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experiència inoblidable i amb qui he compartit – i continue, encara que siga menys
sovint – tant́ıssims bons moments. El radi de convergència de la nostra connexió i
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Miriam, Arcadi, Miguel, Josep, Óscar, Joan, Andrea i Núria! També moltes gràcies
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Abstract

This dissertation analyses the Nash equilibrium points in a triangle network when
the three nodes/players are playing pairwise boolean games using bi-partite and tri-
partite entanglement. The players are given one bit as input and must output
another bit; the boolean games are defined by choosing two boolean functions of
two variables, one function for the input bits and another for the outputs. The
players win jointly each of the games if the function of the inputs matches the
function of the outputs. The players also share a 6-qubit quantum state, each
owning two qubits, which will be used to play the games, i.e. to decide on their
outputs given their inputs by measuring locally their two qubits. This 6-qubit state
corresponds either to two GHZ-like quantum states (tri-partite entanglement) or
three Bell-like quantum states (bi-partite entanglement). The aim is to compare the
performance in terms of the (new) Nash equilibrium points of these two types of
quantum resources in the described triangle-network situation for any choice of the
two boolean functions defining the game. This research, that mixes quantum games,
quantum networks, and quantum resources, presents an interesting and rather rich
situation, with potential applications in quantum information, for example, in the
quantum internet.
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Chapter 0

Preliminaries

Notation
The notation used in the present dissertation is the standard notation for quantum
mechanics: the Dirac notation, also known as the Bra-ket notation.
Quantum states are represented by complex-valued n-dimensional column vec-
tors in a Hilbert space H, states denoted using a vertical bar and an angle bracket
as |vy P Cn. In the usual mathematical notation, a vector is represented using bold
letters. Both formulations are equivalent. An example:

|vy “ v “

¨

˚

˚

˚

˝

1
3 ` i

...
´8

˛

‹

‹

‹

‚

This is referred to as the “ket” of such vector. The dual vector (or the “bra”) is
represented as xv|. The “bra” represents a complex-conjugated row vector. Using
the same example as before, the “bra” is:

xv| “ pv˚
q
T

“ pvT
q

˚
“

`

1 3 ´ i . . . ´ 8
˘

The Hilbert space H by definition has an inner product, which is denoted using
the “bra” and the “ket” of two vectors: xw |vy P C. For example:

xw| vy “ p|wy , |vyq “ pw˚,vq “
`

eiπ{12 6174 . . .
?
15 ´ 9i

˘

¨

˚

˚

˚

˝

1
3 ` i

...
´8

˛

‹

‹

‹

‚

“ p1qeiπ{12
` 6174p3 ` iq ` . . . ` p

?
15 ´ 9iqp´8q

It is easy to check that xw| vy and xv|wy are related xv|wy “ xw| vy˚.
An outter product is also defined, denoted by |wy xv|, which is a matrix. Keeping
the same vectors as with the inner product, the outter product is:

|wy xv| “

¨

˚

˚

˚

˝

e´iπ{12

6174
...

?
15 ` 9i

˛

‹

‹

‹

‚

`

1 3 ´ i . . . ´ 8
˘

vi



CHAPTER 0. PRELIMINARIES

“

¨

˚

˚

˚

˝

e´iπ{12 e´iπ{12p3 ´ iq . . . e´iπ{12p´8q

6174 6174p3 ´ iq . . . 6174p´8q
...

... . . .
...

?
15 ` 9i p

?
15 ` 9iqp3 ´ iq . . . p

?
15 ` 9iqp´8q

˛

‹

‹

‹

‚

Notice that |wy xv| and |vy xw| are completely different objects with no relation to
each other, as opposed to the inner product. The resulting matrix from |wy xv| and
|vy xw| will have in general different dimensions.

The standard basis, also called the computational basis in quantum mechanics, of
a n-dimensional Hilbert space is an orthonormal basis that represents the standard
basis of a vector space t|0y , |1y , |2y , ..., |n ´ 1yu:

|0y “

¨

˚

˚

˚

˚

˚

˝

1
0
0
...
0

˛

‹

‹

‹

‹

‹

‚

; |1y “

¨

˚

˚

˚

˚

˚

˝

0
1
0
...
0

˛

‹

‹

‹

‹

‹

‚

; ... |n ´ 1y “

¨

˚

˚

˚

˚

˚

˝

0
0
0
...
1

˛

‹

‹

‹

‹

‹

‚

Any vector in the Hilbert space |vy P H can be written as a linear combination of
the basis vectors; in this case, of the standard/computational basis:

|vy “

n´1
ÿ

k“0

λk |ky

where λk P C.

Postulates of Quantum Mechanics
This section will introduce very briefly the postulates of quantum mechanics. See,
for instance, [1] for more details about the postulates. It is out of scope to discuss
the interpretation and philosophical implications of the postulates. For that matter,
see [2, 3].

I. Description of the state

A quantum state is described by an n-dimensional complex vector in a Hilbert space
|Ψy P H. The state can be written as:

|Ψy “
ÿ

k

ck |ψky (1)

where: the index k goes from 1 to the dimension of the Hilbert space; t|ψkyu is a basis
of the Hilbert space; and ck are the probability amplitudes1. The probability of
finding the state |Ψy to be in |ψky is then |ck|2. The normalisation condition of
probabilities requires

ř

k |ck|2 “ 1, which implies that the state vector |Ψy has unit
norm xΨ |Ψy “ 1.

1The other alternative representation of the state uses the wave-function Ψpx, y, z, tq. The
state vector and the wave-function representations are equivalent. For the present dissertation,
only the state vector formulation will be used.
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CHAPTER 0. PRELIMINARIES

If the state is not pure, which means that it is a probabilistic mixture of pure states,
it is said to be a mixed state and is represented by a density matrix ρ. In a similar
fashion to pure states, the density matrix can be written as:

ρ “
ÿ

k

pk |ψky xψk| (2)

where pk is the probability of finding ρ in state |ψky. Pure states correspond to
ρ “ |Ψy xΨ|. The density matrix: 1) is Hermitian2 ρ: “ ρ; 2) has unit trace
Trpρq “ 1; 3) is non-negative xϕ| ρ |ϕy ě 0 @ |ϕy P H, equivalently denoted as ρ ě 0.

II. System composition

If the quantum system is composed of N individual sub-systems, then the resulting
Hilbert space is the tensor product of the Hilbert spaces of each sub-system,
H1 b H2 b ...b HN . Then, any state vector in that higher-dimensional space |Ψy P

H1 b H2 b ...b HN can also be written as a linear combination of the basis vectors
in each space:

|Ψy “
ÿ

k1,k2,...,kN

ck1k2...kN |ψk1ϕk2 ...φkN y (3)

where: each summation index goes from 1 to the dimension of the corresponding
Hilbert space; |ψk1ϕk2 ...φkN y ” |ψk1y b |ϕk2y b ...b |φkN y are the corresponding basis
vectors in each Hilbert space; and the coefficients are complex numbers ck1k2...kN P C
such that

ř

k1k2...kN
|ck1k2...kN |2 “ 1.

Up to global phases, the number of parameters to describe such a state vector
grows incredibly fast. If nk denotes the dimension of the k-th Hilbert space, the
necessary real parameters to describe such a state is 2n1n2n3...nN ´ 1, where the
factor 2 comes from the fact that each component of the vector is a complex number
and the ´1 comes from the normalisation condition of the coefficients.

III. Observables and expectation values

Observables are quantities that can be measured in a physical system, e.g. po-
sition, momentum, energy, spin, and so on. Each observable is represented by a
linear Hermitian (or self-adjoint) operator in the Hilbert space O P H. The
possible results of the measurement of an observable are the eigenvalues of its op-
erator O. The expectation value of the observable, denoted as xOy, given a pure
(normalised) quantum state |Ψy is computed as:

xOy “ xΨ|O |Ψy (4)

For a mixed state, represented by the density matrix ρ, the expectation value is:

xOy “ TrpOρq (5)

2In this dissertation, an Hermitian operator, which is also referred in mathematics as an
Hermitian adjoint/conjugate, will be denoted using a dagger :.
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IV. Measurements

The process of measuring a physical system is represented by a set of measurement
operators tMmu, where m labels the possible value of the measurements. If the state
before the measurement is |Ψy, then the probability of measuring that state and
finding outcome m is:

Probpmq “ xΨ|M :
mMm |Ψy (6)

For mixed states, the probability of outcome m is:

Probpmq “ TrpM :
mMmρq (7)

The measurement operators must satisfy the completeness relation:
ř

mM
:
mMm “ I, which implies that the sum of probabilities of all outcomes

is 1, i.e. when measuring, an outcome will be obtained.

Immediately after the measurement with outcome m, the pre-measurement state
|Ψy goes to:

|Ψy ùñ
Mm |Ψy

b

xΨ|M :
mMm |Ψy

(8)

This situation is usually referred to as the collapse of the wave-function because it
is an instantaneous and irreversible process. For mixed states:

ρ ùñ
MmρM

:
m

TrpM :
mMmρq

(9)

The equation in (6) and the relation in (8) for pure states are usually referred to as
the Born rule [4], proposed by Max Born in 1926.

In the literature, the general measurement process is described using only the for-
malism of POVMs (Positive Operator-Valued Measure) tEmu which are: positive
semi-definite (Em ě 0) Hermitian operators (E:

m “ Em) that add up to the identity
(
ř

mEm “ I). Of special interest is a subset of the POVMs, called projective mea-
surements3, abbreviated as PVM (Projection-Valued Measure). A set of PVMs
tPmu contains operators that are: Hermitian (P :

m “ Pm); positive semi-definite
(Pm ě 0); idempotent (P 2

m “ Pm); pair-wise orthogonal (PmPk “ Pmδmk); and add
up to the identity (

ř

k Pm “ I). The PVMs are a subset of POVMs when adding
the idempotent property and the orthogonality relations.

The POVM formalism is equivalent to the general measurement operators
tMmu described above by just defining Em “ M :

mMm to compute the probabilities
in equations (6) and (7). In such case, the Mm are said to be the Kraus operators4

of Em. The advantage of using the general formalism with tMmu is that each Mm

need not be Hermitian and the post-measurement states can be specified as in the
relations in (8) and (9); in contrast to the POVMs tEmu, which need to be Hermitian
and the post-measurement state cannot be directly defined because there is not a
unique decomposition of tEmu, i.e. the Kraus operators of each Em are not unique.

3Some authors also refer to projective measurements as “von Neumann measurements”.
4The name Kraus operators comes from Kraus’ representation [5] that characterises and

parametrises completely positive trace-preserving maps.
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V. Time evolution

The state |Ψptqy evolves in time according to the Schödinger equation:

iℏ
d

dt
|Ψptqy “ H |Ψptqy

where H is the Hamiltonian operator of the system and ℏ is the reduced Planck’s
constant ℏ “ h{2π.

The time evolution of a mixed state represented by ρptq follows the von Neumann
equation:

iℏ
d

dt
ρptq “ rH, ρs

where r , s denotes the commutator of operators rH, ρptqs “ Hρptq ´ ρptqH. .

The reversible transformations, such as time evolution, in pure states are represented
by unitary transformations |Ψy Ñ U |Ψy with U P Upnq.

VI. Anti-symmetry of the wave function

This is an additional not-so-standard postulate that is mentioned mainly when
using the wave-function description. It is the postulate of the anti-symmetry of
the wave-function with respect to interchanging coordinates of fermions (including
spin), which implies the Pauli exclusion principle. The Pauli exclusion principle
states that two identical fermions cannot be at the same time in the same state or
configuration. This postulate is not relevant to the present dissertation so it will
not be elaborated any further.

NOTES

For higher-dimensional vector states, sometimes it will be written |k1k2...kmy

or |k1yb|k2yb...b|kmy indistinctly. It will depend on whether it is considered
necessary to make the specification of each Hilbert space or not.

This dissertation only concerns with bi-dimensional quantum states, that
is, qubits (quantum bits). That means that the Hilbert space of each com-
ponent will always be two-dimensional.

x
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Structure of the dissertation
• Chapter 1: Quantum theory with its early development and its mix with game

theory.

• Chapter 2: Description of the Clauser-Horne-Shimony-Holt (CHSH) game, one
of the motivating pillars of this dissertation.

• Chapter 3: Definition of entanglement and its classification for bi-partite and
tri-partite states.

• Chapter 4: Definition and classification of boolean games in a triangle network
and the results using classical strategies.

• Chapter 5: Results for the boolean games in a triangle network when bi-partite
and tri-partite quantum states are used5.

• Chapter 6: Comparison of the results in chapter 5, the overall conclusions of
this dissertation, and future perspectives.

• Bibliography.

• Appendices: Appendices with extra information and calculations.

• Drawing: an art drawing of the research in chapter 5.

The next six diagrams show a more-detailed description of each chapter and their
connections to the previous chapters.

5Some of the results of this dissertation have been presented as a talk at All-Island Quan-
tum Festival at University College Dublin (Ireland) in September 2022 and at Des journées
quantiques à Aix-Marseille Université (France) in September 2023; and as a poster at Theory
of Quantum Communication, Computing and Cryptography 2023 (Portugal) in July 2023.
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Introduction
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CHAPTER 2

This introductory chapter explains briefly the early development of quantum
physics and how quantum physics and game theory met.

1.1 Quantum Physics
Late in the 19th century, with Maxwells’s equations in 1865 successfully describing
the electric and magnetic phenomena, it was believed that physics was finished;
the laws of physics were well-established and predicted the experimental results so
far. Nevertheless, in the same period, new experiments started to show results that
could not be fully explained by the known physics at the time.

One of the problems that was troubling the physicists was finding an explanation
to the spectrum of black-body radiation1. The available theory at the time – the

1The black-body radiation experiment consists of an black body – a perfect opaque object,

1



CHAPTER 1. INTRODUCTION

Rayleigh-Jeans law, in 1900 – worked well for explaining the spectrum at low
frequencies, but it also predicted a divergence at higher frequencies, known as the
ultra-violet catastrophe, divergence that was not seen experimentally. In 1901, Max
Planck proposed the quantification of the energy of radiation, which is nowadays
known as photons. With his assumption, Planck’s theory was able to explain
perfectly the spectrum of the black-body radiation. In his theory, he introduced
the famous fundamental constant h “ 6.626ˆ 10´34 J ¨ s (Planck’s constant), which
relates the energy of a photon and its frequency. Planck’s quantification was the
first step towards the birth of the quantum theory.

Another experiment with no satisfactory explanation at the time was the
photo-electric effect2. The crucial figure solving the mystery was an unknown
physicist at the time named Albert Einstein. In his paper in 1905 3, he followed
Planck’s steps, proposing the quantification of light to explain the experimental
results. Such was the success that he was awarded a Nobel Prize shortly after, in
1921, for his theory of the photo-electric effect.

In the following years many other experiments and physicists contributed to the
full development of modern physics, and particularly, of quantum mechanics. The
timeline of the the birth of quantum physics is:

1901 M. Planck Black-body radiation
1905 A. Einstein Photo-electric effect
1913 N. Bohr Atomic model with quantified orbits
1922 A. Compton Photon scattering with electrons
1924 W. Pauli Exclusion principle
1925 L. de Broglie Wave-particle duality
1926 E. Schrödinger Wave equation
1927 W. Heisenberg Uncertainty principle
1927 C. Davisson and L. Germer Experiment on wave properties of electrons
1927 M. Born Interpretation of the wave function

For a more detailed description of the benchmark events during that period, see
the chapter on the historical review of quantum mechanics in [6].

Despite the young theory of quantum mechanics predicting the experimental
results, not everyone was completely satisfied with its physical interpretation (see
in particular the section about the postulates of quantum mechanics in chapter 0);
especially the probabilistic interpretation of the measurement results – one of the

that only emits and absorbs radiation – placed into an oven at a fixed temperature. When ther-
mal equilibrium is reached, the emitted radiation of the black body is measured.

2The experiment of the photo-electric effect consists of a metal plate that is irradiated with
light. The electrons in the plate are then excited by the radiation. The goal was to explain the
relation between the irradiating light and the resulting excited electrons. This interaction be-
tween light and particles could not be properly explained using only the wave theory of light.

3This year Einstein published four ground-breaking papers: one explaining the photo-electric
effect, another one about Brownian motion, one introducing special relativity, and one showing
the mass-energy equivalence. 1905 is usually referred to as the annus mirabilis (miracle year) for
Einstein’s contribution to the development of modern physics.
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pillars of the so-called Copenhagen interpretation4 – discomforted many physicists
back then. One of the distressed physicists with the quantum theory, which he
helped to develop, was Einstein himself. He pronounced his famous quote “Gott
würfelt nicht” (God does not play dice). Einstein accepted indeed the success of
the quantum theory in explaining the experiments, but he and other physicists
thought that the theory was not complete; there was still something missing.
There were some hidden variables that if taken into account, the predictions of the
measurement would be deterministic and not probabilistic.

In classical physics, the use of probabilities is associated to a lack of knowledge
about the system. For instance, when tossing a coin, it is common to say that there
is a 50% chance that the result is heads and a 50% chance that it is tails. However,
if all the variables associated to the tossing of the coin were known (e.g. the force
applied, the initial velocity of the coin at all points, the friction with the air, and
so on), then it would be possible to predict with certainty the result of the toss.
That was Einstein’s argument regarding the probabilistic predictions of quantum
mechanics. To him, the quantum theory was only considering probabilities of
outcomes because the other (hidden) variables were being ignored, and if taken into
account, the result of the measurement could be completely determined. Einstein,
Podolsky, and Rosen wrote a famous paper in 1935, known as the EPR paradox5 [7],
questioning the completeness of quantum mechanics with a Gedankenexperiment
(thought experiment). In the EPR thought-experiment, the result of a measurement
on one particle would instantaneously affect the other particle, regardless of the
distance between them6. In their view, information was propagating faster than
the speed of light, thus violating causality, but that is not the case; the quantum
theory does not violate causality.

The discussion on the matter continued for a few years until a groundbreaking
paper in 1964 by a high-energy physicist from Northern Ireland named John Bell
[8] gave the possibility of testing whether the predictions of quantum mechanics
were intrinsically different than the predictions of a theory with hidden variables.
Bell’s model considered a generic local hidden-variable model7 and studied the
type of statistics that such a model would give. He proposed a linear combination
of the statistics given by that local hidden-variables model and found that such a
combination had an upper bound. According to Bell, any local theory of hidden
variables in accordance with his axioms could never exceed that upper bound.

4The Copenhagen interpretation refers to the interpretation of quantum mechanics given pri-
marily by N. Bohr and W. Heisenberg back in the 1950s. It consists of a set of principles about
the meaning of quantities and other aspects of the quantum theory.

5To date, it is Einstein’s most cited paper; even more than his papers on special and general
relativity.

6Einstein sent a letter to Born in 1947 mentioning his famous “spukhafte Fernwirkung”
(spooky actions at a distance) in relation to that interaction between two separated particles.
Nowadays, Einstein’s quote is popular when talking about entanglement in quantum mechanics.

7The term “local” for the hidden-variables model was crucial in the discussion. His model
rested on the notion of local realism, that means 1) particles’ attributes have a definite value de-
spite measuring them or not (realism); and 2) the correlations between distant events need to be
explained locally, for instance, the correlations were created at the common source of the exper-
iment (locality). The locality condition might be also defined in the literature as “information
cannot travel faster than the speed of light”, which is also considered in the above definition of
locality, but it might be a bit misleading.
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Nevertheless, considering that same combination of probabilities, but computed
from the quantum theory, that bound could be breached. With his research, Bell
provided a way of testing experimentally the predictions of quantum mechanics
against a local hidden-variable theory.

In honor to Bell, the combinations of probabilities that distinguish between
the prediction of the quantum theory and those of a local hidden-variable theory
are called Bell inequalities. If the inequality is violated, that process cannot be
described using a local theory of hidden variables and is considered to be quantum.
The quantum theory was labelled then as a non-local theory since in certain settings,
the correlations found between spatially-separated (or non-communicating) parties
could not come from a local theory. The set of formulations or results that aim at
distinguishing between the quantum and the hidden-variable theories are collected
under the name of Bell’s theorem.

Shortly after Bell’s groundbreaking paper, in 1969, four researchers, John
Clauser, Michael Horne, Abner Shimony, and Richard Holt, published a paper
proposing an inequality that gave that gap between the predictions of the local
hidden-variables theory and the quantum theory; only that this time8, it was
possible to test it experimentally using photons and the technology available at
the time. That inequality is known as the CHSH (Clauser-Horne-Shimony-Holt)
inequality, which is a type of Bell inequality. Chapter 2 will elaborate more on
the CHSH inequality and its implications. The subsequent years were prolific on
the experimental side of testing the predictions of quantum mechanics using Bell
inequalities, or Bell tests/experiments. These experiments – even conducted nowa-
days with improved settings – witnessed the violation of the inequalities and agreed
with the predictions of quantum mechanics, thus rejecting the hidden-variable
model9.

Since then, the widely-established quantum theory has led to an incredible
amount of applications that have the potential to revolutionise future technology.
Applications that range from the popular field of quantum computing (proposed by
Richard Feynman in 1981, see [10]) to quantum information and quantum cryptog-
raphy. All these relatively-new fields use the framework of quantum mechanics to
perform tasks in a more efficient way than with the classical framework. The huge
impact of these fields will be more noticeable in the next few years. In fact, the No-
bel Prize in Physics 2022 already recognised the importance of the people who were
crucial in confirming the quantum theory at the onset of it10: Alain Aspect, John
Clauser, and Anton Zeilinger were the prize winners “for experiments with entan-
gled photons, establishing the violation of Bell inequalities and pioneering quantum
information science”.

8Bell’s first inequality relied heavily on the assumption of a perfectly anti-correlated state,
and faultless detectors and analysers, which is impossible to achieve experimentally.

9The Standford Encyclopedia of Philosophy has excellent and detailed entries about quan-
tum mechanics and its early development. See in [9] the entries about Bell’s theorem and the
EPR paradox.

10John Bell was nominated for a Nobel Prize but he died of a stroke in 1990. Had he lived
longer, he would have probably been awarded one.
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1.2 Game Theory and Quantum Physics
Game theory studies the strategic interactions between parties (or players) that
want to achieve some goal, which typically is having the best performance in a given
game. Game theory itself is a field relatively new in mathematics. The first formal
treatment was given by John von Neumann and Oskar Morgenstern in the book The
Theory of Games and Economic Behaviour [11] in 1944. The next crucial figure
in game theory was John Nash11, a mathematician who published a set of articles
in the 1950s [12, 13] that set the foundations of game theory with his definition
and existence of equilibrium: the Nash equilibrium. A Nash equilibrium is a
configuration of strategies in which no player wants to unilaterally deviate from it.
This concept typically applies to non-cooperative games, i.e. games in which the
players do not necessarily need to cooperate with the others. Nash’s definition of
equilibrium is of great importance because, as he showed in [13], all games have at
least one Nash equilibrium12. In the following years, game theory flourished and
has found applications in many fields; for instance, in theoretical economics, in
today’s networks, in political science, in the military, in biology, and in many other
diverse fields. That is why John Nash’s contribution was recognised in the Nobel
Prize in Economic Sciences in 1994 – shared with game theorists John Harsanyi
and Reinhard Selten – “for their pioneering analysis of equilibria in the theory of
non-cooperative games”.

