. It is important to note that while
FCR was used as a measure of feed efficiency in both studies, its limitations for
genomic selection suggest that residual feed intake (RFI) may be a more suitable
trait for future studies. 
Chapter 4 of the PhD thesis demonstrated that TOF could influence methane
emissions and the composition of the rumen microbiome in pasture-fed sheep,
and shed light on the temporal dynamics of the rumen microbiome and identified
potential bacterial taxa that may play a role in methane production. However,
this study found no associations between the TOF and the functionality of the
rumen microbiome, which may have been attributable to the small number of
samples available for metagenomic and metatranscriptomic analysis. Increasing
the  sample  size  for  functional  profiling  of  the  rumen  microbiome  and
investigating its relationship with TOF could be investigated further, and could be
enhanced with the integration of metabolomics. Such a study would be useful for
understanding the dynamic role of  the rumen microbiome in relation to feed
degradation, fermentation and methane generation. Information on feed intake
would be necessary to account for the influence of diet.
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Future perspectives
The  use  of  next-generation  sequencing  (NGS)  sequencing  technologies  will
continue to be central methodologies for understanding the complex interactions
between host and microbiome, and ultimately for understanding the role of the
rumen  microbiome  for  enhancing  feed  efficiency  and  reducing  methane
emissions in  sheep.  However,  there is  still  considerable variation in pre-  and
post-sequencing approaches used to study the rumen microbiome  (Szóstak et
al., 2022). Technical variations in sample collection, DNA extraction, sequencing,
and bioinformatic pipelines introduce bias  (Siegwald et al., 2019)  and make it
difficult  to  compare  and  replicate  studies  in  order  to  draw  concrete  and
informative conclusions. Thus, there is a need for continued efforts to promote
standardisation  in  protocols  (McGovern  et  al.,  2020;  Szóstak  et  al.,  2022) to
reduce technical variation and improve the comparability and reproducibility of
rumen microbiome studies. The use of mock community standards as positive
controls therefore should be of utmost importance for future microbiome studies
for  the  identification  of  errors  and  biases  and  the  validation  of  microbiome
workflows. 
Metagenomics  and metatranscriptomics  are  powerful  tools  for  examining  the
composition and gene expression profiles of the rumen microbiome. Given the
continued reduction in the cost DNA sequencing and the limitations associated
with  16S  rRNA  profiling  (Hassler  et  al.,  2022),  metagenomic  and
metatranscriptomic techniques can be expected to become more common place.
However, it is important to acknowledge that these methods have limitations and
that  a  more  comprehensive  understanding  of  the  functional  activity  and
metabolic pathways of the rumen microbiome requires the integration of other -
omics approaches. For instance, gene expression does not necessarily guarantee
successful  translation  of  mRNA  into  a  functional  proteins,  therefore,
investigations of functionality at the protein level would be necessary (Hart et al.,
2018).  Similarly,  metabolomics  can  be  used  to  identify  different  metabolites
produced by the rumen microbiome (Touitou et al., 2022), which can be linked to
specific  microbial  processes  or  pathways.  Combining  information  about  the
microbiome's composition, gene expression, protein production, and metabolite
production, can provide a more holistic understanding of the functional workings
of  the  rumen  microbiome.  In  recent  years,  there  has  been  a  growing  trend
toward  the  integration  of  multiple  -omics  approaches  to  better  understand
complex microbial communities (Xue et al., 2020; Liu et al., 2022;Sasson et al.,
2022) and this trend is likely to be of benefit for improving understanding of the
rumen  microbiome  and  its  relationship  with  feed  efficiency  and  methane
production (Andersen et al., 2021). 
Despite significant advancement in microbiome research, the rumen microbiome
still remains incompletely characterised, meaning that reference databases still
have important short-comings for rumen microbial research (Smith et al., 2022).
Therefore, continued efforts to further characterise the rumen microbiome, such
as the Hungate1000 project  (Seshadri  et al.,  2018), are imperative for future
studies.  To  date  such  advancements  have  been limited  due  to  difficulties  in
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culturing members  of  the rumen microbiome.  In  addition,  the heterogeneous
nature of short read metagenome data makes it difficult to accurately assemble
whole microbial  genomes. Microbial  single-cell  (SC) sequencing  (Woyke et al.,
2017) and culturomics (Zehavi et al., 2018) are promising approaches that could
be  used  to  characterise  individual  members  of  the  rumen  microbiome.  The
information  obtained  from  these  approaches  can  be  used  to  improve
representation  of  the  rumen  microbiome  in  reference  databases,  which  is
essential for accurate analysis of metagenomics data, as well as the validation of
findings from NGS approaches.
Sheep  enteric  methane  data  is  currently  reported  in  Ireland’s  national  GHG
inventories using Tier 1 methodologies (EPA, 2022). In contrast, enteric methane
from cattle has been reported using Tier 2 methodologies since 2006. Tier 1
methods  are  less  precise  than  Tier  2  and  Tier  3  methods  (Lokupitiya  and
Paustian, 2006) because they do not take into account detailed characteristics
on dietary management and animal performance (Wilkes and Dijk, 2018). Thus,
there is  a  need to transition to Tier  2 methodologies for reporting of  enteric
methane data from sheep. This transition is possible as there are available data
on  various  aspects  of  Irish  sheep that  can  be  used to  move  towards  Tier  2
methodologies, including sheep populations, finishing ages, concentrate usage,
housing  periods  and  manure  storage  systems  (EPA,  2016).  Because  Tier  2
methods are more detailed, this would allow for the tracking of progress towards
mitigation  goals  and  the  identification  of  areas  requiring  additional  action.
Therefore,  transitioning  from Tier  1  to  Tier  2  methods  for  estimating  sheep
methane emissions in national inventories is essential for reducing greenhouse
gas emissions and achieving mitigation targets.
Overall, this PhD thesis research has generated novel findings that advance our
understanding  of  the  role  and  relationship  of  the  sheep  microbiome  to
greenhouse gas emissions from ruminant animals, which is a pre-requisite for
rational  development of  strategies and methods for reducing greenhouse gas
emissions from ruminant livestock. 
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