During the same period as Nash’s crucial papers, in 1951, Melvin Dresher and
Merrill Flood proposed the well-known game called the Prisoner’s Dilemma,
which was formalised by Albert Tucker [15]. The Prisoner’s Dilemma has become
one of the most famous examples of the application of game theory. The game
involves two thieves getting caught and then brought into two separate interrogation
rooms to avoid communication. The police officer tells each prisoner: “if you both
confess, you both get 1 year in prison; if you both deny the robbery, you both get
5 years, and if you confess and the other denies it, you get 10 years and the other
is set free (gets 0 years13)”. If the players act rationally on their own interest, the
solution for this game is when they both deny the robbery, thus both getting 5
years in prison. From an external point of view, it seems that the best strategy for
both would be confession, and getting 1 year; however, that solution is not “stable”
since any of the players would prefer to deviate unilaterally to get a better deal (1
year against freedom). The solution of denying and getting 5 years is the one in
which no player would want to change from it, thus it is the Nash equilibrium of
this game. That is why it is coined as a game that poses a dilemma because the
solution to this game brings forward the question of individual rationality against

11The biography of John Nash, with title A Beautiful Mind, was written by the journalist
Sylvia Nasar in 1998. A subsequent cinematographic adaptation with the same title was made in
2001 by director Ron Howard, starring Russel Crow as John Nash.

12Nash used Kakutani’s fixed-point theorem [14] to prove the existence of at least one equilib-
rium for all games when using mixed strategies, which are just a probabilistic mixture of (pure)
strategies.

13These possible outcomes of a two-person game can be formulated as a matrix, known as the
payoff matrix. Each row and column has the possible strategies for the players and the entries
give the correspondent payoff for that combination of strategies. In the Prisoner’s Dilemma, the
number of sentence years (or payoff) varies across different versions, but the essence of the game
is the same.
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collective rationality14.

In 1999, Jens Eisert, Martin Wilkens, and Maciej Lewenstein (EWL, for short)
analysed the Prisoner’s Dilemma in the context of the players having access to
quantum strategies [16]. Simultaneously, David Meyer also proposed the term
quantum strategies in the context of studying quantum algorithms15 [17].

In general, all games can be analysed using mixed strategies, that is, a
probabilistic mixture of (pure) strategies. Then, using the payoff matrix, the
players’ payoff is calculated as an average, i.e. probability of choosing that strategy
times the payoff that such strategy gives. Essentially that is what EWL did with
the Prisoner’s Dilemma; but instead of computing the probabilities in the usual
way, they considered that such probabilities came from a quantum system. More
specifically, in their paper, they considered that there was a 2-qubit quantum state
and each player would perform a local (unitary) operation on that state to choose
between denying or confessing by measuring their qubit (measuring the qubit in
state |0y meant confessing and in state |1y denying)16. Then, the four possible
probabilities – of both confessing, of both denying, and of one confessing and the
other denying – were computed. Finally, the average payoff for each player was
obtained by multiplying those probabilities by the corresponding payoff in the
payoff matrix.

EWL analysed the resulting average payoffs for the prisoners and found that
the new solution with quantum strategies was Pareto optimal, i.e. by deviating
from that set of strategies it is not possible to improve one player’s payoff without
decreasing the other player’s payoff. In the classical version of the Prisoner’s
Dilemma, the Pareto optimal solution corresponds to both players confessing (and
getting 1 year), but it is not an equilibrium. EWL’s result implied that the dilemma
disappeared when the players used quantum strategies since the new (quantum)
equilibrium was the best solution for the players individually and collectively.

After EWL’s paper, there was a heated debate about the validity of their analysis
from the game-theoretic point of view. For instance, in [18], the authors argued that
such quantum state acted as some sort of advice, which made the comparison with
the classical unadvised set-up unfair, and also that the same (quantum) equilibrium
could be reproduced by adding an extra strategy to the original classical game, thus

14Individual against collective rationality is also illustrated in the game The Tragedy of the
Commons, proposed by William Forster Lloyd in 1833. In that game, the players acting on their
own self-interest when consuming a common resource leads to the exhausting of that resource,
contrary to everyone’s benefit.

15He considered the Penny Flip game, which exhibits similarities with oracle problems in
quantum algorithms. The Penny Flip game consists of two players blindly choosing to flip or
not a penny over a sequence of turns. Meyer considered that one of the players had access to
quantum strategies (i.e. setting the penny in a superposition of heads and tails) and the other
did not. In that case, there was a strategy in which the quantum player would always win.

16This idea is a simplification of the original model. In their formulation, the state started
in a separable state |Cy b |Cy (the vector |Cy “ p1 0qT is identified as confessing, and |Dy “

p0 1qT as denying) then an entangling gate Ĵ would act on both qubits. The entangling gate had
a parameter γ that controlled the amount of entanglement introduced. After that, the players
would perform their strategies by picking local unitary operations. Finally a dis-entangling gate
Ĵ: would act and the final state would be measured.
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making the use of quantum strategies redundant. Another issue found is that the
disappearance of the dilemma using quantum resources only happened when the set
of strategies, i.e. the local unitary operations, were restricted. In contrast, if the
full set of local unitaries were considered, there was no Nash equilibrium at all [19].
All of these arguments about the EWL’s version of the Prisoner’s Dilemma were fair
and enriched the conversation about the meaning of a quantum game. That is why
other quantisation models of games were also proposed, for instance, see [20]. In
the following years, a bunch of other popular games were adapted to the quantum
scenario. The study of games using quantum resources was born, leading to the field
of quantum game theory.

The new framework of quantum games has also extended to other areas be-
yond game theory itself. For instance, quantum games have applications in quantum
computing, complexity theory, quantum cryptography, and quantum foundations.
The framework of games allows one to formulate (or re-formulate) existing or new
problems in a different way, giving new tools for the analysis and its possible appli-
cations. One of the most well-known games in the area of quantum foundations is
the CHSH game, named after the Clauser-Horne-Shimony-Holt (CHSH) inequality
(see the end of section 1.1). This game, which will be fully explained in the next
chapter, will be one of the basis of the present dissertation. For an extensive review
of quantum games and their applications, see [21].

In fact, not only are quantum games a theoretical tool to analyse research ques-
tions, but also the quantumness in games has actually reached the general public.
There is a long list of computer games and games for smartphones that use the at-
tractiveness of playing a game to illustrate some concepts in quantum physics. One
example is a quantum version of the popular Tic-Tac-Toe (or noughts and crosses
or Xs and Os) called Quantum Tic-Tac-Toe, which was proposed in 2006 by Allan
Goff [22] to introduce the concept of superposition17. There are some games that
are actually helping research, for instance, the game Decodoku18 proposes puzzles
related to quantum error correction in the field of quantum computing. On another
application, the quantum can also be used directly in conventional games; for in-
stance with “quantum blurr” [23] for terrain generation. All these examples show
the broadness of the topic of quantum games, either for research or just for fun.

Summary of the chapter

This chapter has briefly introduced the need and development of the quantum theory
and all the obstacles and objections to it back in the 20th century. John Bell was
crucial to settling the argument with his Bell inequalities. One of the first Bell-type
inequalities to be tested experimentally was the CHSH inequality, confirming the
validity of quantum mechanics. The CHSH inequality can be illustrated as a game
– in the next chapter, chapter 2. The mix between the language of games and the
quantum started back in the early 2000s, establishing the study of quantum games
to be a sub-field in itself with many corners and applications still to be explored.

17The author of the present dissertation programmed a version of the Quantum Tic-Tac-Toe
based on [22] that can be used in a workshop scenario for children and/or teenagers. It is avail-
able in different languages at https://vickynititi.itch.io/quantum-tic-tac-toe (accessed
Jan 2024).

18Available at https://citizensciencegames.com/games/decodoku/ (accessed Jan 2024).
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This chapter explains the Clauser-Horne-Shimony-Holt (CHSH) game. First, the
CHSH inequality [24], which is type of Bell inequality (see chapter 1), is explained.
Then, the CHSH game, based on the inequality, is introduced and analysed in detail.
This is the most popular quantum game, which served as inspiration for the research
conducted in this dissertation.

2.1 The CHSH Inequality
During the period of John Bell and his (Bell) inequalities to test the completeness
of quantum mechanics, John Clauser, Michael Horne, Abner Shimony, and Richard
Holt proposed in 1969 their own test: the Clauser-Horne-Shimony-Holt (CHSH) in-
equality. It was one of the first inequalities that was actually possible to implement
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experimentally1. John Clauser himself and Stuart Freedman were able to conduct
the first experiment [25] of the CHSH inequality in 1972, finding an experimen-
tal value that exceeded the bound of the inequality and confirming the prediction
of quantum mechanics, thus discarding the local hidden-variables theory. How-
ever, in that first experiment there were loopholes2 that (it could be argued) that
could still save the hidden-variables theories. Later on, in 1982, Alain Aspect et al.
[26, 27] performed several experiments3 that addressed some of the loopholes. The
technological improvements led finally in 2015 to loophole-free experiments of Bell
inequalities [28–30].

Returning to the original CHSH inequality, the setup is as follows:

• A pair of (entangled) photons is distributed between two different and sepa-
rated detectors.

• The detectors measure the polarisation of the photon, giving two possible
outcomes: either horizontal polarisation, which is assigned a `1 value, or
vertical polarisation, which is assigned a value of ´1.

• The first detector is aligned with a certain orientation and measures the po-
larisation of one of the photons; the result of such measurement is labelled as
a. Then, another orientation of that same detector is chosen to measure the
polarisation of the photon again, labelled as a’. Similarly for the second detec-
tor with two orientations for measuring the polarisation b and b’ of the other
photon. Regardless of the orientation of the detectors, the possible results
of the measurements are either `1 (horizontal polarisation) or ´1 (vertical
polarisation), i.e. a, a’,b,b’ P t`1,´1u.

• The correlations between the measurements of both detectors are studied.

The CHSH inequality is this particular combination of correlations between the
measurements of both detectors:

CHSH ineq “ xaby ` xab’y ` xa’by ´ xa’b’y (2.1)

where xaby denotes the expectation value of observable ab, since the measurement
event in the detector is of probabilistic nature. The interesting feature of the CHSH
inequality in equation (2.1) is that the maximal value predicted by the local-hidden
variables model differs from the maximum coming from quantum mechanics. The
maximum value coming from the hidden-variable model (or classical scenario) is 2
and the quantum is 2

?
2 « 2.828, as will be shown next.

1As mentioned in the previous chapter, Bell’s first inequality required extreme experimental
control and precision, making them unsuitable for real experiments.

2There are many types of loopholes when performing a Bell experiment. In this case, it
was the locality (also known as communication) loophole, which asserts that the events are not
space-like separated, allowing the possibility of communication or signalling between the two
events.

3Alain Aspect was one of the awardees of the Nobel Prize in Physics 2022 for his experi-
ments.
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According to the classical view and interpretation of the experiment, two indi-
vidual particles are sent to two separated detectors that measure either +1 or -1.
The measurements of the particles at each detector are spatially-separated events,
which means that no information can be transmitted from one to the other4. This
setting implies that the measurements of each detector must be fully independent or
that they were correlated via some underlying local hidden variables that dictated
the outcomes for both particles. The classical bounds for the CHSH inequality are
more easily illustrated by just considering the independence of the measurement
outcomes, which leads to the following relation:

ab ` a’b ` ab’ ´ a’b’ “ apb ` b’q ` a’pb ´ b’q “ ˘2 (2.2)

where it was used that all the variables take values either `1 or ´1; which implies
that any of the two terms with bs is 2 and the other term is 0. Then, the absolute
value of the combination in equation (2.2) is 2. The classical bound of the CHSH
inequality in equation (2.1) follows from the result in equation (2.2) and the triangle
inequality:

CHSH ineq “ |xaby ` xab’y ` xa’by ´ xa’b’y| ď x|ab ` a’b ` ab’ ´ a’b’|y “ 2
(2.3)

As mentioned above, this is a simple proof of the classical bound of the CHSH
inequality using the independence of measurement outcomes and some basic
mathematics. That same bound can also be obtained using the Bell-like local
hidden-variable approach by writing the correlation functions as integrals over the
hidden-variable space. See the original paper [24] of the CHSH inequality for that
more-formal derivation.

The proof of the quantum bound of the CHSH inequality, which is 2
?
2, will be

made in the next section 2.2 when introducing the CHSH game.

2.2 The CHSH game
As it was already mentioned, the CHSH game is based on the CHSH inequality [24]
from equation (2.1). The usual description of the game goes as follows:

• There are two players, typically called Alice and Bob.

• When the game starts, the players are separated and no in-game communica-
tion is allowed.

• Then, each player receives a binary input and must output a binary bit. For
Alice, her input is x P t0, 1u and her output is a P t0, 1u. Bob’s input is
y P t0, 1u and his output is b P t0, 1u.

• The players only have information about their input and output and know
nothing about the other player’s input or outputs5. This situation is usually
presented with a referee giving them the outputs and receiving the output bits.

4Assuming Einstein’s special relativity principle, i.e. information cannot travel faster than
the speed of light.

5This situation is known in the game-theoretic literature as “games with incom-
plete/imperfect information”, or equivalently “Bayesian games” because Bayes’ theorem is used
to update the players’ beliefs in the course of the game.
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• The players (jointly) win if the next condition is satisfied:

x ^ y “ a ‘ b (2.4)

where ^ represents the boolean AND operator and ‘ the boolean XOR opera-
tor6. Following the standard game-theoretic tools, this winning condition can
also be captured using a payoff matrix, which is divided into two situations
depending on the value of x ^ y:

x ^ y “ 0 x ^ y “ 1
Bob Bob

0 1 0 1

Alice 0 (1, 1) (0, 0) (0, 0) (1, 1)
1 (0, 0) (1, 1) (1, 1) (0, 0)

(2.5)

where Alice’s strategies a “ 0 and a “ 1 are represented as rows and Bob’s
strategies b “ 0 and b “ 1 as columns. For a given combination of strategies
(for certain inputs) in the payoff matrix in (2.5), the first number in each
parenthesis refers to Alice’s payoff while the second refers to Bob’s payoff. In
this case, when they win, they both receive a payoff of 1; and when they lose,
they get nothing (zero). For this dissertation the payoff matrix formulation
is not particularly useful, it is only mentioned here for completeness and for
illustrating the connection of the winning condition in equation (2.4) with the
payoff matrix formulation widely used in game theory.

• Figure 2.1 illustrates the set-up of the game.

2.2.1 The classical bounds

In the classical setting of the game, Alice and Bob may use any classical resources,
but when the game starts and they are given their inputs, they cannot use any
resource to communicate. This imposition means that either their outputs are com-
pletely uncorrelated/independent or might be correlated by some before-game com-
munication and/or some in-game event that does not allow for communication7.
This situation is analogous to the classical view of the experiment for the CHSH
inequality in section 2.1, explained just before equation (2.2). Like before with the
classical bounds for the CHSH inequality, the bounds of the CHSH game are also
more easily illustrated by directly analysing the winning condition in equation (2.4)
and assuming that both outputs are independent/uncorrelated. That winning con-
dition implies that for inputs x “ y “ 1 the players win if a “ 0 and b “ 1, or if
a “ 1 and b “ 0. In the other three possible combinations of inputs, the players win
if a “ b. Since it is a cooperative game, that means, both players win or lose jointly,
the important quantity is the winning probability. Assuming a uniform distribution

6In this case, the winning condition was written using boolean operators, but that same win-
ning condition can be written as: x ¨ y “ a ` b (mod 2), where ¨ is the usual multiplication and
the outputs are added modulo 2.

7For instance, Alice and Bob could meet before the game and agree on always outputting
0 regardless of their inputs (before-game communication), or they could agree on outputting 0
only if it is raining when they perform the measurements (a common event that cannot be used
for communication). The important part here is that no communication of any kind must occur
when the game starts.
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CHSH GAME

ALICE BOB

Fig. 2.1: CHSH game with the referee and two players Alice and Bob. The players are
separated and cannot communicate once they receive their binary input x, y P t0, 1u, rep-
resented by a golden coin. They must output a bit a, b P t0, 1u, represented by a bronze
coin. The referee then compares the inputs and outputs, and the players win if the win-
ning condition x ¨ y “ a ` b pmod 2q is satisfied, which is equivalent to condition in
equation (2.4) using boolean operators.

of inputs, it is not hard to show that the maximum and minimum value of the
winning probability classically is 3{4 “ 0.75 and 1{4 “ 0.25. To show that, let a0
and a1 denote Alice’s output when she receives input x “ 0 and x “ 1, respectively.
Similarly for Bob with b0 and b1 when y “ 0 and y “ 1. Then, the four equations
coming from the winning condition in equation (2.4) are:

x “ 0; y “ 0 Ñ 0 “ a0 ` b0 (2.6)
x “ 0; y “ 1 Ñ 0 “ a0 ` b1 (2.7)
x “ 1; y “ 0 Ñ 0 “ a1 ` b0 (2.8)
x “ 1; y “ 1 Ñ 1 “ a1 ` b1 (2.9)

where it was assumed that the players’ outputs are independent of each other.
Adding all the four equations gives a new equation:

2 pa0 ` a1 ` b0 ` b1q “ 1 (2.10)

which cannot be satisfied since a0, a1, b0, b1 P t0, 1u. That means that it is not
possible to fulfill all four equations at the same time. However, it is possible to
fulfill three of them. For instance, with both players outputting 0 regardless of their
input (i.e. a0 “ a1 “ b0 “ b1 “ 0) then the first three equations are satisfied. If all
the combinations of inputs are equally probably, then 3 out of 4 times the players
will win, giving the maximum winning probability of 3{4 “ 0.75.

A similar argument follows for the minimum winning probability. It is not
possible to fulfill all four losing equations, i.e. the resulting equations from
flipping the left-hand side (exchanging 0 for 1 and vice-versa) in the winning
equations in (2.6)-(2.9); only three out of four times the players can lose the game.

12
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Assuming equally probable inputs, that leads to the minimum winning probability
of 1{4 “ 0.25.

Using very simple arguments, it has just been shown that the winning proba-
bilities of the CHSH game when using classical strategies lie in the range between
1{4 “ 0.25 and 3{4 “ 0.75.

2.2.2 The quantum scenario

In the quantum version of the CHSH game, the players share initially a 2-qubit
quantum state, with one qubit for each player, and depending on their inputs
they will perform a (local) measurement of their qubit and use the result of that
measurement as their output.

The probabilistic nature of quantum mechanics requires the use of probabilities
of events happening. In the present case, Probpa, b|x, yq denotes the (conditional)
probability of outputs a and b given inputs x and y. From the winning condition
in equation (2.4) and assuming equally probable inputs, the winning probability for
the CHSH game is:

Probpwinq “
1

4
rProbp0, 0|0, 0q ` Probp1, 1|0, 0q ` Probp0, 0|0, 1q ` Probp1, 1|0, 1q

`Probp0, 0|1, 0q ` Probp1, 1|1, 0q ` Probp0, 1|1, 1q ` Probp1, 0|1, 1qs

(2.11)

Equation (2.11) is the standard form of writing the winning probability given
the winning conditions of the CHSH game. Nevertheless, there is another way of
writing it that makes the analysis of the quantum bounds much easier. The next
subsection will derive the quantum bound in a formal way using the alternative
form of the winning probability. For now, it is sufficient to consider the one in
equation (2.11).

In the quantum version, the players share a 2-qubit state. The shared state will
be a maximally entangled state8:

|Φ`
y “

1
?
2

p|00y ` |11yq (2.12)

where the first qubit belongs to Alice and the second to Bob. This particular
state is usually referred to as a Bell state or an EPR pair – from the Einstein-
Podolsky-Rosen paradox, introduced in chapter 1. It is one of the simplest 2-qubit
states that is maximally entangled. Along with three other states, they define the
so-called Bell basis t|Φ`y , |Φ´y , |Ψ`y , |Ψ´yu, where |Φ˘y “ p|00y ˘ |11yq{

?
2 and

|Ψ˘y “ p|01y˘|10yq{
?
2. All of the states in the Bell basis are maximally entangled.

After receiving their input, both players will perform a projective measurement9

on their qubit in a given basis. Figure 2.2 illustrates the quantum situation for the
8The notion of a “maximally entangled” state for two qubits will be explained in chapter 3.
9A projective measurement is a special case of a more general measurement operator, in

which the measurement process is represented by a projector. See the measurement postulate
in the postulates of quantum mechanics in chapter 0.
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ALICE BOB

qubit 
A 

qubit 
B 

measurement 
in basis

measurement 
in basis

Quantum CHSH GAME

Fig. 2.2: Situation of the CHSH game with players each having one qubit. The system of
two qubits is described by |Φ`y. After receiving their inputs x, y, the players perform a
measurement on their qubit in a chosen basis. Their output bit will be the result of that
measurement a, b.

CHSH game. Alice’s choice of basis will be a rotation of a certain angle along the
X-axis:

|ux,0y “ cospαxq |0y ´ sinpαxq |1y (2.13)
|ux,1y “ sinpαxq |0y ` cospαxq |1y (2.14)

while for Bob:

|vy,0y “ cospβyq |0y ´ sinpβyq |1y (2.15)
|vy,1y “ sinpβyq |0y ` cospβyq |1y (2.16)

The set t|ux,0y , |ux,1yu is Alice’s new basis10 that depends on the input x. Given
x, if Alice measures her qubit to be in state |ux,0y her output will be a “ 0, whereas
if her qubit is in state |ux,1y she will output a “ 1. Similar argument for Bob with
the basis t|vy,0y , |vy,1yu depending on the input y. In the quantum scenario, the
players’ strategies are in their choice of the basis vectors in which they will measure
their qubit, which, in this case, in the choice of the angles αx and βy. In principle,
the strategic space now is infinite11 because they can choose any two vectors that
form a basis.

Since the players will be measuring in another basis, it is convenient to re-express
the initial quantum state in equation (2.12) in the new basis:

10The choice of the basis might seem very restrictive, and indeed it is, but it is a simple basis
that depends on only one parameter and is good enough to achieve the maximum and minimum
bounds in the quantum scenario. Other more-general choices of basis would be equally valid, but
they might depend on more parameters and/or not reach the quantum bounds.

11In the classical version, only pure (or deterministic) strategies were considered, e.g. choose
either 0 or 1. Nonetheless, a probabilistic mixture of strategies, known as mixed strategies, could
also be considered, e.g. choose 0 with probability p and choose 1 with probability 1 ´ p. In that
case, the strategic space in the classical scenario is also infinite. However, since the mixed strate-
gies are a convex combination of pure strategies, in this case, it is sufficient to consider pure
strategies to find the range of the winning probability. This range for the CHSH game is 0.25 to
0.75.
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|Φ`
y “

1
?
2

p|00y ` |11yq

“
1

?
2

rcospαx ´ βyq |ux,0vy,0y ´ sinpαx ´ βyq |ux,0vy,1y

` sinpαx ´ βyq |ux,1vy,0y ` cospαx ´ βyq |ux,1vy,1ys (2.17)

where two trigonometric identities were used.

The postulates of quantum mechanics say that the probability of measuring a
(pure) state represented by |Ψy to be in state |ψy is Probp|ψyq “ |xψ |Ψy |2. In the
present case with the game, the probability of the players outputting a, b conditioned
to the inputs x, y is equal to the probability of the players measuring the shared state
|Φ`y to be in state |ux,avy,by:

Probpa, b|x, yq “
ˇ

ˇxux,avy,b |Φ`
y

ˇ

ˇ

2

“ xΦ`
|ux,avy,by xux,avy,b|Φ

`
y

“ xΦ`
| p|ux,ay xux,a| b |vy,by xvy,b|q |Φ`

y

“ xΦ`
|Πx,a b Πy,b |Φ`

y (2.18)

where, in the last line, it was defined the projective measurement operators for
Alice Πx,a “ |ux,ay xux,a| and Πy,b “ |vy,by xvy,b| for Bob. The tensor product b was
written explicitly to show that each projector acts on their own Hilber space. Note
that the definition of the conditional probability in equation (2.18) is independent
of the chosen basis; the only elements needed are the projective measurement
operators and the chosen state (in a given dimension).

For the particular choice of the maximally entangled state in equation (2.12)
and the new basis defined in equations (2.13)-(2.16), the probabilities are easily
computed from equation (2.17) as just the coefficients squared. These four condi-
tional probabilities are:

Probp0, 0|x, yq “ Probp1, 1|x, yq “
1

2
cos2pαx ´ βyq (2.19)

Probp0, 1|x, yq “ Probp1, 0|x, yq “
1

2
sin2

pαx ´ βyq (2.20)

Finally, substituting those values of the probabilities into the winning probability
of the CHSH game in equation (2.11) gives:

Probpwinq “
1

4

“

cos2pα0 ´ β0q ` cos2pα0 ´ β1q ` cos2pα1 ´ β0q ` sin2
pα1 ´ β1q

‰

(2.21)
The computation of the extreme values of equation (2.21) is shown in appendix

A.1. The canonical values of the angles that maximise the winning probability are:
α0 “ 0; α1 “ π{4; β0 “ π{8; β1 “ ´π{8. Then, the maximum winning probability
is:

max Probpwinq “
1

4

„

3 cos2
´π

8

¯

` sin2

ˆ

3π

8

˙ȷ
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“ cos2
´π

8

¯

“
2 `

?
2

4
« 0.853 (2.22)

where it was used that sin2p3π{8q “ cos2pπ{8q.

As for some minimising angles, one choice can be α0 “ 0; α1 “ π{4; β0 “ ´3π{8;
β1 “ 3π{8, then the minimum probability is:

min Probpwinq “
1

4

„

2 cos2
ˆ

3π

8

˙

` cos2
ˆ

5π

8

˙

` sin2
´

´π

8

¯

ȷ

“ sin2
´π

8

¯

“
2 ´

?
2

4
« 0.146 (2.23)

where it was used that cos2p3π{8q “ cos2p5π{8q “ sin2pπ{8q.

As it was just shown, using a maximally entangled state and some projective mea-
surements, the range of the winning probability for the CHSH game using quantum
resources is larger than the classical range by around 20% !:

0.146 «
2 ´

?
2

4
ď Quantum Probpwinq ď

2 `
?
2

4
« 0.853 (2.24)

0.25 “
1

4
ď Classical Probpwinq ď

3

4
“ 0.75 (2.25)

This separation between the classical and the quantum value is referred to in
the literature as non-locality, since, as Bell showed with his inequalities, no local
hidden-variables theory could reproduce those correlations. Nonetheless, quantum
mechanics, which is non-local, predicts indeed those correlations.

The quantum bound

In this part, it will be shown formally that the maximum and minimum value of
the winning probability for the CHSH game using the maximally entangled state
|Φ`y in equation (2.12) and the chosen basis for the projective measurements in
equations (2.13)-(2.16) achieve the optimum values and it is not possible to do any
better (or worse) by using other states and/or measurements.

To show the optimality of the obtained bounds, the first step is re-writing the
winning probability of the CHSH game in a way that resembles the original CHSH
inequality. The second step is using Tsirelson’s proof [31–33] from the 1980s for the
bounds of the CHSH inequality.

For the step of re-writing the winning probability in equation (2.11), consider
the trivial identity of all probabilities summing to 1 regardless of the inputs:

Probp0, 0|x, yq ` Probp0, 1|x, yq ` Probp1, 0|x, yq ` Probp1, 1|x, yq “ 1 (2.26)

This completeness relation12 and the winning probability of the CHSH game can
be written in a shorter form by defining the coordination and anti-coordination prob-
abilities. The coordination probability is defined as the probability of the players

12Completeness relation is used more in the context of operators that sum to the identity.
In this case, it just means that the event actually happens, therefore, the probabilities of the
different possible outcomes sum to 1.
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coordinating their outputs, i.e. Probpcoord|x, yq “ Probp0, 0|x, yq ` Probp1, 1|x, yq.
In a similar way, the anti-coordination probability is defined for when the play-
ers anti-coordinate their outputs Probpanti|x, yq “ Probp0, 1|x, yq ` Probp1, 0|x, yq.
Then, the completeness relation in equation (2.26) is just Probpcoord|x, yq `

Probpanti|x, yq “ 1. The winning probability of the CHSH game in equation (2.11)
becomes:

Probpwinq “
1

4
rProbpcoord|0, 0q ` Probpcoord|0, 1q

`Probpcoord|1, 0q ` Probpanti|1, 1qs (2.27)

Moreover, the coordination and anti-coordination probabilities can be written in
a more symmetric way using the completeness relation:

Probpcoord|x, yq “
1

2
rProbpcoord|x, yq ` 1 ´ Probpanti|x, yqs (2.28)

Probpanti|x, yq “
1

2
rProbpanti|x, yq ` 1 ´ Probpcoord|x, yqs (2.29)

Then, substituting equations (2.28) and (2.29) into equation (2.27), the win-
ning probability only depends on the difference between the coordination and anti-
coordination probabilities:

Probpwinq “
1

2
`

1

8
rProbpcoord|0, 0q ´ Probpanti|0, 0q

` Probpcoord|0, 1q ´ Probpanti|0, 1q

` Probpcoord|1, 0q ´ Probpanti|1, 0q

´pProbpcoord|1, 1q ´ Probpanti|1, 1qqs (2.30)

Remember that the conditional probability can be written as: Probpa, b|x, yq “

xΨ|Πx,a b Πy,b |Ψy (see equation (2.18) ), where |Ψy is a given quantum state and
Πx,a “ |ux,ay xux,a| and Πy,b “ |vy,by xvy,b| are the measurements projector for each
player in the new basis t|ux,ayb|vy,byua,bPt0,1u given the inputs x and y. Even though
the same notation was used in the previous section for the new measurement basis,
t|ux,ayuaPt0,1u and t|vy,byubPt0,1u are assumed here to be a generic basis, i.e. not
restricted to the choices in equations (2.13)-(2.16).

Using that the (conditional) probabilities come from the quantum measurement
process, which is represented by the projector operators applied to the generic state
|Ψy, then the difference between the coordination and anti-coordination probabilities
can be written as:

Probpcoord|x, yq ´ Probpanti|x, yq “ xΨ|Πx,0 b Πy,0 |Ψy ` xΨ|Πx,1 b Πy,1 |Ψy

´ xΨ|Πx,0 b Πy,1 |Ψy ´ xΨ|Πx,1 b Πy,0 |Ψy

“ xΨ| pΠx,0 ´ Πx,1q b pΠy,0 ´ Πy,1q |Ψy (2.31)

This equation implies that the important operator is the difference between the
two projective measurement operators. It is convenient then to define Ax “ Πx,0 ´

Πx,1 and By “ Πy,0´Πy,1, which allows to re-write equation (2.31) in a more compact
way:

Probpcoord|x, yq ´ Probpanti|x, yq “ xΨ|Ax b By |Ψy (2.32)
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Before characterising Ax and By, it is worth recalling the properties of the pro-
jective measurement operators. Focusing on the projector Πx,a, it fulfills these con-
ditions:

• Projector: Π2
x,a “ p|ux,ay xux,a|q p|ux,ay xux,a|q “ |ux,ay xux,a| “ Πx,a

• Positive-definite: xΨ|Πx,a |Ψy “ xΨ|ux,ayxux,a |Ψy ě 0 @ |Ψy P H.

• Hermitian: Π:
x,a “ Πx,a.

• Completeness relation: Πx,0 ` Πx,1 “ |ux,0y xux,0| ` |ux,1y xux,1| “ I since
t|ux,0y , |ux,1yu is a basis of the corresponding Hilbert space.

Similar relations hold for Bob’s projectors Πy,b. The projector operators are
observables, that is, quantities that can be measured directly in the system, e.g.
energy, position, momentum. Observables are represented in quantum mechanics
by Hermitian operators. The possible values of an observable are the eigenvalues
of the operator. The eigenvalues of a projector operator are either 0 or 1, which
is why Πx,a and Πy,b are the chosen quantum operators to decide on the binary
outputs for Alice and Bob a, b P t0, 1u.

In contrast, the operators Ax and By have eigenvalues `1 and ´1. Firstly,
they are both Hermitian pAxq: “ Ax and pByq: “ By, so they are observables. To
show that the eigenvalues are `1 and ´1, it is enough to square the operators:
pAxq2 “ pΠx,0´Πx,1q2 “ pΠx,0q

2`pΠx,1q
2´Πx,0Πx,1´Πx,1Πx,0 “ I, where it was used

the projector property pΠx,aq2 “ Πx,a and the completeness relation Πx,0 `Πx,1 “ I,
which means the anti-commutator13 is 0, i.e. Πx,0Πx,1 ` Πx,1Πx,0 “ 0. Therefore,
since pAxq2 “ I, the eigenvalues of Ax are `1 and ´1. The same holds for Bob with
By.

Returning to the winning probability of the CHSH game, equation (2.30) can
be written in terms of the newly-defined operators Ax and By in a very compact
manner:

Probpwinq “
1

2
`

1

8
xΨ| pA0 b B0 ` A0 b B1 ` A1 b B0 ´ A1 b B1q |Ψy (2.33)

The combination of the operators A0 bB0 `A0 bB1 `A1 bB0 ´A1 bB1 is the
part related directly to the CHSH inequality from section 2.1. In that section, it was
shown that, classically, for variables a, a’,b,b’ P t`1,´1u, it follows |xaby`xab’y`

xa’by ´ xa’b’y| ď 2. However, as it will be explained using a similar technique, the
quantum bound of that combination of operators is 2

?
2.

First, consider the operator:

O “ A0 b B0 ` A0 b B1 ` A1 b B0 ´ A1 b B1 (2.34)

The square of O is:

O2
“

“

A0 b pB0 ` B1q ` A1 b pB0 ´ B1q
‰2

13The anti-commutator of two operators O1 and O2, denoted as tO1,O2u (not to be confused
with the set notation) is tO1,O2u “ O1O2 ` O2O1.
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“ pA0q
2

b pB0 ` B1q
2

` pA1q
2

b pB0 ´ B1q
2

` A0A1 b pB0 ` B1qpB0 ´ B1q ` A1A0 b pB0 ´ B1qpB0 ` B1q

“ I
`

pB0 ` B1q
2

` pB0 ´ B1q
2
˘

` pA0A1 ´ A1A0q b pB1B0 ´ B0B1q

“ 4I b I ` rA0, A1s b rB1, B0s (2.35)

where it was used that pAxq2 “ pByq2 “ I. The symbol r , s denotes the commuta-
tor14 of operators. The terms with the commutator rA0, A1s and rB1, B0s are both
bounded by 2I since ||rA0, A1s|| ď 2||A0|| ||A1|| ď 2 because ||Ax|| ď 1. Therefore,
that means that O2 ď 8I, then taking the square root (which is operator-monotone),
gives the bounds of equation (2.34) to be: ´2

?
2I ď O ď 2

?
2I. In the classical

case, all combinations of operators Ax and By commute, thus giving the classical
bound of 2. The key difference is then the non-commutativity of the quantum oper-
ators. This simple proof considering the square of O to find the bounds is a known
alternative proof of what Tsirelson did in [31].

In the proof, notice that there was no mention whatsoever of the choice of quan-
tum state |Ψy or the choice of the measurement operators Πx,a and Πy,b; the proof
relies solely on the properties of quantum operators. Finally, these bounds on oper-
ators imply the already-mentioned bounds for the winning probability of the CHSH
game in (2.33):

max Probpwinq “
1

2
`

1

8
p2

?
2q “

2 `
?
2

4
« 0.853 (2.36)

min Probpwinq “
1

2
´

1

8
p2

?
2q “

2 ´
?
2

4
« 0.146 (2.37)

bounds, which, as shown in the previous section, can be attained using a maximally
entangled state and some simple projection operators.

It is worth making a small comment on the role of the quantum state and the
no-communication condition of the game. The correlations in the quantum state
are created locally (by the source that emits the two photons, for example). These
correlations are kept even though the individual parts are separated15. The players
make use of the locally-created correlations but they the cannot extract or transmit
any information to the other player by measuring their own part of the state. This
means that they cannot use the quantum state for communication, thus fulfilling
the no-communication condition of the game16.

14The commutator of two operators O1 and O2, denoted as rO1,O2s is defined as rO1,O2s “

O1O2 ´ O2O1.
15Assuming no decoherent process has occurred along the way. The quantum systems are

never fully isolated, which means that they interact with the environment. That interaction
leads to the system to lose its “quantumness”. This lost of quantum coherence is known as de-
coherence.

16The Einstein-Podolsky-Rosen paradox [7] in 1935 focused on that “communication issue”,
which led to a causality issue in their view (see section 1.1 in chapter 1). However, causality is
not violated because the correlations are created locally and there is no possibility of transmit-
ting information between the individual parts of the quantum state by measuring.
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2.3 Further information on the CHSH game and
quantum games

Besides its original connection to the CHSH inequality, the CHSH game is one
of the simplest games that belongs to the so-called XOR games. XOR games –
firstly formally introduced in [34] – are games whose winning condition involves the
boolean function XOR (exclusive OR). Equivalently, only the parity of the players’
output bit matters when deciding the winning condition. The XOR games are
very important because it has been shown that there is a separation between the
classical and the quantum bound. What is more, the quantum bound for the XOR
games can be obtained by semi-definite programming17. For instance, in [35], using
semi-definite programming techniques, the author computed the classical and the
quantum bound for a generalised CHSH inequality with two parties, each having n
measurement settings, with each measurement having a binary outcome.

When a certain game defined with the no in-game communication condition (or,
equivalently, the locality condition for the players and all the resources used) shows
a separation between the classical bound and the quantum bound it is said to be a
non-local game18. If the non-local game can be won perfectly (with probability
1) using quantum resources, but not classically, it is usually referred to by some
authors as a pseudo-telepathy game19 [36]. The XOR games are just a subset of
non-local games, and the CHSH game is one example of an XOR non-local game,
but there are others, for instance the Mermin-Peres magic square game20 [37–39],
the Odd Cycle game21 [34, 40, 41], which is also an XOR game, and many other
games.

The study of non-local games has a vast range of applications. In foundations
of quantum mechanics, any Bell inequality can be mapped to a non-local game, but
the converse map is not unique [42, 43], which implies that non-local games is
a broader topic than Bell inequalities. On the more practical side, the non-local
correlations arising from Bell inequalities, and therefore, also from non-local games,
were firstly connected by Artur Ekert in 1991 to quantum cryptography [44]. In that
cryptographic context, the crucial concept of self-testing appeared. Self-testing aims
at certifying that a process has a non-classical (or quantum) nature without focusing

17The claims of the separation between the classical and quantum bounds and the efficient
computation of the quantum bounds using semi-definite programming are deeply connected to
Tsirelson’s work mentioned previously. He showed that the quantum bound can be computed
using inner products of unitary vectors. Again, see [31] for that connection.

18The denomination comes from the Bell inequalities, which would not be violated in a
generic (Bell-like) local theory. In contrast, quantum mechanics, predicts their violation, and
thus quantum mechanics was labelled as a non-local theory.

19The term pseudo-telepathy is justified in that winning the game gives the impression of
a true telepathy between the players, even though there was no communication (that is why
“pseudo”). Sometimes in the literature the terms non-local games and pseudo-telepathy games
are used interchangeably, but they should not be confused.

20This is a very popular game in the quantum literature with two non-communicating players
playing in a 3 ˆ 3 grid. They need to fill in the spaces following certain rules. Classically this
game has a winning probability of 8{9 « 0.89. Using quantum operators as their strategies, the
players can win this game with probability 1.

21The Odd Cycle game consists of two players trying to color a cycle with an odd number
of vertices n. Graph theory assures that it is not possible to do the coloring perfectly, but with
quantum resources, the players can do better than using any classical strategy.
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on how the process works, but only on initial and resulting statistics of it. In the
case of the CHSH game, if the winning probability is found in the range between
3{4 “ 0.75 and p2 `

?
2q{4 « 0.853 or between the range p2 ´

?
2q{4 « 0.146 and

1{4 “ 0.25, it can be certified that the process is purely quantum without knowing
the inner workings of it. Self-testing is closely related to the development of device-
independent protocols, which are protocols that do not depend on the specific details
of the system. These protocols are of high importance in quantum information and
cryptography. Some examples of the applications of self-testing are: generation
of device-independent randomness; device-independent quantum cryptography (for
instance, with quantum key distribution, QKD); entanglement detection; delegated
quantum computing; and many other applications. See [45] for a complete review
of self-testing and its applications.

Returning to quantum games, in 2021, one of the most important results lately
in computer science – the much celebrated MIP ˚ “ RE in [46] – used non-local
games for the proof22. Quantum games that use quantum phenomena other than
non-locality also have applications in quantum cryptography (see for example [52])
and in quantum and classical information (see, for instance, [53, 54]).

Summary of the chapter

This chapter has introduced the CHSH inequality, and the corresponding CHSH
game. It was shown that if the players use quantum resources the winning proba-
bility can increase (and decrease) by about 10% from the classical value, in which
no “quantumness” is involved. The games that distinguish between the classical
and the quantum value are called non-local games. Non-local games in particular
and quantum games in general have many applications in quantum information,
quantum cryptography, quantum foundations, and quantum computing.

The next chapter concerns with explaining more clearly the term maximally
entangled state, used in the quantum version of the CHSH game. To do so, the next
chapter introduces in a more-formal manner the concept of entanglement. With the
basics of the CHSH game from this chapter and the concept of entanglement in the
next chapter, the foundations for the conducted research explained in chapters 4
and 5 will have been laid.

22That research showed that the two classes MIP˚ (Multi-prover Interactive Proof with en-
tangled provers) and RE (Recursive Enumerable languages) were equivalent. That result has
striking implications in directly solving a long-standing open problem in quantum mechanics
(Tsirelson’s problem [47]) and in operator algebras (Connes’ Embedding Problem CEP [48, 49]),
which were shown to be equivalent [50, 51].
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Entanglement in bi-partite and
tri-partite states
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3.1 Introduction
Entanglement is one of the most interesting effects or consequences of quantum
mechanics. Entanglement has been seen to be responsible for better performance in
many tasks, or even in new tasks with no classical analogue1. One example is the
result for the CHSH game explained in the previous chapter. In that scenario, the

1For instance, entanglement is important in the speed up in quantum computing [55], in the
teleportation of a quantum state [56], in dense coding [57], in quantum cryptography [44, 58],
and other tasks.
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use of a maximally entangled state2 can provide the players with a higher winning
probability than using any classical resource. That is why many efforts have been
put into studying entanglement; especially into how to classify it, how to quantify
it, and how to witness it3.

The classification, quantification and witnessing of entanglement in a given (pure
or mixed) state is a sub-field per se. The complexity of classifying and defining a
measure of entanglement grows when considering not-so-large multi-partite systems.
A multi-partite system is a system that can be divided into N subsystems, also
known as N -partite system. Then, N “ 2 means that a system can be divided
into two subsystems (bi-partite system); N “ 3 for three subsystems (tri-partite
system); and so on. The theory for bi-partite pure states is well-established; for tri-
partite pure states is also quite well understood. In both cases, there are a (finite)
number of equivalence classes to classify the type of entanglement4. However for four
parties or more, the number of those equivalence classes goes to infinity, thus making
that approach unsuitable. That is why, in the case of N ě 4 the classification of
entanglement is defined to depend on the task itself. If even classifying the type of
entanglement is hard for more than four parties, it is not surprising that, in such
case, there is no universal measure of entanglement. For a contained review of multi-
partite entanglement see [59]. Reference [60] has a good overview of the measures
of entanglement for the bi-partite case; and [61] gives the full flavour of quantum
entanglement.

In the present chapter, only the bi-partite case will be explained in more detail;
the tri-partite case will also be mentioned briefly – both cases considering only
pure states. The reason for focusing only on bi-partite and tri-partite pure states is
justified in the use of both types of systems in the research of the present dissertation
explained in chapter 5.

3.2 Definition of entanglement
Entanglement is defined for what it is not. Consider a N -partite pure quantum state
described by |Ψy. The state is said to be entangled if it cannot be written as a
tensor product of its individual components. If it can, the state is said to be
(fully) separable and no entanglement is present. Mathematically, a separable state
is:

|Ψy “ |ψ1y b |ψ2y b ... b |ψNy (3.1)

Again, if the state cannot be written as in equation (3.1), it is said to be entan-
gled. For a mixed state, described by the density matrix ρ, a state is entangled if
ρ ‰ ρ1 bρ2 b ...bρN . However, for mixed states, there are even subtleties with that

2It has still not been explained either: 1) what entanglement is; or 2) what maximum entan-
glement is or how it is computed. This chapter will address these two questions.

3For that task there are the so-called entanglement witnesses, that aim at identifying en-
tanglement in a quantum state without having full knowledge of the state. For instance, these
entanglement witnesses can be directly operators or even inequalities, such as Bell inequalities.

4These equivalence classes are defined as the set of pure states that are equivalent under
stochastic local operations and classical communication (SLOCC), that is, if they can be con-
verted into each other using local operations and classical communications with a non-zero prob-
ability of success.
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definition, since an unentangled mixed state might be not written as a product, but
a product state is always separable (unentangled). For instance, the mixed state
ρ “ 1{2 p|0y x0| b |0y x0| b |0y x0| ` |1y x1| b |1y x1| b |1y x1|q is fully separable (un-
entangled) but it is not a tensor product of density matrices. That simple example
demonstrates the complexity5 of studying entanglement in mixed states. It is out
of the scope of the present dissertation going into the theory of entanglement with
mixed states; only pure states will be considered.

In the bi-partite case (N “ 2), the answer to the question “is it entangled?”
has a binary answer: either is (fully) separable or not. However, for more than
two parties N ě 3, the question and the answer are not so simple. The state can
be separable for a number of parties but entangled for a subset of them, which is
known as partial separability. That is why it is so hard to analyse and quantify
entanglement in general for the N -party case.

3.3 Measurement of entanglement
The measurement and quantification of the entanglement present in a given (pure
or mixed) state is a sub-field itself. As was already mentioned, the bi-partite and
tri-partite cases are quite well understood; for more than three parties, the theory
is not so uniformly agreed upon. The quantification in such cases depends on the
considered tasks or processes.

In general, an entanglement measure is a real non-negative function that: 1)
assigns a value of 0 for separable (unentangled) states; and 2) does not increase
under local operations and classical communication (LOCC) when applied to the
state, property known as the monotonicity condition. In the next subsections, only
two or three entanglement measures will be given for the bi-partite and tri-partite
case.

3.3.1 Bi-partite pure states

One popular measure of entanglement for a bi-partite state is the concurrence C.
The concurrence for a pure state |Ψy is defined as:

Cp|Ψyq “| xΨ|σy b σy |Ψy| (3.2)

where σy is one of the Pauli matrices, also known as the flip matrix:

σy “

ˆ

0 ´i
i 0

˙

(3.3)

If the state is not pure, which means it is described by a density matrix6 ρ, the
concurrence takes a more complex form: Cpρq “ maxp0,

?
η1 ´

?
η2 ´

?
η3 ´

?
η4q,

5In the computational complexity sense too! Even in the bi-partite case, checking if a
mixed state is separable is NP-Hard [62]. In complexity theory, an NP-Hard problem is a
problem that is at least as hard as any NP-Problem. An NP-Problem is classified into the NP
(non-deterministic polynomial time) class if it can be solved in polynomial time with a non-
deterministic Turing machine.

6A pure state |Ψy can also described with the density matrix ρ “ |Ψy xΨ|.
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where ηj are the eigenvalues in descending order of the matrix ρρ̃, and, ρ̃ “ pσy b

σyqρ˚pσy b σyq, and ρ˚ denotes only conjugation. The concurrence is normalised
0 ď C ď 1. A concurrence value of 1 implies a maximally entangled state, and a
concurrence of 0 implies a separable (unentangled) state. Another related quantity
to the concurrence is the tangle τ . It is just the square of the concurrence: τpρq “

C2pρq. The use of the tangle is more justified in the tri-partite scenario, explained
in the next subsection.

Another widely-used measure is the so-called von Neumann entropy7 S. Given
the state represented by the density matrix ρ, its von Neumann entropy is:

Spρq “ ´Tr pρ log ρq “ ´
ÿ

νj log νj (3.4)

where νj are the eigenvalues of ρ and the base of the logarithm is arbitrary,
but it is usually chosen with normalisation purposes. Written using the
eigenvalues, Spρq is just the Shannon entropy [63], a standard quantity in in-
formation theory. The concurrence and the von Neumann entropy are related:
Spρq “ hp1{2`1{2

a

1 ´ Cpρq2q, where hpxq is the binary Shannon entropy function
hpxq “ ´x log2pxq ´ p1 ´ xq log2p1 ´ xq.

The von Neumann entropy vanishes for pure states, i.e. ρ “ |Ψy xΨ|, because in
that case, one eigenvalue of ρ is 1 and the others are 0. That is why the von Neumann
entropy is used as a definition of the entanglement entropy in the bi-partite case.
The bi-partite entanglement entropy is computed as the von Neumann entropy of
either of the reduced density matrices of the system. Referring to the two parties as
A and B, the reduced density matrices are ρA “ TrBpρq and ρB “ TrApρq, where
TrB and TrA is the partial trace over party B and A, respectively. The entanglement
entropy SEE is defined as:

SEE “ SpρAq “ ´Tr pρA log ρAq “ ´
ÿ

µj log µj (3.5)

where µj are the eigenvalues of ρA. Using the Schmidt decomposition8 of ρ it can
be shown that SpρAq “ SpρBq, thus, any of the two reduced density matrices can be
used to compute SEE.

These definitions are not the only measures of entanglement. For instance,
there is the geometric measure of entanglement [64], the Schmidt measure [65], the
distillable entanglement [66], the entanglement cost [67], the entanglement of for-
mation [68], the relative entropy of entanglement [69], the localisable entanglement
[70], the squashed entanglement [71], and many other measures. This long list of

7This quantity is named after John von Neumann, an Hungarian-American mathematician
and chemical engineer. He and Oskar Morgenstern helped to formally develop game theory (see
section 1.2 in chapter 1, page 5). Von Neumann made major contributions to many others fields
besides quantum mechanics, such as set theory, group theory, and operator theory, among oth-
ers. During World War II, he worked on the Manhattan Project, which aimed at developing the
first atomic bomb.

8The Schmidt decomposition states that any vector in the product of Hilbert spaces of di-
mensions n and m (with n ě m), respectively, i.e. |ψy P H1 b H2, can be written as a
linear combination of orthonormal sets of vectors in each Hilbert space. That means, |ψy “
řm
k“1 λk |uky b |vky, where t|u1y , ...., |umyu Ă H1 and t|v1y , ...., |vmyu Ă H2 are orthonormal

in each Hilbert space. It is worth noticing that the index k goes up to m, the lower dimension of
the two spaces. The coefficients λk are non-negative real numbers and unique up to re-ordering.
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possible measures of entanglement demonstrates how rich the topic is and that the
quantification of entanglement might depend directly on the considered task or pro-
cess. In the case of bi-partite pure states, some of these measures reduce to the
just-introduced entanglement entropy.

The next example of computing the entanglement entropy and the concurrence
for a pure bi-partite state aims at justifying the claim of calling the state in equation
(2.12) in chapter 2 (on page 13) a maximally entangled state.

Example

This short example will compare the measure of entanglement given by the con-
currence and by the entanglement entropy, i.e. von Neumann entropy of the
reduced density matrices. The considered state is a 2-qubit pure state |Ψy “
a

1 ´ |λ|2 |00y ` λ |11y, with λ being a parameter9 whose norm is between 0 and
1, i.e. 0 ď |λ| ď 1. This state can be referred as a Bell-like state because for
λ “ ˘1{

?
2, recovers two of the states in the Bell basis |Φ˘y. Then, the concurrence

and the entanglement entropy of this state are:

C “ 2|λ|
a

1 ´ |λ|2 (3.6)
SEE “ ´|λ|2 log2|λ|2 ´ p1 ´ |λ|2q log2p1 ´ |λ|2q (3.7)

where, for normalisation, the logarithm was taken in base 2. Figure 3.1 shows both
measurements of entanglement in the Bell-like state as a function of the parameter
|λ|. As can be seen from the plot, both the concurrence C and the entanglement
entropy SEE peak for |λ| “ 1{

?
2, which, up to relative phases, corresponds to the

state used in the CHSH game to achieve the maximum winning probability (see
equation (2.12) on page 13): |Φ`y “ p|00y ` |11yq{

?
2, thus justifying referring to it

as a maximally entangled state. Moreover, the Bell state (or EPR pair) |Φ`y is the
basic unit of bi-partite entanglement, since any other pure state can asymptotically
be transformed by local operations and classical communication (LOCC) into it and
vice-versa [72]. In fact, the conversion rate from a generic pure bi-partite state |ψy

into the Bell state |Φ`y is equal10 to the entanglement entropy of the state SEEp|ψyq

[73], thus justifying the use of the entanglement entropy as a meaningful measure
of entanglement in the bi-partite case.

Entanglement quantification is important and is related to the CHSH game in the
following manner: the achievement of a maximal winning probability in the game
depends on the amount of entanglement present in the initial state. For a completely
separable state, the maximum winning probability reduces to the classical value of
3{4 “ 0.75. Therefore, if, after playing the game, the winning probability is above
0.75, it is assured that there was some entanglement in the state. This simple

9The state is normalised, but it has been omitted the possible relative phase in |00y. In gen-
eral, the state would be written as |Ψy “ eiψ

a

1 ´ |λ|2 |00y ` λ |11y, however in this case the
phase eiψ does not play an important role, so it is omitted.

10If there are N copies of any bi-partite state |ψy, the conversion rate r is defined as the num-
ber of Bell states (or EPR pairs) |Φ`y asymptotically needed to prepare the state by LOCC
and vice-versa. Mathematically, |ψy

bN
Ø |Φ`y

btrNu, with t u being the floor function and, as
N Ñ 8, the approximation error goes to 0.
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Fig. 3.1: Values of the concurrence C (blue line) in equation (3.6) and the entanglement
entropy SEE (red line) in equation (3.7) for the Bell-like state |Ψy “

a

1 ´ |λ|2 |00y `

λ |11y as a function of |λ|.

scenario can be used directly as an entanglement witness11. In that area of studying
the resulting statistics of a process, such as the winning probability of the CHSH
game, the concepts of rigidity [76] and robustness are defined. A process is said to
be rigid if by just looking at the final (bounded) correlations, it can be inferred (up
to certain transformations) the state used and the measurements performed12. A
protocol or a process is said to be robust if it tolerates noise well; noise here meaning
a deviation from the ideal case. The CHSH game has been proven to be both robust
and rigid [77, 78].

3.3.2 Tri-partite pure states

The theory of tri-partite pure states classifies them into 6 equivalence classes13.
Labelling the parties as A, B, C, the equivalence classes are:

1) fully separable state |ψAy |ψBy |ψCy.

2) partially separable with respect to A: |ψAy |ψB,Cy with |ψB,Cy non-separable.

3) partially separable with respect to B: |ψBy |ψA,Cy with |ψA,Cy non-separable.

4) partially separable with respect to C: |ψCy |ψA,By with |ψA,By non-separable.

5) GHZ-class, which is genuinely tri-partite entangled, i.e. is not partially sepa-
rable with respect to any of the three parties.

11In [74] it is shown that, for pure states, quantum entanglement implies violation of a Bell
inequality. For mixed states, there are entangled mixed states that do not violate any Bell in-
equality [75], thus a Bell inequality in that case cannot be used to witness entanglement.

12The term rigidity is closely related to self-testing (explained briefly in section 2.3 of chap-
ter 2) and many times both terms are used interchangeably. In the rigidity definition, there are
many copies of the state used, whereas in the self-testing scenario, there is only one copy of the
state.

13From previously, the equivalence classes are defined in terms of equivalence between states
under stochastic local operations and classical communication (SLOCC).

27



CHAPTER 3. ENTANGLEMENT IN BI- AND TRI-PARTITE STATES

6) W-class, which also is genuinely tri-partite entangled.

The first four classes are not surprising; the last two are the interesting ones.
The term GHZ-class comes from the tri-partite GHZ state, named after Daniel
Greenberger, Michael Horne, and Anton Zeilinger14 (GHZ) [79]. The W-class comes
from the W state, after a joint paper by Wolfgang Dür et al. [80]. These two tri-
partite states are defined as:

|GHZy “
1

?
2

p|000y ` |111yq (3.8)

|W y “
1

?
3

p|001y ` |010y ` |100yq (3.9)

The fact that they belong to two different equivalent classes implies that it is
not possible to convert one to the other using only SLOCC15. Even though both
states are genuinely tri-partite, the type of entanglement present in each is not
equivalent [80]. The explanation of why the they are different is a little out of the
scope, but it is worth mentioning a few words about them.

If, say party A, were to measure their qubit in |GHZy, then, the resulting bi-
partite state is fully separable: either |0y b |0y or |1y b |1y. On the contrary, if the
measurement is on the |W y, the resulting bi-partite state can still be entangled (or
not): either p|0y b |1y ` |1y b |0yq {

?
2 or |0y b |0y. In this sense, the entanglement

present in |W y is more robust when loosing/measuring a qubit in comparison to
|GHZy. In the same context of studying the type of entanglement, the robustness
[82] of entanglement is also defined.

For completeness, in this section, it will be mentioned briefly one of the
most-widely used measures of entanglement in the tri-partite case, which is related
to a rather curious result, referred to as the monogamy of entanglement16.

The tangle (or 2-tangle) is an entanglement measure in the bi-partite case but,
from it, the 3-tangle arises, which is a measure of genuine tri-partite entan-
glement. The tangle is just the square of the concurrence τpρq “ Cpρq2 (see (3.2)
on page 24 and the subsequent definition with density matrices). For a tri-partite
state, represented by ρABC , the tangle τAB is computed using the reduced density
matrix ρAB “ TrCpρABq. Focusing on party A, the tangle fulfills the next inequality
[84]:

τAB ` τAC ď τApBCq (3.10)

where τAB and τAC are the tangles for subsystem AB and AC, and τApBCq represents
the tangle between subsystem A and subsystem BC, which, for pure states17 is

14Along with Alain Aspect and John Clauser, Anton Zeilinger was one of the awardees of the
Nobel Prize in Physics in 2022.

15Actually, it is not possible to convert one to the other exactly, but the W state can be ap-
proximated with an arbitrary precision by the GHZ state [81]. However, the GHZ cannot be
approximated by the W state.

16In the quantum foundational aspect, there is a fine distinction between the monogamy of
entanglement and the monogamy of correlations, see [83].

17For mixed states it is defined as a minimum of the average over all possible pure-state de-
composition of the density matrix τminApBCq

. For more details, see the arXiV version of [84], which
is more complete.
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Fig. 3.2: Drawing about what the monogamy of entanglement means with three qubits,
labelled as parties A, B, and C.

computed as τApBCq “ 4 detpρAq.

Equation (3.10) has crucial implications: party A sharing some entanglement
with party BC constraints the amount of entanglement that A can share individually
with B and C separately. This is know as the monogamy of entanglement (see the
illustration in Figure 3.2). From equation (3.10), it is defined the 3-tangle τABC as
the difference between both sides:

τABC “ τApBCq ´ τAB ´ τAC (3.11)

The 3-tangle τABC in equation (3.11) is invariant under the permutation of
parties because it is related to Cayley’s hyperdeterminant [85] of the 3-qubit state,
which is an invariant, thus making the 3-tangle a good measure of the genuine
tri-partite entanglement present in a given 3-qubit state.

A quick calculation of the 3-tangle for the GHZ state and the W state gives
τABCp|GHZyq “ 1 and τABCp|W yq “ 0, reaffirming the statement that those two
tri-partite states have a different type of entanglement. This calculation of the
3-tangle for both states can be checked in appendix A.2.

Summary of the chapter

This chapter has defined entanglement and gave a small overview of the classifica-
tion and quantification of entanglement for the bi-partite and tri-partite case. Some
entanglement measures were briefly described, such as the concurrence, the entan-
glement entropy, the tangle and the 3-tangle. The classification of entanglement in
the bi-partite scenario is only concerned with the distinction between separable and
entangled state, giving 2 classes of entanglement18. The tri-partite case is richer; it
has 6 classes of entanglement: one class is the fully separable case; from the second
to the fourth class, they describe partially separable states with respect to one party;
the last two classes are represented by the GHZ and the W states, which are states
that are fully non-separable.

18This said, remember that all the bi-partite pure states can be reversibly transformed into
the Bell state (or EPR pair) |Φ`y “ p|00y ` |11yq{

?
2

29



CHAPTER 3. ENTANGLEMENT IN BI- AND TRI-PARTITE STATES

The next chapter, chapter 4, moves to introducing boolean games played with
three players in a triangle configuration when the players use classical strategies.
Chapter 5, however, analyses the same situation of boolean games in a triangle
when the players use quantum resources, specifically, when they use bi-partite and
tri-partite states, just presented in this chapter. Chapter 4 and 5 constitute the
main contribution to new research of this dissertation.
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This chapter lays the foundations of the present dissertation. The research
conducted focuses on analysing the situation of three players playing intertwined
boolean games in a triangle-network configuration. The reason for choosing the
triangle-network situation will be fully explained in chapter 5, since this triangle-
network has been widely used as a simple form of a quantum network. More about
that on the next chapter. Chapter 4 explains the layout for the games and gives the
results in the classical case, whereas chapter 5 presents the results for this same sit-
uation when the players share quantum resources. Both chapter 4 and 5 constitute
the author’s new results from the research carried for this dissertation.

The boolean games considered are defined by two boolean functions: one
function I for the input bits and another function O for the output bits. For short,
the function I for the input bits will be referred to as the input function and O
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ALICE BOB

CARL

GAME 1

GAM
E 

2
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Fig. 4.1: Boolean games played in a triangle network. Each player plays pairwise a game,
which is defined by the choices of the boolean functions I and O. The players’ input bits
x, y, z P t0, 1u are represented by the yellow coins and the output bits a, b, c P t0, 1u by the
bronze coins. The players jointly win each game if Ip , q “ Op , q.

as the output function . Subsection 4.1.1 defines and classifies all the boolean
functions from which I and O are chosen.

The three players – Alice, Bob, and Carl – will play pairwise a two-player game
with the other two players separately. At the start of the game, the players receive
one bit and must output another bit. The inputs will be labelled as x, y, z P t0, 1u

and the outputs a, b, c P t0, 1u for Alice, Bob, and Carl, respectively. During the
game, as was the case with the CHSH game explained in section 2.2, the players
are separated and no in-game communication is allowed, which implies that they
have only access to partial information during the games. Figure 4.1 illustrates the
situation. The winning condition for each game is:

win GAME 1 Ñ Ipx, yq “ Opa, bq (4.1)
win GAME 2 Ñ Ipy, zq “ Opb, cq (4.2)
win GAME 3 Ñ Ipz, xq “ Opc, aq (4.3)

Notice that the players have only one input and one output, which, both, will be
used for the two games that they are playing. Also notice that the boolean functions
I and O are the same for all three games. Each of the games is considered to be a
cooperative game, that is, both players win or lose jointly. Since each player plays
two games, the final payoff would be the average of both. For Alice:

$A “
1

2
rProbpwin G1q ` Probpwin G3qs (4.4)

where Probpwin G1q and Probpwin G3q denote the probability of winning GAME
1 and GAME 3, respectively. Similarly for Bob and Carl.

Focusing for now on GAME 1, the Probpwin G1q will only depend on what
Alice and Bob do in the game, that is, on the conditional probability of outputs
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a, b given inputs x, y, i.e. Probpa, b|x, yq. The winning condition for GAME 1 in
equation (4.1) allows to write the winning probability of this game in a compact
way:

Probpwin G1q “
1

4

ÿ

x,y,a,bPt0,1u

Probpa, b|x, yqδIpx,yqOpa,bq (4.5)

where the 1{4 comes from assuming uniformly distributed inputs x, y P t0, 1u and
δIpx,yqOpa,bq is the Kronecker delta, which selects the probabilities for which the win-
ning condition in equation (4.1) is met. Note that Probpa, b|x, yq does not depend
on Carl’s input z or output c; however, there is an initial probability distribution of
inputs and outputs that does depend on z and c, i.e. Probpa, b, c|x, y, zq. To obtain
Probpa, b|x, yq from Probpa, b, c|x, y, zq it is necessary to add all the possible results
for z and c in Probpa, b, c|x, y, zq, which gives a probability independent of Carl’s
inputs and outputs. Mathematically:

Probpa, b|x, yq “
1

2

ÿ

z

ÿ

c

Probpa, b, c|x, y, zq (4.6)

where the 1{2 comes from the uniformly distributed inputs. This means, that given
inputs x, y P t0, 1u there is a 50% chance (1{2) that z is either 0 or 1. Then, the
winning probability of GAME 1 in equation (4.5) can be written as:

Probpwin G1q “
1

8

ÿ

x,y,a,b

ÿ

z,c

Probpa, b, c|x, y, zqδIpx,yqOpa,bq (4.7)

An analogous expression applies to Probpwin G2q and Probpwin G3q. Focusing
on Alice, her average payoff from both games is:

$A “
1

16

ÿ

x,y,z

ÿ

a,b,c

“

Probpa, b, c|x, y, zqδIpx,yqOpa,bq

`Probpa, b, c|x, y, zqδIpz,xqOpc,aq

‰

(4.8)

A similar expression of the average payoffs follows for Bob and Carl. Basically,
to compute the players’ average payoff for this particular situation, the only two
important ingredients are Probpa, b, c|x, y, zq and the I and O.

A classification of the boolean games will follow in the next section 4.1 depending
on the choice of I and O, but first, the boolean functions are defined in section 4.1.1.
Second, to warm up, all the two-player boolean games will be classified depending
on the specific choice of I and O in section 4.1.2. Third, the boolean games in
the proposed triangle-configuration are classified in section 4.1.3. Finally, the Nash
equilibrium points using classical strategies of the classified games are explained in
section 4.2.

4.1 Classification of the Boolean games in the tri-
angle

Classifying the boolean games in the triangle configuration implies analysing all the
possible different expressions of Alice’s payoff in equation (4.8) depending on the
choice of I and O. To do that, it is helpful first to mention the classification of the
two-player games, for which it is also useful to classify first all the boolean functions
of two variables.
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set symbol set elements Meaning

S0
f1px, yq “ 0 constant functions
f2px, yq “ 1

S1

f3px, yq “ x

functions of one variablef4px, yq “ x
f5px, yq “ y
f6px, yq “ y

S2u

f7px, yq “ x ¨ y (AND)

unbalanced functions of two variables

f8px, yq “ x ¨ y (NAND)
f9px, yq “ x ¨ y (NIMPLY)
f10px, yq “ x ` y (IMPLY)

f11px, yq “ x ¨ y
f12px, yq “ x ` y

f13px, yq “ x ` y (NOR)
f14px, yq “ x ` y (OR)

S2b
f15px, yq “ x ‘ y (XOR) balanced functions of two variables
f16px, yq “ x ‘ y (XNOR)

Tab. 4.1: Classification of the 16 boolean functions of two binary variables. Some of the
functions are named after the most common and important binary gates, that implement
the corresponding logical operation: AND, NAND (negated AND), NOR (negated OR),
OR, XOR (exclusive OR), and XNOR (exclusive negated OR). Some other gates are less
well-known such as the IMPLY and NIMPLY gates, that implement logical material im-
plication and material non-implication. f11 and f12 implement the logical converse non-
implication and converse implication, respectively.

4.1.1 Boolean functions of two variables

There are 16 boolean functions of two binary variables x, y P t0, 1u. These
functions can be subdivided into four sets:

• The set of functions that do not depend explicitly on any of the variables, i.e.
constant functions, denoted by S0.

• The set of functions that depend explicitly on only one variable, S1.

• The set of unbalanced functions of two variables, S2u.

• The set of balanced functions of two variables, S2b.

For the functions that depend explicitly on two variables, it is considered to be
balanced if for all the possible inputs, the function outputs the same number of 0s
and 1s; mathematically, #tpx, yq | fpx, yq “ 0u “ #tpx, yq | fpx, yq “ 1u “ 2; it
is unbalanced otherwise. Table 4.1 contains the definition of the 16 boolean
functions along with the mentioned classification. The numbering of the functions
is purposely chosen such that the even functions are just the negated version of the
previous (odd) function, i.e. f2kpx, yq “ f2k´1px, yq for k “ 1, ..., 8.

Furthermore, the unbalanced functions of two variables S2u can also be subdi-
vided into two subsets: the ones unbalanced towards the value 0 (i.e. with more 0s
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than 1s), denoted as S2u0; and the ones unbalanced towards the value 1, S2u1. That
means, S2u “ S2u0 Y S2u1, with:

S2u0 “ tf7, f9, f11, f13u (4.9)
S2u1 “ tf8, f10, f12, f14u (4.10)

The presented numbering of the functions and the mentioned sets (and subsets)
will be useful to classify the different types of boolean games.

As mentioned in the caption of Table 4.1, some of the boolean functions have
their own names. For instance, f7 is the AND function, f8 is the NAND, and f15 is
the XOR function. Coming back to chapter 2, the winning of the CHSH game in
equation (2.4) on page 11 was that the AND of the inputs should match the XOR
of the outputs. With the present numbering of the boolean functions, the CHSH
game is identified by having f7 as input function and f15 as output function, i.e.
CHSH game Ñ I “ f7px, yq and O “ f15pa, bq .

Before moving to classifying the boolean games in the triangle configuration with
three players, it is useful to first classify the boolean games with two players.
It also serves to understand the position of the CHSH game explained in chapter 2
among all the other possible two-player boolean games.

4.1.2 Two-player boolean games

The two players – now only Alice and Bob – receive each a binary input x, y P

t0, 1u and binary output a, b P t0, 1u. As in the explained triangle-scenario, no
in-game communication is allowed. In this case, the boolean games considered are
cooperative games, that is, both players win or lose jointly1. The winning condition
of the game is defined using the input and output functions:

Ipx, yq “ Opa, bq (4.11)

where I, O are chosen from the set of boolean functions of two variables defined and
classified in Table 4.1. The winning condition in equation (4.11) allows one to write
the winning probability of any two-player (cooperative) boolean game in a compact
way:

Probpwinq “
1

4

ÿ

x,y,a,bPt0,1u

Probpa, b|x, yqδIpx,yq Opa,bq (4.12)

where the 1{4 comes from assuming uniformly distributed inputs, Probpa, b|x, yq is
the usual conditional probability of outputs a, b given x, y, and δ is the Kronecker
delta, that selects the probabilities for which the winning condition is met2.

1In the triangle configuration, even though the players win or lose jointly each game, it is not
correct to say they are in a cooperative scenario because, as will be explained later, this situa-
tion may be analysed from a selfish point of view, i.e. the players only caring about their own
average payoff.

2Equations (4.11) and (4.12) are the same as equations (4.1) and (4.5), respectively, which,
for the described triangle-configuration at the start of this chapter, define the winning condition
and winning probability of GAME 1 – played only between Alice and Bob.
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The interesting games are those whose I, O depend explicitly on the two vari-
ables, that is, I, O P S2u Y S2b; otherwise, either it is a trivial game, or there is
no equal power of decision for both players. All of this means that there are in
principle 100 different games when I,O P S2u Y S2b, but, due to the symmetry
properties of the boolean functions, not all games present an intrinsically different
winning probability in equation (4.12). As will be shown next, there are only 8
different types of games.

˛ O P S2b “ tf15, f16u

The boolean functions XOR (f15) and XNOR (f16) have the common property of
giving the same result if the two inputs bits are the same. That is, for any choice of
a P t0, 1u, f15pa, aq “ 0 , f15pa, aq “ 1 “ f15pa, aq; and f16pa, aq “ 1 , f16pa, aq “ 0 “

f16pa, aq. Then, when O is any of those, it is enough to only consider Opa, aq, since
Opa, aq “ Opa, aq and Opa, aq “ Opa, aq “ Opa, aq. To keep the notation tidier, to
denote the negated bit of Opa, aq , Opa, aq will be used instead of Opa, aq. Bearing
that in mind, the winning probability in equation (4.12) can be expressed as:

Probpwinq “
1

4

ÿ

x,y

ÿ

a

“

Probpa, a|x, yqδIpx,yqOpa,aq ` Probpa, a|x, yqδIpx,yqOpa,aq

‰

“
1

4

ÿ

x,y

rProbpa, a|x, yq ` Probpa, a|x, yqs δIpx,yqOpa,aq

`
1

4

ÿ

x,y

rProbpa, a|x, yq ` Probpa, a|x, yqs δIpx,yqOpa,aq

“
1

4

ÿ

x,y

δIpx,yqOpa,aq `
1

4

ÿ

x,y

Probpcoord|x, yq
“

δIpx,yqOpa,aq ´ δIpx,yqOpa,aq

‰

(4.13)

for any choice of a P t0, 1u; where Probpcoord|x, yq is the probability of both players
coordinating their outputs Probpcoord|x, yq “ Probpa, a|x, yq ` Probpa, a|x, yq; and
where it was used that Probpa, a|x, yq ` Probpa, a|x, yq “ 1 ´ Probpa, a|x, yq `

Probpa, a|x, yq “ 1 ´ Probpcoord|x, yq for any x, y.

Depending on the choice of Ipx, yq the winning probability in equation (4.13)
will look different, but, up to sign permutations, there are only 4 truly distinct
possibilities:

• O “ f15 and I P S2u0 “ tf7, f9, f11, f13u; or O “ f16 and I P S2u1 “

tf8, f10, f12, f14u; which, up to permutations of the negative sign, the winning
probability looks:

Probpwinq “
1

4
`

1

4
rProbpcoord|0, 0q ` Probpcoord|0, 1q

`Probpcoord|1, 0q ´ Probpcoord|1, 1qs (4.14)

• O “ f15 and I P S2u1 “ tf8, f10, f12, f14u; or O “ f16 and I P S2u0 “

tf7, f9, f11, f13u; which, again, up to permutations of the negative sign (in
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the brackets with the probabilities), the winning probability looks:

Probpwinq “
3

4
´

1

4
rProbpcoord|0, 0q ` Probpcoord|0, 1q

`Probpcoord|1, 0q ´ Probpcoord|1, 1qs (4.15)

• O “ I “ f15; or O “ I “ f16, the winning probability is:

Probpwinq “
1

2
`

1

4
rProbpcoord|0, 0q ´ Probpcoord|0, 1q

´Probpcoord|1, 0q ` Probpcoord|1, 1qs (4.16)

• O “ f15 and I “ f16; or O “ f16 and I “ f15, the winning probability is:

Probpwinq “
1

2
´

1

4
rProbpcoord|0, 0q ´ Probpcoord|0, 1q

´Probpcoord|1, 0q ` Probpcoord|1, 1qs (4.17)

The winning probability of the CHSH game looks like the one in equation (4.14)
– see equation (2.27) on page 17 of chapter 2. Notice that the winning probabilities
in equation (4.14) and in equation (4.15) sum to 1, as well as in equations (4.16)
and (4.17).

˛ O P S2u “ tf7, f8, f9, f10, f11, f12, f13, f14u

The set of unbalanced functions of two variables S2u is characterised by the fact that
they output only one bit and the negated one three times. It was divided into two
subsets: unbalanced towards 0 (outputting more 0s than 1s) S2u0 “ tf7, f9, f11, f13u;
and unbalanced towards 1, S2u1 “ tf8, f10, f12, f14u.

It will be useful to refer to m,n as the input bits for which the minority bit is
outputted f˚pm,nq. For example, the AND function f7pa, bq evaluates f7p0, 0q “

f7p0, 1q “ f7p1, 0q “ 0 and f7p1, 1q “ 1, then, the minority bit is 1 and the input for
this minority bit is m “ 1 and n “ 1. Having this information of the inputs of the
minority bit is enough to characterise the boolean function since for any function
in S2u, the following property holds: f˚pm,nq “ f˚pm,nq “ f˚pm,nq “ f˚pm,nq.
Using a similar argument as previously when O P S2b, the winning probability can
be written with respect to the input of the minority bit of the output function
Opm,nq “ f˚pm,nq and Opm,nq “ Opm,nq “ Opm,nq “ Opm,nq:

Probpwinq “
1

4

ÿ

x,y

“

Probpm,n|x, yqδIpx,yqOpm,nq ` Probpm,n|x, yqδIpx,yqOpm,nq

`Probpm,n|x, yqδIpx,yqOpm,nq ` Probpm,n|x, yqδIpx,yqOpm,nq

‰

“
1

4

ÿ

x,y

Probpm,n|x, yqδIpx,yqOpm,nq`

`
1

4

ÿ

x,y

rProbpm,n|x, yq ` Probpm,n|x, yq ` Probpm,n|x, yqs δIpx,yqOpm,nq
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“
1

4

ÿ

x,y

δIpx,yqOpm,nq `
1

4

ÿ

x,y

Probpm,n|x, yq
“

δIpx,yqOpm,nq ´ δIpx,yqOpm,nq

‰

(4.18)

where, in the last line, it was used that Probpm,n|x, yq ` Probpm,n|x, yq `

Probpm,n|x, yq “ 1 ´ Probpm,n|x, yq. This equation is completely analogous to
the one in equation (4.13) by just replacing Probpcoord|x, yq with Probpm,n|x, yq.
Then, again, up to sign permutations, there will be only 4 distinct situations:

• O P S2u0 “ tf7, f9, f11, f13u and I P S2u1 “ tf8, f10, f12, f14u; or O P S2u1 “

tf8, f10, f12, f14u and I P S2u0 “ tf7, f9, f11, f13u; which, up to permutations of
the negative sign, the winning probability looks:

Probpwinq “
1

4
`

1

4
rProbpm,n|0, 0q ` Probpm,n|0, 1q

`Probpm,n|1, 0q ´ Probpm,n|1, 1qs (4.19)

• O, I P S2u0 “ tf7, f9, f11, f13u; and O, I P S2u1 “ tf8, f10, f12, f14u; up to
permutations of the negative sign (in the brackets with the probabilities), the
winning probability looks:

Probpwinq “
3

4
´

1

4
rProbpm,n|0, 0q ` Probpm,n|0, 1q

`Probpm,n|1, 0q ´ Probpm,n|1, 1qs (4.20)

• O P S2u0 “ tf7, f9, f11, f13u and I “ f16; or O P S2u1 “ tf8, f10, f12, f14u and
I “ f15; the winning probability looks:

Probpwinq “
1

2
`

1

4
rProbpm,n|0, 0q ´ Probpm,n|0, 1q

´Probpm,n|1, 0q ` Probpm,n|1, 1qs (4.21)

• O P S2u0 “ tf7, f9, f11, f13u and I “ f15; or O P S2u1 “ tf8, f10, f12, f14u and
I “ f16; the winning probability looks:

Probpwinq “
1

2
´

1

4
rProbpm,n|0, 0q ´ Probpm,n|0, 1q

´Probpm,n|1, 0q ` Probpm,n|1, 1qs (4.22)

As before, the winning probabilities in equations (4.19)-(4.20) and in equations
(4.21)-(4.22) sum to 1.

It was just shown the 8 different types of winning probabilities for any (co-
operative) boolean game with two players when I, O P S2u Y S2b. Now it is time
to classify them depending on the maximum and minimum values of the winning
probabilities using classical strategies.
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4.1.2.1 Classical strategies

When the players receive their input bit, they are not allowed to communicate, which
implies that the probability of Alice outputting a depends solely on her own vari-
ables, i.e. her input x, and not on what Bob does, and vice-versa3. In this case, they
will not be using any source of (classical) advice that could correlate their outputs
given their inputs. Moreover, Alice and Bob outputting their outputs given their in-
puts correspond to two independent events, meaning that the probabilities of those
events factorise. These two conditions for uncorrelated and independent events
are written in mathematical terms as Probpa, b|x, yq “ Probpa|xqProbpb|yq. If the
players use mixed strategies, Alice outputs a given x with a certain probability
pa|x, and the same for Bob, denoted as qb|y. For Alice, it is clear that p0|x `p1|x “ 1
for any x, and pure strategies correspond to choosing the extreme values of p0|x and
p1|x. In this case with binary inputs and outputs, there are only four possible pure
strategies, which are:

1) The ZERO strategy, p0|x “ 1, which means outputting 0 regardless of the
input bit.

2) The ONE strategy, p1|x “ 1, which means outputting 1 regardless of the input
bit.

3) The IDENTITY strategy, px|x “ 1, which means outputting the input bit.

4) The NOT strategy, px|x “ 1, which means outputting the negated input bit.

To analyse the range of values of the winning probabilities for the different
games when O P S2b using classical strategies, the only thing to do is substituting
Probpcoord|x, yq in equations (4.14)-(4.17) by p0|xq0|y`p1|xq1|y and numerically com-
pute the maximum and minimum values of the winning probabilities. Sim-
ilarly when O P S2u in equations (4.19)-(4.22) replacing Probpm,n|x, yq by pm|xqn|y.
Then the winning probabilities will be a convex combination of pa|x and qb|y, which
means that to obtain the range of values, it is enough to consider only the extreme
values, i.e. the pure strategies explained earlier – the ZERO, ONE, IDENTITY,
NOT strategies. This implies testing all the 4 ˆ 4 “ 16 possible combinations of
pure strategies for both players and checking the maximum and minimum values of
the corresponding winning probability. Table 4.2 contains the classification of all
the possible 100 two-player boolean games depending on the range of winning
probabilities.

Remember that the CHSH game is identified by Ipx, yq “ f7px, yq (AND func-
tion) and Opa, bq “ f15pa, bq (XOR function), corresponding to the third row in
Table 4.2, whose classical winning probability is bounded between 0.25 and 0.75
. As shown in section 2.2 of chapter 2, the quantum bounds of the CHSH are
p2 ´

?
2q{4 « 0.146 and p2 `

?
2q{4 « 0.854. From Table 4.2, the same classical

bounds also correspond to the games when I P S2u “ S2u0 YS2u1 and O P S2b (third
and sixth row), which means that there are 16 CHSH-like games. The other games
that cannot be won perfectly, i.e. I P S2u0 O P S2u1 (second row); I P S2u1 O P S2u0

3This no-communication condition is known in the literature as non-signalling. Using the
standard language with probabilities, a non-signalling probability distribution with two parties
fulfils two conditions: i)

ř

b Probpa, b|x, yq “
ř

b Probpa, b|x, y
1q and ii)

ř

a Probpa, b|x, yq “
ř

a Probpa, b|x
1, yq; for all x, y, x1, y1.
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I P O P no. games min max

S2u0 “ tf7, f9, f11, f13u
S2u0 “ tf7, f9, f11, f13u 16 0.25 1
S2u1 “ tf8, f10, f12, f14u 16 0 0.75

S2b “ tf15, f16u 8 0.25 0.75

S2u1 “ tf8, f10, f12, f14u
S2u0 “ tf7, f9, f11, f13u 16 0 0.75
S2u1 “ tf8, f10, f12, f14u 16 0.25 1

S2b “ tf15, f16u 8 0.25 0.75

S2b “ tf15, f16u

S2u0 “ tf7, f9, f11, f13u 8 0.25 0.75
S2u1 “ tf8, f10, f12, f14u 8 0.25 0.75

S2b “ tf15, f16u 4 0 1

Tab. 4.2: The first and second column specify from which set of boolean functions the I
and O are chosen for all the (non-trivial) two-player boolean games. The third column
enumerates the total number of games in that classification. The last two columns show
the minimum and the maximum winning probability for that type of games. The defini-
tion of each fi is found in Table 4.1 on page 34.

(fourth row); and I P S2b O P S2u (seventh and eight row), do not exhibit such a
separation between the classical and the quantum bounds as the CHSH-like games
do.

It has been proven that for two-party two-input two-output games without com-
munication, the only games that show a separation when using classical resources
(modelled by local hidden-variables LHV theories) versus using non-local resources
correspond basically to CHSH games/inequalities. For instance, in [86], the authors
characterise, among other things, the vertices from the local and the non-local poly-
tope – which is the generalisation of three-dimensional polyhedra with flat faces,
constructed in this case from all the possible sets of correlations satisfying the non-
signalling condition. The authors show that the vertices of the non-local theories
with two inputs and outputs are equivalent to CHSH games; it is also known that
the only non-trivial facets of the LHV polytope are CHSH inequalities [87]. This
separation between classical and non-local theories – quantum mechanics would be
an example, but there are many other possible ones – is also related to the fact that
in a Bell experiment with n parties, LHV theories can only evaluate n-partite linear
functions via correlators [88]. In the present two-party case, the correlator4 would
correspond to choosing the output function Opa, bq to be XOR (f15 in Table 4.1 on
page 34), and the “functions to evaluate” would correspond to the input functions
Ipx, yq. That implies that only the 2-partite linear functions can be evaluated in
a LHV theory, but since the AND function is not linear, it cannot be classically
computed with correlators; situation that maps to a CHSH game with the AND
function and the correlators as the XOR output function. This last example is a
bit more obscure to understand in terms of the games defined here, but it provides
with another interpretation/explanation of the difference between using local and
non-local resources in terms of computationally expressiveness.

4A correlator is a correlating function; in this context, is a probability distribution over joint
outcomes. In [88] the correlators considered are the sum of measurement outcomes mj modulo
the total number of outcomes d.
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4.1.3 Three-player boolean games in the triangle

Now that the two-player boolean games have been classified, it is the turn to
classify the boolean games in the triangle configuration. This classification
consists of analysing all the possible (truly) different expressions of Alice’s payoff5

in equation (4.8) on page 33 as a function of the choice of I, O P S2u Y S2b.

The previous classification of the winning probabilities in equations (4.14)-
(4.22) is useful since Alice’s average payoff for the two (identical) games played
in the triangle configuration is easily obtained by just adding the winning prob-
ability of GAME 1 between Alice and Bob, and the same winning probability
for GAME 3, between Carl and Alice. It is paramount then to label prop-
erly the probabilities from each game. To shorten the notation, for instance,
Probabp1, 0|1, 1q should be read as Probpa “ 1, b “ 0|x “ 1, y “ 1q, while
Probcap1, 0|1, 1q ” Probpc “ 1, a “ 0|z “ 1, x “ 1q.

The next few equations only refer to Alice’s average payoff depending on the
choice of I, O P S2u Y S2b, since the expressions for Bob’s and Carl’s average pay-
offs are obtained by the cyclic permutations pb, c, aq and py, z, xq; and pc, a, bq and
pz, x, yq, respectively6.

˛ O P S2b “ tf15, f16u

This first classification is practically the same as the one in equations (4.14)-(4.17)
for the two-player games.

• O “ f15 and I P S2u0 “ tf7, f9, f11, f13u; or O “ f16 and I P S2u1 “

tf8, f10, f12, f14u; which, up to permutations of the negative signs with the
same conditional probabilities7, the average payoff looks like:

$A “
1

4
`

1

8
rProbabpcoord|0, 0q ` Probcapcoord|0, 0q ` Probabpcoord|0, 1q

` Probcapcoord|1, 0q ` Probabpcoord|1, 0q ` Probcapcoord|0, 1q

´Probabpcoord|1, 1q ´ Probcapcoord|1, 1qs (4.23)

• O “ f15 and I P S2u1 “ tf8, f10, f12, f14u; or O “ f16 and I P S2u0 “

tf7, f9, f11, f13u; which, again, up to permutations of the negative sign in the
brackets with the same conditional probabilities (see footnote 7), the average
payoff looks like:

$A “
3

4
´

1

8
rProbabpcoord|0, 0q ` Probcapcoord|0, 0q ` Probabpcoord|0, 1q

` Probcapcoord|1, 0q ` Probabpcoord|1, 0q ` Probcapcoord|0, 1q

´Probabpcoord|1, 1q ´ Probcapcoord|1, 1qs (4.24)
5Now it is necessary to talk about payoffs and not only about the winning probabilities be-

cause each player might only care about what they obtain individually.
6For instance, the permutation pb, c, aq and py, z, xq denote the mappings pa, b, cq Ñ pb, c, aq

and px, y, zq Ñ py, z, xq .
7That means, that the two negative signs go in front of: Probabpcoord|0, 0q and

Probcapcoord|0, 0q; or Probabpcoord|0, 1q and Probcapcoord|0, 1q; or Probabpcoord|1, 0q and
Probcapcoord|1, 0q; or Probabpcoord|1, 1q and Probcapcoord|1, 1q.
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• O “ I “ f15; or O “ I “ f16, the average payoff is (exactly):

$A “
1

2
`

1

8
rProbabpcoord|0, 0q ` Probcapcoord|0, 0q ´ Probabpcoord|0, 1q

´ Probcapcoord|1, 0q ´ Probabpcoord|1, 0q ´ Probcapcoord|0, 1q

`Probabpcoord|1, 1q ` Probcapcoord|1, 1qs (4.25)

• O “ f15 and I “ f16; or O “ f16 and I “ f15, the average payoff is (exactly):

$A “
1

2
´

1

8
rProbabpcoord|0, 0q ` Probcapcoord|0, 0q ´ Probabpcoord|0, 1q

´ Probcapcoord|1, 0q ´ Probabpcoord|1, 0q ´ Probcapcoord|0, 1q

`Probabpcoord|1, 1q ` Probcapcoord|1, 1qs (4.26)

To classify all the games, it is only necessary to analyse one example for each
different type of payoff. That means, choosing specifically an example of the two
functions I, O for each of the payoffs in equations (4.23)-(4.26) since the results
will also apply – up to possible permutations – to the other functions that share
the same type of payoff. The representative functions chosen are: I “ f7 and
O “ f15 (CHSH game) corresponding exactly, including the signs, to the payoff in
equation (4.23); I “ f8 and O “ f15 corresponding exactly to the payoff in equation
(4.24); I “ O “ f15 corresponding to the payoff in equation (4.25); and I “ f15 and
O “ f16 corresponding to the payoff in equation (4.26).

Furthermore, since the average payoff in equation (4.23) – corresponding to I “

f7 and O “ f15 – and the payoff in equation (4.24) – corresponding to I “ f8 and
O “ f15 – sum to 1, it is enough to analyse only the payoff of I “ f7 and O “ f15.
Similar argument applies to the payoffs in equations (4.25) and (4.26), leaving, for
example I “ O “ f15 as the only case to analyse. Then, in this case, only 2
representative functions are necessary.

˛ O P S2u “ tf7, f8, f9, f10, f11, f12, f13, f14u

This situation presents some subtleties due to the mix of the two games. In the
previous classification in equations (4.23)-(4.26), only the coordination probability
Probpcoord| q of Alice with Bob and Carl for the two games mattered . Now,
it matters the probability of certain outputs Probpm,n| q, where, remember,
m,n are the inputs for which the minority bit of O is outputted – see the part of
O P S2u on page 37. In the present case of O P S2u, Alice’s average payoff is of the
form:

$A „ ` p´1q
k00 rProbabpm,n|0, 0q ` Probcapm,n|0, 0qs

` p´1q
k01 rProbabpm,n|0, 1q ` Probcapm,n|0, 1qs

` p´1q
k10 rProbabpm,n|1, 0q ` Probcapm,n|1, 0qs

` p´1q
k11 rProbabpm,n|1, 1q ` Probcapm,n|1, 1qs (4.27)

where kij denotes the sign in front of the probability with inputs i, j P t0, 1u,
which depends on the specific choice of O, I; and the red colour highlights Alice’s
inputs and outputs for x “ 0, and blue for x “ 1. From the previous classification
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of the two-player games when O P S2u in equations (4.19)-(4.22), either there
is one negative sign in front of one of the probabilities, i.e. p´,`,`,`q and
its permutations8 when I, O P S2u; or there are two negative signs of the form
p`,´,´,`q or p´,`,`,´q when I P S2b and O P S2u.

When I, O P S2u, there is a nuance between having, for example p´,`,`,`q or
p`,´,`,`q. Focusing only on Alice’s payoff when x “ 0, that is, the probabilities
in equation (4.27) with red inputs and outputs, having p´,`,`,`q implies two
negative signs: $A „ ´Probabpm,n|0, 0q ´ Probcapm,n|0, 0q ` Probabpm,n|0, 1q `

Probcapm,n|1, 0q ` . . . ; whereas p`,´,`,`q implies only one negative sign: $A „

`Probabpm,n|0, 0q `Probcapm,n|0, 0q ´Probabpm,n|0, 1q `Probcapm,n|1, 0q ` . . . .
Clearly these two situations will yield to different results. Therefore, for I, O P S2u,
there are four types of average payoff instead of only the two of the two-player
classification in equations (4.19) and (4.20).

Here are all the 6 types of payoffs when O P S2u:

• I, O P tf7, f13u; or I, O P tf8, f14u; O P tf9, f11u and I P tf7, f13u; or O P

tf10, f12u and I P tf8, f14u; which up to moving the two negative signs of the
probabilities with the same inputs9 inside the brackets, the average payoff
looks like:

$A “
3

4
´

1

8
rProbabpm,n|0, 0q ` Probcapm,n|0, 0q ` Probabpm,n|0, 1q

` Probcapm,n|1, 0q ` Probabpm,n|1, 0q ` Probcapm,n|0, 1q

´Probabpm,n|1, 1q ´ Probcapm,n|1, 1qs (4.28)

• O P tf7, f13u and I P tf8, f14u; or O P tf8, f14u and I P tf7, f13u; or O P

tf10, f12u and I P tf7, f13u; or O P tf9, f11u and I P tf8, f14u; which, again, up
to permutations of the two negative signs of the probabilities with the same
inputs (see footnote 9), the average payoff looks like:

$A “
1

4
`

1

8
rProbabpm,n|0, 0q ` Probcapm,n|0, 0q ` Probabpm,n|0, 1q

` Probcapm,n|1, 0q ` Probabpm,n|1, 0q ` Probcapm,n|0, 1q

´Probabpm,n|1, 1q ´ Probcapm,n|1, 1qs (4.29)

• O P tf7, f13u and I P tf9, f11u; or O P tf8, f14u and I P tf10, f12u; I, O P

tf9, f11u; or I, O P tf10, f12u; which, up to permutations of the negative signs
of the probabilities with different inputs10 inside the brackets, the average
payoff looks like:

$A “
3

4
´

1

8
rProbabpm,n|0, 0q ` Probcapm,n|0, 0q ` Probabpm,n|0, 1q

´ Probcapm,n|1, 0q ´ Probabpm,n|1, 0q ` Probcapm,n|0, 1q

`Probabpm,n|1, 1q ` Probcapm,n|1, 1qs (4.30)
8The notation p´,`,`,`q denotes a negative sign in front of the first two probabilities in

(4.27), and positive for the rest, i.e. k00 “ 1 and k01 “ k10 “ k11 “ 2 .
9That means that the two negative signs go in front of the probabilities with x “ y “

z, that is, of Probabpm,n|0, 0q and Probcapm,n|0, 0q; or in front of Probabpm,n|1, 1q and
Probcapm,n|1, 1q.

10That means that the negative signs go either in front of Probabpm,n|0, 1q and
Probcapm,n|0, 1q; or Probabpm,n|1, 0q and Probcapm,n|1, 0q.
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• O P tf8, f14u and I P tf9, f11u; or O P tf7, f13u and I P tf10, f12u; O P tf9, f11u
and I P tf10, f12u; or O P tf10, f12u and I P tf9, f11u; which, again, up to
permutations of the two negative signs of the probabilities with different inputs
(see footnote 10), the average payoff looks like:

$A “
1

4
`

1

8
rProbabpm,n|0, 0q ` Probcapm,n|0, 0q ` Probabpm,n|0, 1q

´ Probcapm,n|1, 0q ´ Probabpm,n|1, 0q ` Probcapm,n|0, 1q

`Probabpm,n|1, 1q ` Probcapm,n|1, 1qs (4.31)

• O P tf7, f9, f11, f13u and I “ f15; or O P tf8, f10, f12, f14u and I “ f16, the
average payoff is exactly:

$A “
1

2
´

1

8
rProbabpm,n|0, 0q ` Probcapm,n|0, 0q ´ Probabpm,n|0, 1q

´ Probcapm,n|1, 0q ´ Probabpm,n|1, 0q ´ Probcapm,n|0, 1q

`Probabpm,n|1, 1q ` Probcapm,n|1, 1qs (4.32)

• O P tf8, f10, f12, f14u and I “ f15; or O P tf7, f9, f11, f13u and I “ f16, the
average payoff is exactly:

$A “
1

2
`

1

8
rProbabpm,n|0, 0q ` Probcapm,n|0, 0q ´ Probabpm,n|0, 1q

´ Probcapm,n|1, 0q ´ Probabpm,n|1, 0q ´ Probcapm,n|0, 1q

`Probabpm,n|1, 1q ` Probcapm,n|1, 1qs (4.33)

As explained before, at the end of the previous analysis with O P S2b, it is only
necessary to pick some representative functions for I, O of each type of payoff. In
the present case, it has been shown that there are 6 types of payoff. In fact, there
are more than 6 because the payoffs are different when the output bits of each
player are the same or not, that is, when m “ n and when m ‰ n (or n “ m).
Focusing now on equation (4.28) and on the probabilities when x “ 0, for instance,
for I “ O “ f7, that has m “ n “ 1, Alice’s payoff goes, up to global signs,
like „ Probabp1, 1|0, 0q `Probcap1, 1|0, 0q `Probabp1, 1|0, 1q `Probcap1, 1|1, 0q ` . . . ;
meanwhile for I “ f7 , O “ f9, that has m “ 1 and n “ 0, Alice’s payoff goes
like „ Probabp1, 0|0, 0q ` Probcap1, 0|0, 0q ` Probabp1, 0|0, 1q ` Probcap1, 0|1, 0q ` . . .
. In the first case, Alice’s output a “ 1 serves for both games with Bob and Carl,
whereas in the latter case, Alice has a “conflict” between her outputs, since for the
game with Bob the important output is a “ 1 and for Carl is a “ 0. This reasoning
explains why it is necessary to pick 12 representative functions in total, 2 for
each different payoff in equations (4.28)-(4.33).

The next section focuses on analysing all the different types of payoffs in this
triangle-scenario by picking certain representatives functions I, O when the players
use classical strategies.

4.1.3.1 Classical strategies

Analogously to what was explained in section 4.1.2.1 on page 39 for the classi-
cal strategies in the two-player games, the probabilities factorise and the players’
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strategies will be denoted as pa|x, qb|y, and rc|z for Alice, Bob, and Carl, respec-
tively. Next, only Alice’s payoff will be explicitly written for some chosen representa-
tive functions I, O since Bob’s and Carl’s payoffs can be easily obtained with the per-
mutations ppa|x , qb|y , rc|zq Ñ pqb|y , rc|z , pa|xq and ppa|x , qb|y , rc|zq Ñ prc|z , pa|x , qb|yq.
As explained previously, some of the payoffs add up to 1, which reduces the number
of payoffs to analyse. That is why, the representative functions of the chosen
payoffs that will be analysed in detail will be highlighted in bold.

• I “ f7, O “ f15 – CHSH game –, which corresponds to the payoff type in
equation (4.23):

$A “
1

4

“

3 ´ p2p0|0 ` q0|0 ` r0|0q ` pp0|0 ` p0|1qpq0|0 ` r0|0q

`pp0|0 ´ p0|1qpq0|1 ` r0|1q
‰

(4.34)

• I “ f8, O “ f15, which corresponds to the payoff type in equation (4.24):

$A “
1

4

“

1 ` 2p0|0 ` q0|0 ` r0|0 ´ pp0|0 ` p0|1qpq0|0 ` r0|0q

´pp0|0 ´ p0|1qpq0|1 ` r0|1q
‰

(4.35)

The payoffs in equations (4.34) and (4.35) sum to 1, so only the case of I “ f7,
O “ f15 will be fully analysed.

• I “ f15, O “ f15, which corresponds to the payoff type in equation (4.25):

$A “
1

4

“

2 ` pp0|0 ´ p0|1qpq0|0 ` r0|0 ´ q0|1 ´ r0|1q
‰

(4.36)

• I “ f15, O “ f16, which corresponds to the payoff type in equation (4.26):

$A “
1

4

“

2 ´ pp0|0 ´ p0|1qpq0|0 ` r0|0 ´ q0|1 ´ r0|1q
‰

(4.37)

The payoffs in equations (4.36) and (4.37) sum to 1, so only the case of I “ f15,
O “ f15 will be fully analysed.

• I “ O “ f7, which corresponds to the payoff type in equation (4.28) with
m “ n “ 1:

$A “
1

8

“

2 ` 2p2p0|0 ` q0|0 ` r0|0q ´ pp0|0 ` p0|1qpq0|0 ` r0|0q

´pp0|0 ´ p0|1qpq0|1 ` r0|1q
‰

(4.38)

• I “ f7, O “ f8, which corresponds to the payoff type in equation (4.29) with
m “ n “ 1:

$A “
1

8

“

6 ´ 2p2p0|0 ` q0|0 ` r0|0q ` pp0|0 ` p0|1qpq0|0 ` r0|0q

`pp0|0 ´ p0|1qpq0|1 ` r0|1q
‰

(4.39)

The payoffs in equations (4.38) and (4.39) sum to 1, so only the case of I “ f7,
O “ f8 will be fully analysed.
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• I “ f7, O “ f9, which corresponds to the payoff type in equation (4.28) with
m “ 1 and n “ 0:

$A “
1

8

“

6 ´ 2pp0|0 ` q0|0q ` pp0|0 ` p0|1qpq0|0 ` r0|0q

`pp0|0 ´ p0|1qpq0|1 ´ r0|1q
‰

(4.40)

• I “ f7, O “ f10, which corresponds to the payoff type in equation (4.29)
with m “ 1 and n “ 0:

$A “
1

8

“

2 ` 2pp0|0 ` q0|0q ´ pp0|0 ` p0|1qpq0|0 ` r0|0q

´pp0|0 ´ p0|1qpq0|1 ` r0|1q
‰

(4.41)

The payoffs in equations (4.40) and (4.41) sum to 1, so only the case of I “ f7,
O “ f10 will be fully analysed.

• I “ f9, O “ f7, which corresponds to the payoff type in equation (4.30) with
m “ n “ 1:

$A “
1

8

“

2 ` 2pp0|0 ` p0|1 ` q0|1 ` r0|0q ´ pp0|0 ` p0|1qpq0|1 ` r0|0q

´pp0|0 ´ p0|1qpq0|0 ´ r0|1q
‰

(4.42)

• I “ f9, O “ f8, which corresponds to the payoff type in equation (4.31) with
m “ n “ 1:

$A “
1

8

“

6 ´ 2pp0|0 ` p0|1 ` q0|1 ` r0|0q ` pp0|0 ` p0|1qpq0|1 ` r0|0q

`pp0|0 ´ p0|1qpq0|0 ´ r0|1q
‰

(4.43)

The payoffs in equations (4.42) and (4.43) sum to 1, so only the case of I “ f9,
O “ f7 will be fully analysed.

• I “ O “ f9, which corresponds to the payoff type in equation (4.30) with
m “ 1 and n “ 0:

$A “
1

8

“

6 ´ 2pp0|1 ` q0|1q ` pp0|0 ` p0|1qpq0|1 ` r0|0q

`pp0|0 ´ p0|1qpq0|0 ´ r0|1q
‰

(4.44)

• I “ f9, O “ f10, which corresponds to the payoff type in equation (4.31)
with m “ 1 and n “ 0:

$A “
1

8

“

2 ` 2pp0|1 ` q0|1q ´ pp0|0 ` p0|1qpq0|1 ` r0|0q

´pp0|0 ´ p0|1qpq0|0 ´ r0|1q
‰

(4.45)

The payoffs in equations (4.44) and (4.45) sum to 1, so only the case of I “ f9,
O “ f10 will be fully analysed.
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• I “ f15, O “ f7 ; I “ f15, O “ f10 , which correspond to the payoff types
in equation (4.32) with m “ n “ 1, and in equation (4.33) with m “ 1 n “ 0,
respectively:

$A “
1

8

“

4 ´ pp0|0 ´ p0|1qpq0|0 ` r0|0 ´ q0|1 ´ r0|1q
‰

(4.46)

• I “ f15, O “ f8 ; I “ f15, O “ f9, which correspond to the payoff types in
equation (4.33) with m “ n “ 1, and in equation (4.32) with m “ 1 n “ 0,
respectively:

$A “
1

8

“

4 ` pp0|0 ´ p0|1qpq0|0 ` r0|0 ´ q0|1 ´ r0|1q
‰

(4.47)

The payoffs in equations (4.46) and (4.47) sum to 1, so only the case of I “ f15,
O “ f7 will be fully analysed.

In the present situation, the classification of the payoffs is not as straightforward
as before with the two-player (cooperative) games that looked only at the maximum
and minimum values of the winning probability – in Table 4.2 on page 40. Now, there
are three players and their individual payoffs need to be taken into account. Table
4.3 contains all the possible payoffs of Alice, Bob, and Carl, from the expressions
in equations (4.34)-(4.47) depending on the choice of I, O when the players use
pure strategies, that is, when pa|x , qb|xy , rc|z are either 0 or 1, since the pure
strategies give the bounds of such payoffs. The 7 representative functions I, O
from the payoffs in equations (4.34), (4.36), (4.39), (4.41), (4.42), (4.45), (4.46) are
also highlighted in bold in the table. If there is no highlighted function on that
row, it means that the payoff sums to 1 with some other choices of functions. For
example, on the second row the chosen functions would be I “ O “ f7 but the
payoff adds to 1 with that I “ f7 and O “ f8 on the sixth row. The payoffs in the
table correspond to the truly different payoffs up to permutations of players,
e.g. the payoff p$A, $B, $Cq “ p0, 0.5, 0.5q on the first row represents also the payoffs
p$A, $B, $Cq “ p0.5, 0, 0.5q and p$A, $B, $Cq “ p0.5, 0.5, 0q .
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I , O P p$A, $B, $Cq

I “ O “f15 ; I “ O “ f16 tp0, 0.5, 0.5q, p0.25, 0.25, 0.5q, p0.5, 0.5, 0.5q, p0.5, 0.75, 0.75q, p1, 1, 1qu

I, O P tf7, f13u ; I, O P tf8, f14u
tp0.25, 0.25, 0.25q, p0.25, 0.375, 0.375q, p0.375, 0.5, 0.625q, p0.5, 0.5, 0.5q, p0.5, 0.5, 0.75q,

p0.5, 0.75, 0.75q, p0.625, 0.625, 0.75q, p0.75, 0.75, 0.75q, p0.75, 0.875, 0.875q, p1, 1, 1qu

I, O P tf9, f11u; I, O P tf10, f12u
tp0.25, 0.5, 0.5q, p0.375, 0.5, 0.625q, p0.5, 0.5, 0.5q, p0.5, 0.5, 0.75q, p0.5, 0.75, 0.75q,

p0.625, 0.625, 0.75q, p0.75, 0.75, 0.75q, p0.75, 0.875, 0.875q, p1, 1, 1qu

I “ f15 , O “f16 ; I “ f16 , O “ f15 tp0, 0, 0q, p0.25, 0.25, 0.5q, p0.5, 0.5, 0.5q, p0.5, 0.75, 0.75q, p0.5, 0.5, 1qu

I P tf9, f11u , O P tf10, f12u ; I P tf10, f12u , O P tf9, f11u
tp0, 0, 0q, p0.125, 0.125, 0.25q, p0.25, 0.25, 0.25q, p0.25, 0.25, 0.5q, p0.25, 0.375, 0.375q,

p0.25, 0.5, 0.5q, p0.375, 0.5, 0.625q, p0.5, 0.5, 0.5q, p0.5, 0.5, 0.75qu

I P tf7, f13u , O P tf8, f14u ; I P tf8, f14u , O P tf7, f13u
tp0, 0, 0q, p0.125, 0.125, 0.25q, p0.25, 0.25, 0.25q, p0.25, 0.25, 0.5q, p0.25, 0.375, 0.375q,

p0.25, 0.5, 0.5q, p0.375, 0.5, 0.625q, p0.5, 0.5, 0.5q, p0.625, 0.625, 0.75q, p0.75, 0.75, 0.75qu

I P S2u “ tf7, f8, f9, f10, f11, f12, f13, f14u , O P S2b “ tf15, f16u tp0.25, 0.25, 0.25q, p0.25, 0.5, 0.5q, p0.5, 0.5, 0.75q, p0.75, 0.75, 0.75qu

I P tf7, f13u , O P tf10, f12u ; I P tf8, f14u , O P tf9, f11u
tp0.125, 0.375, 0.5q, p0.25, 0.25, 0.25q, p0.25, 0.25, 0.5q, p0.25, 0.375, 0.375q, p0.25, 0.5, 0.5q,

p0.375, 0.5, 0.625q, p0.5, 0.5, 0.5qu

I P tf7, f13u , O P tf9, f11u ; I P tf8, f14u , O P tf10, f12u
tp0.375, 0.5, 0.625q, p0.5, 0.5, 0.5q, p0.5, 0.5, 0.75q, p0.5, 0.625, 0.875q, p0.5, 0.75, 0.75q,

p0.625, 0.625, 0.75q, p0.75, 0.75, 0.75qu

I P tf9, f11u , O P tf7, f13u ; I P tf10, f12u , O P tf8, f14u
tp0.25, 0.25, 0.25q, p0.25, 0.5, 0.5q, p0.25, 0.625, 0.625q, p0.375, 0.5, 0.625q, p0.5, 0.5, 0.5q,

p0.5, 0.5, 0.75q, p0.5, 0.75, 0.75q, p0.625, 0.625, 0.75q, p0.75, 0.75, 0.75q, p0.75, 0.875, 0.875qu

I P tf9, f11u , O P tf8, f14u ; I P tf10, f12u , O P tf7, f13u
tp0.125, 0.125, 0.25q, p0.25, 0.25, 0.25q, p0.25, 0.25, 0.5q, p0.25, 0.375, 0.375q, p0.25, 0.5, 0.5q,

p0.375, 0.375, 0.75q, p0.375, 0.5, 0.625q, p0.5, 0.5, 0.5q, p0.5, 0.5, 0.75q, p0.75, 0.75, 0.75qu

I “f15 , O P tf7, f10, f12, f13u ; I “ f16 , O P tf8, f9, f11, f14u tp0.25, 0.25, 0.25q, p0.375, 0.375, 0.5q, p0.5, 0.5, 0.5q, p0.5, 0.5, 0.75q, p0.5, 0.625, 0.625qu

I “ f15 , O P tf8, f9, f11, f14u ; I “ f16 , O P tf7, f10, f12, f13u tp0.25, 0.5, 0.5q, p0.375, 0.375, 0.5q, p0.5, 0.5, 0.5q, p0.5, 0.625, 0.625q, p0.75, 0.75, 0.75qu

Tab. 4.3: Table with the classification of the games in a triangle depending on the choice of I and O along with the possible combinations of payoffs for all three
players (up to permutations) using classical pure strategies. The functions in bold denote the representative functions that will be analysed further. The definition
of each fi is found in Table 4.1 on page 34.
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4.2 Nash Equilibrium for boolean games with 3
players in a triangle

Table 4.3 contains all the possible types of payoffs when players use (classical) pure
strategies, but these are not the solutions of the game/s. As mentioned in section
1.2 in chapter 1 on page 5, one of the most important solution concepts for game
theory is that of Nash equilibrium. A Nash equilibrium is a configuration of
strategies such that no player wants to unilaterally deviate from it given
that the other players do not deviate. In mathematical terms, a strategy set
s˚ “ ts˚

1 , s
˚
2 , ..., s

˚
nu is a Nash equilibrium if:

$ips
˚
i , s

˚
´iq ě $ips

1

i, s
˚
´iq @i (4.48)

where $i and si denote player’s i payoff and strategy, respectively; and s´i denotes
the strategies of all the players except player i’s.

Then, for the present situation with three players using mixed strategies, a Nash
equilibrium point is a set of strategies s˚ “ tp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u that satisfies:

$App˚
0|0, p

˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1q ě $App

1

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1q (4.49)

$App˚
0|0, p

˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1q ě $App˚

0|0, p
1

0|1, q
˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1q (4.50)

$Bpp˚
0|0, p

˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1q ě $Bpp˚

0|0, p
˚
0|1, q

1

0|0, q
˚
0|1, r

˚
0|0, r

˚
0|1q (4.51)

$Bpp˚
0|0, p

˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1q ě $Bpp˚

0|0, p
˚
0|1, q

˚
0|0, q

1

0|1, r
˚
0|0, r

˚
0|1q (4.52)

$Cpp˚
0|0, p

˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1q ě $Cpp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

1

0|0, r
˚
0|1q (4.53)

$Cpp˚
0|0, p

˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1q ě $Cpp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

1

0|1q (4.54)

where $A, $B, and $C are Alice’s, Bob’s and Carl’s payoffs and the strategies with
a dash denote other strategies different from the Nash equilibrium ones.

Finding such equilibrium points means finding optimal solutions for all players.
That means that Alice wants her strategy set tp0|0, p0|1u to be the one that maximises
(optimises) her payoff given that Bob and Carl’s strategies tq0|0, q0|1, r0|0, r0|1u are
fixed. Similarly for Bob and Carl. Thus the problem of finding the Nash equilibria
can be stated as a typical optimisation problem:

maximise
p0|0,p0|1

$App0|0, p0|1q (4.55)

subject to 0 ď p0|0 ď 1, 0 ď p0|1 ď 1

maximise
q0|0,q0|1

$Bpq0|0, q0|1q (4.56)

subject to 0 ď q0|0 ď 1, 0 ď q0|1 ď 1

maximise
r0|0,r0|1

$Cpr0|0, r0|1q (4.57)

subject to 0 ď r0|0 ď 1, 0 ď r0|1 ď 1

where only the variables controlled by each player are explicitly written in the
dependence of their own payoffs, since the other players’ variables are supposed
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to be fixed. To be clearer, for instance, the expression for Alice’s payoff depends
on all variables $App0|0, p0|1, q0|0, q0|1, r0|0, r0|1q, but she can control only p0|0, p0|1 ,
so for her optimisation problem q0|0, q0|1, r0|0, r0|1 act as just parameters; that is
why Bob’s and Carl’s variables are omitted in Alice’s optimisation problem in (4.55).

Finding the Nash equilibrium points for a certain game might be hard in general,
since the difficulty is related to the type of objective functions (players’ payoffs) to be
optimised and the restrictions on the strategy set, e.g. linear, convex, non-convex,
etc. In the cases considered here with the different payoffs for the different boolean
games with 3 players in a triangle, finding the Nash equilibrium points is relatively
easy to solve since it is a convex optimisation problem. Section B.1 in appendix
B contains more about the basics of convex optimisation. In the same appendix,
section B.2 contains the necessary generic equations to solve in order to find the Nash
equilibrium points. Subsection B.2.1 has the concrete equations to solve to find the
Nash equilibrium points for the 7 chosen representative functions from above. As
for the other 7 possible choices of functions, which are not marked in bold on pages
45-47, the payoffs of these sum to 1 with one of the chosen representative functions.
This means that the maximisation problem – to find the Nash equilibrium points – of
these 7 non-chosen functions can be written as a minimisation problem of the chosen
representative functions. To be more explicit, for example, Alice’s payoff in the
games defined by I “ f15, O “ f7; and I “ f15, O “ f8 in equations (4.46) and (4.47),
respectively, sum to 1, i.e. $f15´f7

A `$f15´f8
A “ 1, which means that the maximisation

problem for Alice for the game I “ f15, O “ f8 can be written as a minimisation
problem of the game I “ f15, O “ f7. In mathematical terms, max

´

$f15´f8
A

¯

“

max
´

1 ´ $f15´f7
A

¯

“ min
´

´1 ` $f15´f7
A

¯

“ ´1`min
´

$f15´f7
A

¯

. Analogous relations
hold for Bob and Carl. Therefore the payoffs of the 7 chosen representative functions
contain the necessary information to solve all the 14 different (boolean) games in
this triangle-like configuration. For the sake of space, the explicit solutions will only
be given for the 7 representative functions; the solutions of the other games can
be directly obtained using the payoffs of the representative ones by changing the
problem to a minimisation one.

One game might have many Nash equilibrium points that give different payoffs
to the players. One way of deciding which of these equilibrium points would be the
best is by adding all the players’ payoffs $A ` $B ` $C to see which one/s gives the
highest value. Aggregating the players’ payoffs at an equilibrium point is referred
to as the social welfare of that equilibrium point11.

Tables 4.4-4.10 have all the Nash equilibrium points for these choices of the
7 representative functions for the games. For simplicity, the tables only contain
the truly different Nash equilibrium points up to permutation of players. This means
that if a point on these tables is not invariant under player permutations, it should
be kept in mind that it is also represented there. The solutions in bold denote the
ones that give the highest social welfare, i.e. the ones that give the highest value of

11The term social welfare in the present dissertation will be used interchangeably with $A `

$B ` $C . However, in the context of economics and social sciences, the social welfare function
is a map between the individual preference relations (an ordering/ranking of a set) of a group of
players into a unique preference relation, with the aim of faithfully representing the preferences
of the whole group. See the chapter on social choice in the book in [89] for further details.
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$A ` $B ` $C . Coming back to the Nash equilibrium points, to prove, for instance,
that the first solution s˚ “ t1, p0|1, 1, 1, 1, 1u in Table 4.4 for I “ f7, O “ f15 (CHSH
game) is indeed a Nash equilibrium point, it is necessary to check that the conditions
in equations (4.49)-(4.54) hold:

$Ap1, p0|1, 1, 1, 1, 1q “
3

4
ě $App1

0|0, p0|1, 1, 1, 1, 1q “
1 ` 2p1

0|0

4
(4.58)

$Ap1, p0|1, 1, 1, 1, 1q “
3

4
ě $Ap1, p1

0|1, 1, 1, 1, 1q “
3

4
(4.59)

$Bp1, p0|1, 1, 1, 1, 1q “
3

4
ě $Bp1, p0|1, q

1
0|0, 1, 1, 1q “

2 ´ p0|1 ` q1
0|0p1 ` p0|1q

4
(4.60)

$Bp1, p0|1, 1, 1, 1, 1q “
3

4
ě $Bp1, p0|1, 1, q

1
0|1, 1, 1q “

2 ´ p0|1 ` q1
0|1p1 ´ p0|1q

4
(4.61)

$Cp1, p0|1, 1, 1, 1, 1q “
3

4
ě $Cp1, p0|1, 1, 1, r

1
0|0, 1q “

2 ´ p0|1 ` r1
0|0p1 ` p0|1q

4
(4.62)

$Cp1, p0|1, 1, 1, 1, 1q “
3

4
ě $Cp1, p0|1, 1, 1, 1, r

1
0|1q “

2 ´ p0|1 ` r1
0|0p1 ´ p0|1q

4
(4.63)

These equations are clearly satisfied since 0 ď p1
0|0, q

1
0|0, r

1
0|0, p0|0 ď 1.

games I “ f7 , O “ f15
s˚ “ tp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u $A $B $C

t1,1,1,1,1, r0|1u 3
4

3
4

3
4t0,0,0,0,0, r0|1u

t1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
u 1

2
1
2

1
2

t1, 0, 0, 1, 1 ´ r0|1, r0|1u
2`r0|1

4

3´r0|1

4
1
2

t0, 1, 1, 0, 1 ´ r0|1, r0|1u
3´r0|1

4

2`r0|1

4
1
2

Tab. 4.4: Nash Equilibrium solutions for the game when I “ f7, O “ f15 (CHSH game),
game represented by Alice’s average payoff in equation (4.34) on page 45. The bold solu-
tions give the highest social welfare $A ` $B ` $C “ 9{4 “ 2.25 .

games I “ f15 , O “ f15
s˚ “ tp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u $A $B $C

t1,0,1,0,1,0u
1 1 1

t0,1,0,1,0,1u

tp0|0, p0|0, q0|0, q0|0, r0|0, r0|0u
1
2

1
2

1
2

Tab. 4.5: Nash Equilibrium solutions for the game when I “ O “ f15, game represented
by Alice’s average payoff in equation (4.36) on page 45. The bold solutions give the high-
est social welfare $A ` $B ` $C “ 3 .
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games I “ f7 , O “ f8
s˚ “ tp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u $A $B $C

t0,0,0,0,0, r0|1u 3
4

3
4

3
4

t1, 1, 1, 1, 1, 1u 1
4

1
4

1
4

Tab. 4.6: Nash Equilibrium solutions for the game when I “ f7, O “ f8, game repre-
sented by Alice’s average payoff in equation (4.39) on page 45. The bold solution gives
the highest social welfare $A ` $B ` $C “ 9{4 “ 2.25 .

games I “ f7 , O “ f10
s˚ “ tp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u $A $B $C

t1, 1, 0, 0, r0|0, r0|0u
2´r0|0

4

1`r0|0

4
1
2

t1,0,1,0, r0|0,0u
5´r0|0

8

3`r0|0

8
1
2

t0,1,0,1, r0|0,1u
4´r0|0

8

4`r0|0

8
1
2

t0, 0, 1, 1, r0|0, r0|0u
1
2

1
2

1
4

t1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
u 3

8
3
8

3
8

Tab. 4.7: Nash Equilibrium solutions for the game when I “ f7, O “ f10, game repre-
sented by Alice’s average payoff in equation (4.41) on page 46. The bold solutions give
the highest social welfare $A ` $B ` $C “ 3{2 “ 1.5 .

games I “ f9 , O “ f7
s˚ “ tp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u $A $B $C

t1,0,0,1,1,1u 7
8

7
8

3
4

t1, 1, 1, 1, r0|0, r0|0u
3
4

3
4

3
4

Tab. 4.8: Nash Equilibrium solutions for the game when I “ f9, O “ f7, game repre-
sented by Alice’s average payoff in equation (4.42) on page 46. The bold solution gives
the highest social welfare $A ` $B ` $C “ 5{2 “ 2.5 .
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games I “ f9 , O “ f10
s˚ “ tp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u $A $B $C

t1,1,0,0,0,1u 1
2

1
2

3
4

t0, 1, 0, 1, r0|0, 1 ´ r0|0u
1
2

1
2

1
2

Tab. 4.9: Nash Equilibrium solutions for the game when I “ f9, O “ f10, game repre-
sented by Alice’s average payoff in equation (4.45) on page 46. The bold solution gives
the highest social welfare $A ` $B ` $C “ 7{4 “ 1.75 .

games I “ f15 , O “ f7
s˚ “ tp˚

0|0, p
˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u $A $B $C

t1,0,0,1, r0|0, r0|1u
5´r0|0`r0|1

8

5`r0|0´r0|1

8
1
2

t0,1,1,0, r0|0, r0|1u
5`r0|0´r0|1

8

5´r0|0`r0|1

8
1
2

tp0|0, p0|0, q0|0, q0|0, r0|0, r0|0u 1
2

1
2

1
2

Tab. 4.10: Nash Equilibrium solutions for the game when I “ f15, O “ f7, game rep-
resented by Alice’s average payoff in equation (4.46) on page 47. The bold solutions give
the highest social welfare $A ` $B ` $C “ 7{4 “ 1.75 .

Summary of the chapter

This chapter, chapter 4, has focused on classifying and analysing all the different
boolean games played on the explained triangle configuration when the players use
mixed strategies. Chapter 5 focuses on analysing this same situation when the
players make use of quantum resources and how that changes the Nash equilibrium
points in comparison to the classical case.
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Bi- and tri-partite entanglement for
boolean games with 3 players in a
triangle

BOOLEAN GAMES 

   

CHAPTER 5

3 x Bell states
(bi-partite

entanglement)

2 x GHZ states
(tri-partite

entanglement)

3 players in a triangle 

results using bi- and tri-
partite entanglement 

CHAPTER 4

CHAPTER 3

results using
classical strategies

ENTANGLEMENT

This chapter focuses on the results for games played in a triangle when the
players use quantum resources, specifically, when the players are provided with two
tri-partite quantum states or three bi-partite states.

As mentioned at the beginning of chapter 4, the triangle network has been
widely explored as a simple example of a quantum network, where quantum
resources – typically, quantum states and local measurements – are distributed
among the players/nodes1. The triangle network might seem very simple, but it
exhibits many interesting features, which is why it has been extensively studied
recently, in terms of non-locality [91–93], but also in terms of entanglement [94–

1For a comprehensive review on real-world quantum networks, see [90].
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96]. Investigating how quantum resources perform when distributed in a network
is crucial for the development of the quantum internet – see [97] for a current review.

Typically the resources distributed in the triangle network feature bi-partite
states – see, for example [91, 92, 95]. The reason behind this is that the current
technology is capable of producing and distributing such quantum states to spatially-
separated parties (using photons) with relative ease. Experimentally producing and
distributing tri-partite states is much more challenging, even though there has been
some positive results lately [98]. This positive result shows that quantum technol-
ogy is advancing towards the realisation and physical implementation of quantum
networks.

In terms of quantum games and the triangle network, to the best of the author’s
knowledge, no comparison between bi-partite and tri-partite scenarios with the same
number of qubits has been investigated. On another note, the use of quantum
resources might also prove to be a better option for certain games in which there are
conflicting interests [99, 100], in contrast to the CHSH game, which is a cooperative
game. Those results also motivated the author to conduct the research presented in
this dissertation by potentially including a conflict of interest between the different
games played by each player in that triangle-like fashion. The next diagram shows
the author’s inspiration and motivation from different fields:

this
dissertation

QUANTUM  
GAMES

QUANTUM
NETWORKS

QUANTUM
RESOURCES

Boolean games triangle network

bi-partite and tri-partite
entanglement

Having motivated the topic of focus of this dissertation, the research ques-
tions for the boolean games played in a triangle using bi-partite and tri-partite
entanglement are:

1) What are the (new) Nash equilibrium points and how do they compare to the
classical ones using mixed strategies2?

2) Do the players prefer to use tri-partite or bi-partite (quantum) resources?
2Remember that the (classical) results in the previous chapter considered only mixed strate-

gies and not strategies coming from some (classical) piece of advice, so the comparison between
the quantum results in this chapter and the classical ones from chapter 4 need to be taken with
some caution. That being said, as will be seen next in the results, for certain quantum state/s
the (quantum) Nash equilibrium points correspond exactly to the equilibrium points using mixed
strategies.
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ALICE BOB

qubit 
A1 

qubit 
A2 

qubit 
B1 

qubit 
B2 

qubit 
C1 

qubit 
C2 

m
easurem

ent m
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re
m
en
t 

measurement 

CARL

Fig. 5.1: Quantum resources added to the boolean games in a triangle network. Each
player owns two qubits, represented by the blue coins in the middle.

3) Which Nash equilibrium solutions give the highest social welfare for the tri-
partite and bi-partite case?

5.1 Quantum resources for games in a triangle net-
work

As with the CHSH game explained in chapter 2, in addition to the input and
output coins, the players will also have access to qubits; in this case, to two qubits
each, as represented in Figure 5.1. This means that the players will be using a
6-qubit quantum state |ΨABCy to decide on their output bits a, b, c P t0, 1u.
These outputs are obtained after the players perform a local measurement on their
own two qubits. As in the CHSH game, the use of a quantum state acts as a piece
of advice3.

The 6-qubit quantum state |ΨABCy considered for the games will be produced
by two different types of sources:

• Two tri-partite sources, i.e. |ΨABCy “ |ψABC1y b |ψABC2y, as illustrated in
Figure 5.2(a).

• Three bi-partite sources, i.e. |ΨABCy “ |ϕABy b |ϕBCy b |ϕCAy, as illustrated
in Figure 5.2(b).

In general, the states produced by each source might be different, but the present
dissertation considers that the sources are identical, that is, they produce the same
state. The state considered to be produced by the tri-partite source will be a GHZ-
like state – introduced in section 3.3.2 of chapter 3 –, and for the bi-partite source

3Since the players are using some (quantum) advice to play the game/s, it is a slightly differ-
ent situation to playing without advice, which was the situation analysed in the previous chapter
using mixed classical strategies. More on that later.
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qubit 
A1

qubit 
A2

qubit 
C1

qubit 
B1

qubit 
B2

qubit 
C2 

(a) Two tri-partite sources.

qubit 
C1

qubit 
B2

qubit 
B1

qubit 
A2

qubit 
C2

qubit 
A1

(b) Three bi-partite sources.

Fig. 5.2: Two ways of producing the 6-qubit state |ΨABCy that will be used for the games.
The dashed lines denote that those qubits were produced by a common source.

a Bell-like state – introduced in section 2.2.2 of chapter 2. In mathematical terms,
the two quantum states to be considered are:

|ΨABCy “

ˆ

b

1 ´ λ2111 |000y ` λ111 |111y

˙b2

(5.1)

|ΨABCy “

ˆ

b

1 ´ λ211 |00y ` λ11 |11y

˙b3

(5.2)

where b denotes the tensor product; and 0 ď λ111 ď 1 and 0 ď λ11 ď 1. The two
entanglement parameters λ111 and λ11 control the amount of entanglement in
each state. The (pure) GHZ state and the (pure) Bell state correspond to choosing
λ111 “ 1{

?
2 and λ11 “ 1{

?
2, respectively.

As mentioned before, the players will perform a local measurement on their
own two qubits to decide on their output bit. Since they only have two options for
their outputs, they will use two local projection operators that add to the identity.
Focusing on Alice, given input x, she has a set of two projection-valued measure4

tΠx,aux,aPt0,1u. When Alice receives x “ 0 the projectors are:

Π0,0 “ |a0y xa0| (5.3)
Π0,1 “ I ´ Π0,0 (5.4)

and the two-qubit state for the first projector is:

|a0y “

b

1 ´ a211 |00y ` a11 |11y (5.5)

with 0 ď a11 ď 1. The physical meaning of the these equations is summarised as
follows: Alice measures her two qubits and if the qubits are in the state |a0y in
equation (5.5) then she outputs a “ 0, otherwise she outputs a “ 1. A similar
argument follows for input x “ 1, but now, the projection operators are different:

Π1,0 “ |ã0y xã0| (5.6)

4Also called PVMs, see the postulates of quantum mechanics in chapter 0.
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Π1,1 “ I ´ Π1,0 (5.7)

with:

|ã0y “

b

1 ´ ã211 |00y ` ã11 |11y (5.8)

with 0 ď ã11 ď 1.

The real parameters a11, ã11 represent Alice’s (quantum) strategy for each
input. The situation is analogous for Bob with measurement operators tΠy,bu

and parameters b11, b̃11; and for Carl with tΠz,cu and c11, c̃11. The choice of Π0,0

and Π1,0 in equations (5.3) and (5.6) seems limiting and it is indeed. Firstly,
the quantum states |a0y and |ã0y in equations (5.5) and (5.8) that are projected
onto are restricted; a general 2-qubit quantum state to project onto would be
|χy “ χ00 |00y `χ01 |01y `χ10 |10y `χ11 |11y with |χ00|

2 ` |χ01|2 ` |χ10|
2 ` |χ11|

2 “ 1.
Even if such a generic state |χy was considered, the set of measurements operators
Πx,0 “ |χxy xχx| and Πx,1 “ I ´ Πx,0 would still be a projection-valued measure
(PVM). Using PVMs is still restricting since the most general situation would be
using a set of positive operator-valued measure (POVM) – positive semi-definite
Hermitian operators that add up to the identity. Being that general in both cases
would increase significantly the total number of parameters – in this case, strategies
– to manage because having k parameters to define Πx,0 translates into dealing
with payoffs that would depend on 6k parameters (three players and each with two
inputs). Simplicity was then one of the reasons behind choosing the measurement
operators Πx,0 to depend, as a first step, on only one parameter, as defined in
equations (5.3)-(5.8).

As a simplifying statement, the quantum resources are just an elaborate way to
compute the conditional probability as:

Probpa, b, c|x, y, zq “ xΨABC |Πx,a b Πy,b b Πz,c |ΨABCy (5.9)

where the state |ΨABCy will be either the GHZ-like state in equation (5.1) or the Bell-
like state in equation (5.2); and the projectors are defined in equations (5.3)-(5.4) and
(5.6)-(5.7) with their corresponding projection states in equations (5.5) and (5.8).
Then, this conditional probability will be a function of: the players’ strategies
a11, ã11, b11, b̃11, c11, c̃11; and the entanglement parameter of the chosen state (λ111
or λ11). The expression for this conditional probability in equation (5.9) will be used
to compute the two-player conditional probabilities Probpa, b|x, yq , Probpb, c|y, zq

, and Probpa, c|x, zq , which in turn, these two-player conditional probabilities are
used to obtain the winning probability of each game, as shown in equation (4.7) in
chapter 4 on page 33. Finally, the players’ average payoffs of both games $A, $B,
and $C can be computed from the winning probabilities of each game.

To summarise this new (quantum) situation:

0) The players own two qubits of the 6-qubit state |ΨABCy, which is either a
GHZ-like – in equation (5.1) – or a Bell-like state – in equation (5.2).

1) The players receive their binary inputs x, y, z ; drawn from an equal probability
distribution.
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2a) For Alice: if x “ 0 she measures her two qubits over the state |a0y, and over
the state |ã0y for x “ 1, measurement process that gives the probability of her
outputting a “ 0 for that given input. Otherwise, she outputs a “ 1.

2b) The players’ strategies are their choice of the states to project over, e.g. for
Alice |a0y in equation (5.5) and |ã0y in equation (5.8), which depend on the
parameters a11 and ã11, taking values between 0 and 1.

3a) This process of measurement for all players gives Probpa, b, c|x, y, zq in equa-
tion (5.9), which is then used to obtain the two-player probabilities for each
game Probpa, b|x, yq , Probpb, c|y, zq , and Probpa, c|x, zq.

3b) These two-player probabilities are used to compute the winning probability
for each game with the concrete winning conditions determined by the input
and output functions I and O.

4a) The players’ payoff is the average between the winning probabilities of the two
games played. For instance, for Alice, who plays GAME 1 and GAME 3, it is
$A “ 1{2 rProbpwin G1q ` Probpwin G3qs.

4b) The payoffs will depend explicitly on the players’ strategy choices, i.e.
a11, ã11, b11, b̃11, c11, c̃11 but also on the entanglement parameter of the quan-
tum state |ΨABCy: either λ111 for the sources producing identical GHZ-like
states, or λ11 for the Bell-like states. All of these parameters are real numbers
between 0 and 1.

Once the players’ payoffs $A, $B, and $C are obtained for this quantum
situation, the Nash equilibrium points can be found by optimising the payoffs over
the strategies a11, ã11, b11, b̃11, c11, c̃11. It is important to mention the fact that the
players’ are using a source of advice for their outputs; they are using a “common
device” that correlates their answers/outputs. In such situation, one must talk
about correlated equilibrium. This concept arises when in a game the players
receive some information/advice about which pure strategy to choose5, hence
their chosen strategies might be correlated. The advice provider might be a third
party/mediator/observer or even a common random event. The vector of recom-
mended strategies for all players is chosen according to a probability distribution
over the set of available pure strategies. After receiving the recommended strategy,
the players are also free to choose whether to follow the advised strategy or not.
In the present case with the use of the quantum state, it is being implied that the
players strictly follow the advice6, i.e. the result of their local measurement. Then,
the equilibrium points can be found by the definition of Nash equilibrium – see
equation (4.48) on page 49 in chapter 4.

The next section will compute the new Nash equilibrium points for the games
when the players use the quantum resources stated previously. Technically, these
equilibrium points are correlated equilibria because the players use a quantum state

5Each player only receives information about their own strategy, not about the others.
6Were it not the case, one would need to seek the formal definition of correlated equilibrium,

that involves the probability distribution of strategies, the payoffs, and a function of the advised
strategy for each player (the players might decide not to follow the advice or partially follow it).
For more information about that, see the book in [89].
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that correlates their outputs (and follow the “advice”), but the present author asks
for some leniency to abuse the language and refer to them also as Nash equilib-
rium points, computed from a quantum probability distribution. Finding the Nash
equilibrium points in this new situation will provide the answers to the research
questions stated on page 55.

5.2 Nash Equilibrium using bi-partite and tri-
partite states in a triangle

The first necessary ingredient is the players’ payoffs. The next equations describe
Alice’s payoff when the players use the GHZ-like state – in equation (5.1) – and
the Bell-like state – in equation (5.2) – for the chosen representative functions for
the games. The payoffs for Bob and Carl are obtained by doing the appropriate
permutation of players. As mentioned before, the payoffs will depend on the players’
strategies but also on the entanglement parameter: λ111 for the GHZ-like state,
and λ11 for the Bell-like state. However, the idea is the same, finding the Nash
equilibrium points7 by maximising the players’ payoffs. To obtain the expressions
for the players’ payoffs and the corresponding Nash equilibrium points, the author
of this dissertation has availed of the software Wolfram Mathematica [101] since it
is very powerful for symbolic/analytical computations.

Starting with the CHSH game in this triangle-network situation:

➤ I “ f7, O “ f15 – CHSH game8 –, Alice’s payoff when the players share a
GHZ-like state is

(GHZ) $A “
1

4

“

3 `
`

´
`

2a211 ` b211 ` c211
˘

` pa211 ` ã211qpb211 ` c211q

`pa211 ´ ã211qpb̃211 ` c̃211q q
`

1 ´ 2λ2111p1 ´ λ2111q
˘

ı

(5.10)

A sanity check shows that for λ111 “ 0 or λ111 “ 1, i.e. no entangle-
ment of the state, Alice’s payoff9 in equation (5.10) reduces to the payoff
using classical mixed strategies in equation (4.34) on page 45 by identifying
ta211, ã

2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u ” tp0|0, p0|1, q0|0, q0|1, r0|0, r0|1u. This correspondence

between the classical mixed strategies and the quantum strategies when there is
no entanglement in the quantum state was another reason to keep the simple
(and restricting) measurement operators defined in equations (5.3)-(5.8), since the
classical results could be used as a benchmark.

7IMPORTANT NOTE: the next pages might incur into abusing the game-theoretic language,
for which the author apologises in advance. The equilibrium points are the strategies, not the
payoffs associated; however, in certain cases, there might be a finite/infinite amount of (corre-
lated) Nash equilibrium points that give the same equilibrium payoffs. In such case, it will be
referred/encompassed as being only an equilibrium point, but it should be read between the lines
that it refers to a family/set of points giving that payoff.

8Continuing with the chosen notation from chapter 4, the input/output functions of the
game discussed will still be shown in bold as a reminder that these are the chosen representa-
tive functions of the games.

9For a better and quicker distinction between the payoffs of GHZ- and the Bell-like state, the
equations with Alice’s payoffs will be marked with the text “(GHZ)” or “(Bell)”.
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Since the payoffs only depend on the square of the strategic terms, e.g. a211, it is
convenient to perform a change of variables to simplify the problem of finding the
Nash equilibrium solutions, for instance, with the map: pa ” a211, pã ” ã211, qb ” b211,
qb̃ ” b̃211, rc ” c211, rc̃ ” c̃211. The equations to solve for the Nash equilibria are found
in subsection B.2.2 in appendix B – explicitly, in equations (B.63)-(B.67) – in terms
of these “new” variables pa, pã, qb, qb̃, rc, rc̃

10. For this particular case of the CHSH
game, the results for the Nash equilibria are shown in Table 5.1, note, in terms
of the original strategic terms squared s˚ “ ta211, ã

2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u.

These equilibrium points are identical to the equilibrium points in the classical
case in chapter 4 in Table 4.4 on page 51; the only difference is that, in this case,
the payoffs for these equilibrium points depend explicitly on the entanglement pa-
rameter λ111. Again, by setting λ111 “ 0 or λ111 “ 1, the payoffs using (classical)
mixed strategies are recovered. It should not be completely surprising that the Nash
equilibrium points are the same as the ones in the classical case because, in this case,
the entanglement parameter λ111 acts just as a (strictly positive) multiplying factor
of the term that contains the strategies in Alice’s payoff in equation (5.10), thus
not affecting the optimisation problem to find the Nash equilibrium points. Even
though the quantum equilibrium points are exactly the same as the classical ones
– after properly identifying the square of a11, ã11, b11, b̃11, c11, c̃11 with mixed strate-
gies –, they imply very different things. For instance, the third equilibrium point
s˚ “ t1{2, 1{2, 1{2, 1{2, 1{2, 1{2u in Table 5.1 – and also in Table 4.4 – would cor-
respond classically to just tossing a coin, that is, all players would output 0 half
of the times, i.e. p0|0 “ p0|1 “ q0|0 “ q0|1 “ r0|0 “ r0|1 “ 1{2. Meanwhile, that
same strategy in the quantum a211 “ ã211 “ b211 “ b̃211 “ c211 “ c̃211 “ 1{2 implies that
all the players would be making a fully-entangled measurement onto a Bell state
(or EPR pair), i.e. Πx|0 “ Πy|0 “ Πz|0 “ |Φ`y xΦ`| with |Φ`y “ p|00y ` |11yq{

?
2.

These two scenarios are fundamentally different, but both can be identified with the
same strategy. Another important issue to keep in mind is the presence of entangled
measurements when any of the quantum strategies are different than 0 and different
than 1, since then the projecting state is indeed entangled.

10From now on, all of the explicit equations to solve for each game and each state are found
in subsection B.2.2 in appendix B.
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GHZ-like state with I “ f7 , O “ f15

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

t1, 1, 1, 1, 1, c̃211u
$A “ $B “ $C “ 3

4
‚

t0, 0, 0, 0, 0, c̃211u

"

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

*

$A “ $B “ $C “
1

2
r1 ` λ2111 p1 ´ λ2111qs ‚

t1, 0, 0, 1, 1 ´ c̃211, c̃
2
11u

$A “
1

4
r3 ´ p1 ´ c̃211q p1 ´ 2λ2111 p1 ´ λ2111qqs ˚

$B “
1

4
r3 ´ c̃211 p1 ´ 2λ2111p1 ´ λ2111qqs ˚

$C “
1

2
r1 ` λ2111 p1 ´ λ2111qs ‚

t0, 1, 1, 0, 1 ´ c̃211, c̃
2
11u

$A “
1

4
r3 ´ c̃211 p1 ´ 2λ2111p1 ´ λ2111qqs

$B “
1

4
r3 ´ p1 ´ c̃211q p1 ´ 2λ2111 p1 ´ λ2111qqs

$C “
1

2
r1 ` λ2111 p1 ´ λ2111qs

Tab. 5.1: Nash Equilibria for the game defined by I “ f7, O “ f15 (CHSH game) us-
ing the GHZ-like state. The colour of the circles helps to identify the payoffs plotted in
Figures 5.3 and Figure 5.4. The non-marked (last) solution gives the same payoff as the
previous one by just permuting Alice and Bob.

Figure 5.3 plots the payoffs as a function of the entanglement parameter λ111
for the first two equilibrium points, identified in Table 5.1 by the blue and red
circles11. To be clearer, for instance, the blue line in Figure 5.3 corresponds to the
equilibrium points that give a constant payoff $A “ $B “ $C “ 3{4, which is the first
solution12 of Table 5.1 marked with a blue circle. The red line corresponds to the
payoff marked with a red circle on the same table. The constant payoff (blue line)
is the same regardless of λ111; however, the red line shows that, as the entanglement
increases, the players can get a higher payoff than 1{2 “ 0.5 up until 5{8 “ 0.625
for the traditional/pure GHZ state (λ111 “ 1{

?
2). For this red line/circle solution,

even though the strategy is exactly the same as the classical one, the resulting
payoff might show that it was performed on a quantum state. Therefore, for these
two solutions, the presence of entanglement does not decrease the players’ payoffs
and can even increase on average those payoffs.

11To improve “distinguishability” in the analysis of the many possible solutions, the word of
the colour of the solution marked with a coloured shape in the corresponding table will be shown
in bold.

12This is where the game-theoretic language abuse will happen. For that particular row solu-
tion, there are an infinite amount of equilibrium points, one for each value of c̃11; nonetheless, all
of the them give the same payoff, so to keep things short, they will be encompassed as one.

62



CHAPTER 5. BI- AND TRI-PARTITE ENTANGLEMENT FOR BOOLEAN
GAMES WITH 3 PLAYERS IN A TRIANGLE

5/8

$A=$B=$C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 11

2

0.5

0.55

0.6

0.65

0.7

0.75

λ111

A
ve
ra
ge

pa
yo
ff

GHZ-like state I=f7 , O=f15

Fig. 5.3: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with a blue and red circle in Table 5.1 as a function of the entanglement param-
eter λ111. The colour of the lines matches the coloured circles, which mark/identify the
payoffs, in the same table. These results are for the choice of functions I “ f7, O “ f15
(CHSH game), using the GHZ-like state.

Figure 5.4 shows a density plot of the payoff for Alice and Bob as a function of
the square of Carl’s strategy choice c̃211 and the entanglement parameter λ11 for the
solutions marked in Table 5.1 with a green asterisk. The plots also contain some
lines of constant payoff with the corresponding value. Carl’s payoff is not plotted
because it is the same as the payoff plotted with a red line in Figure 5.3. From
Carl’s perspective, he would prefer to have as much entanglement as possible to
reach his maximum payoff $C “ 5{8 “ 0.625 at λ111 “ 1{

?
2 (pure GHZ state). For

Alice and Bob, being close to a maximally entangled state means less variation on
their payoffs, that is, less influence by Carl’s choice of c̃11 – see the region around
λ111 “ 1{

?
2 for both plots in Figure 5.4, predominantly yellow and green, with no

lower values in blue. The last non-marked equilibrium point on Table 5.1 gives,
effectively, the same payoffs as the one with the green asterisk when permuting
Alice and Bob.
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(b) Bob’s payoff $B

Fig. 5.4: Density plot showing Alice’s and Bob’s payoffs as a function of c̃211 and the en-
tanglement parameter λ11. These payoffs correspond to the Nash equilibrium solutions
marked with a green asterisk in Table 5.1. These results are for the CHSH game, identi-
fied with I “ f7, O “ f15, and using the GHZ-like state.

The two density plots for Alice and Bob in Figure 5.4 can be combined into a
unique density plot in which Bob’s payoff is plotted as a function of Alice’s payoff
$A and λ111. This is done as follows: adding the two expressions for Alice’s and
Bob’s payoff, marked with green asterisks in Table 5.1, Bob’s payoff is:

$B “ ´$A `
1

4

“

5 ` 2λ2111
`

1 ´ λ2111
˘‰

(5.11)

where 0 ď λ111 ď 1. Alice’s payoff is, nevertheless, restricted
r1 ` λ2111 p1 ´ λ2111qqs {4 ď $A ď 3{4. This restriction comes from the range
of possible values of Alice’s payoff $Apλ111, c̃11q when Carl’s strategy is c̃11 “ 0 and
when c̃11 “ ˘1. Then, the associated density plot of equation (5.11) is shown in
Figure 5.5. The white region corresponds to $A ď r1 ` λ2111 p1 ´ λ2111qqs {4, which is
out of the possible values of $A.

Figure 5.5 shows more clearly the impact of entanglement in Alice’s and Bob’s
payoff than the two plots in Figure 5.4. When there is no entanglement, both
payoffs can vary more – see range of colours, from yellow p0.75q to blue p0.5q,
around λ111 “ 0, 1 . In contrast, around the region λ111 “ 1{

?
2, there are no low

values in blue.
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Fig. 5.5: Density plot showing Bob’s payoffs as a function of $A and λ11. These payoffs
correspond to the Nash equilibrium solutions marked with a green asterisk in Table 5.1.
These results are for the CHSH game, identified with I “ f7, O “ f15, and using the
GHZ-like state.

These are the Nash equilibrium solutions, and, as mentioned in section 4.2 in
chapter 4, one way of assessing which solutions are better is computing the social
welfare ($A ` $B ` $C) of each solution. In the classical case with mixed strategies,
the social welfare of the solutions were constant and with values 9{4 “ 2.25 , 3{2 “

1.5 , and 7{4 “ 1.75 – see Table 4.4 on page 51 that has the equilibrium points
and add the payoffs. In this (quantum) case, the social welfare for each solution
will also be a function of the entanglement parameter, but still, the extreme values
of λ111 – no entanglement – recover the classical value with mixed strategies. The
specific expressions for the social welfare for all the equilibrium points in Table 5.1
are found in Table B.1 in appendix B. Figure 5.6 plots the social welfare in Table
B.1 as a function of λ111, with the colour of the line in the plot matching that of
the circle in the same table (and also the colours in the main table, Table 5.1). The
social welfare of the equilibrium points for λ111 “ 0 and λ111 “ 1 is the same as
classically. Clearly from the plot, the preferred solution is the blue line because
it has the highest collective payoff, also individual, and it does not depend on the
amount of entanglement in the GHZ-like state; this solution corresponds exactly to
the best classical solution – see again Table 4.4.
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Fig. 5.6: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a func-
tion of the entanglement parameter λ111 using a GHZ-like state for I “ f7, O “ f15
(CHSH game). The Nash equilibrium solutions with the individual payoffs are found
in Table 5.1, while the social welfare of them is in Table B.1. The colour of the lines
matches the coloured circles, which mark/identify the payoffs, in the latter table.

➤ Continuing with the CHSH game, defined by I “ f7, O “ f15, Alice’s payoff
when the players share a Bell-like state is:

(Bell) $A “
1

4

“

3 `
`

´
`

2a211 ` b211 ` c211
˘

` pa211 ` ã211qpb211 ` c211q

`pa211 ´ ã211qpb̃211 ` c̃211q
¯

`

1 ´ 3λ211p1 ´ λ211q
˘

´ 4λ211
`

1 ´ λ211
˘2

`
`

2a211 ` b211 ` c211
˘

λ211
`

1 ´ 3λ211 ` 2λ411
˘‰

(5.12)

This payoff looks more interesting than the one using the GHZ-like state in
equation (5.10) since the entanglement parameter of the Bell state λ11 does not
appear only as a multiplying factor, but it is mixed with the different strategic
terms. That will give rise to different Nash equilibrium points. Nevertheless, again,
setting λ11 “ 0 or λ11 “ 1 recovers the classical payoff using mixed strategies in
equation (4.34).

As before, the payoffs depend only on the square of the strategic terms, so a
change of variables is performed to find the Nash Equilibrium; the concrete equations
to solve are shown in appendix in subsection B.2.2 in appendix B – equations (B.69)-
(B.73). Table 5.2 contains the solutions for this Bell-like state, with some of the
solutions depending explicitly on functions of λ11, labelled as tB1pλ11q, uB1pλ11q,
and vB1pλ11q. To shorten the notation in the table, the dependence on λ11 of these
functions has been omitted.
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Bell-like state with I “ f7 , O “ f15

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

0 ď λ11 ď 1

t1, 1, 1, 1, 1, c̃211u $A “ $B “ $C “
3

4
´ λ411 p1 ´ λ211q

t0, 0, 0, 0, 0, c̃211u $A “ $B “ $C “
3

4
´ λ211 p1 ´ λ211q

2

0 ď λ11 ď 1
!uB1

2
,
uB1

2
,
uB1

2
,
uB1

2
,
uB1

2
,
uB1

2

)

$A “ $B “ $C “
2 ´ 5λ211 ` λ411 ` 12λ611 ´ 16λ811 ` 12λ1011 ´ 4λ1211

4 r1 ´ 3λ211 p1 ´ λ211qs

λ11 “ 0, 1 ; λ11 “ 1?
2

t1, 0, 0, 1, 1 ´ c̃211, c̃
2
11u

$A “
2 ` c̃211

4
; $A “

9 ` c̃211
16

$B “
3 ´ c̃211

4
; $B “

10 ´ c̃211
16

$C “
1

2
; $C “

9

16

t0, 1, 1, 0, 1 ´ c̃211, c̃
2
11u

$A “
3 ´ c̃211

4
; $A “

10 ´ c̃211
16

$B “
2 ` c̃211

4
; $B “

9 ` c̃211
16

$C “
1

2
; $C “

9

16

0 ď λ11 ď 1?
2
, λ11 “ 1 tvB1, 0, vB1, 0, 0, 1u

$A “ $B “
1 ´ 2λ211 ´ 3λ411 ` 16λ611 ´ 22λ811 ` 15λ1011 ´ 4λ1211

2 r1 ´ 3λ211 p1 ´ λ211qs
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$C “
3 ´ 11λ211 ` 13λ411 ` 12λ611 ´ 46λ811 ` 48λ1011 ´ 16λ1211

4 r1 ´ 3λ211 p1 ´ λ211qs

0 ď λ11 ď 1?
2
, λ11 “ 1 t0, uB1, 0, uB1, uB1, 0u

$A “ $B “
2 ´ 5λ211 ` λ411 ` 12λ611 ´ 16λ811 ` 12λ1011 ´ 4λ1211

4 r1 ´ 3λ211 p1 ´ λ211qs

$C “
3

4
´ λ211 p1 ´ λ211q

2

λ11 “ 0, 1?
2

ď λ11 ď 1 t2tB1, 1, 2tB1, 1, 1, 0qu

$A “ $B “
1 ´ 3λ211 ` 3λ411 ` 2λ611 ´ 7λ811 ` 9λ1011 ´ 4λ1211

2 r1 ´ 3λ211 p1 ´ λ211qs

$C “
3 ´ 11λ211 ` 13λ411 ` 12λ611 ` 46λ811 ` 48λ1011 ´ 16λ1211

4 r1 ´ 3λ211 p1 ´ λ211qs

λ11 “ 0, 1?
2

ď λ11 ď 1 t1, tB1, 1, tB1, tB1, 1u

$A “ $B “
2 ´ 5λ211 ` λ411 ` 12λ611 ´ 16λ811 ` 12λ1011 ´ 4λ1211

4 r1 ´ 3λ211 p1 ´ λ211qs

$C “
3

4
´ λ411 p1 ´ λ211q

Tab. 5.2: Nash Equilibria for the game defined by I “ f7, O “ f15 (CHSH game) using the Bell-like state. In this case, some of the solutions only exist in a certain
interval of λ11 or for certain values. The specific expressions for tB1pλ11q, uB1pλ11q, and vB1pλ11q are found in equations (5.13)-(5.15). The colour of the squares
helps to identify the payoffs plotted in Figures 5.8, 5.9, and 5.11. The fifth solution not marked is equivalent to the previous one by permuting the players.
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Table 5.2 shows that there are in principle 8 different types of payoffs coming
from the Nash equilibrium points, but notice that some of the solutions are only
valid in a certain interval of the parameter λ11, or even only for certain values. The
reason will be explained next. Analogously to the previous case with the GHZ-like
state, in this case, the coloured squares13 help to identify the payoffs plotted in
Figure 5.8, Figure 5.9, and Figure 5.11. The points marked with a blue, cyan, and
green square are the same points as the classical and the GHZ-like case, but there are
new solutions that explicitly depend on some functions of the entanglement
parameter, labelled as tB1pλ11q, uB1pλ11q, and vB1pλ11q. These functions14 are
defined as:

tB1pλ11q “
´λ211 p1 ´ 3λ211 ` 2λ411q

1 ´ 3λ211 p1 ´ λ211q
(5.13)

uB1pλ11q “ tB1pλ11q ` 1 “
1 ´ 4λ211 ` 6λ411 ´ 2λ611

1 ´ 3λ211 p1 ´ λ211q
(5.14)

vB1pλ11q “ 2tB1pλ11q ` 1 “
1 ´ λ211 p5 ´ 9λ211 ` 4λ411q

1 ´ 3λ211 p1 ´ λ211q
(5.15)

Figure 5.7 shows the values of tB1pλ11q, uB1pλ11q, and vB1pλ11q as a function of λ11.
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Fig. 5.7: Plot of the three distinct functions of λ11 that appear in the Nash equilibrium
points for the Bell-like state shown in Table 5.2 for the CHSH game, identified by I “ f7,
O “ f15. The specific expressions are found in equations (5.13)-(5.15).

The interval restriction of λ11 for certain solutions comes from imposing the
optimisation conditions – specifically, the Karush-Kuhn-Tucker (KKT) conditions,
explained in section B.1 of appendix B about convex optimisation – and imposing
that the strategic terms a211, ã211, b211, b̃211, c211, c̃211 must be between 0 and 1 because
they represent probabilities. For instance, the third solution in Table 5.2, marked
with a red square, corresponds to a211 “ ã211 “ b211 “ b̃211 “ c211 “ c̃211 “ uB1pλ11q{2,

13The payoffs of solutions for the Bell-like state will always be marked with a coloured square,
while the ones for the GHZ-like state with a coloured circle.

14The subscript “B” in tB1 stands for “Bell” and the number 1 denotes the first set of these
functions, since, for some of the next games with the Bell-like state, other functions of λ11 ap-
pear.
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and by looking at the red line in Figure 5.7 representing uB1pλ11q, it is easy to see
that, in fact, 0 ď uB1pλ11q{2 ď 1 for 0 ď λ11 ď 1. That is why that solution, which
also fulfills the optimisation conditions, is allowed for any value of λ11 between 0
and 1. Nonetheless, that is not the case for the payoff identified with a purple
square whose solution is a211 “ b211 “ vB1pλ11q , ã211 “ b̃211 “ c211 “ 0 , c̃211 “ 1 since,
from looking at the green line in Figure 5.7 representing vB1pλ11q, 0 ď vB1pλ11q ď 1
only happens for 0 ď λ11 ď 1{

?
2. That is why, that Nash equilibrium solution is

only valid in that interval; again, also, because in that interval the optimisation
conditions are fulfilled as well. As an illustrative example, the specific equations
and restrictions to be satisfied for this particular solution are shown in equations
(B.74)-(B.85) in appendix B.

It is worth mentioning a few words about the situation of the equilibrium points
represented by the green square because, in that case, for those solutions to exist,
there needs to be no entanglement at all (λ11 “ 0 or λ11 “ 1) or the Bell state
needs to be maximally entangled (λ11 “ 1{

?
2). The reason for such a restrictive

case is related to the optimisation conditions that need to be satisfied to find
the optimal points for all three payoffs. In particular, for such points, these op-
timisation conditions can only be satisfied15 when λ11 “ 0, or λ11 “ 1, or λ11 “ 1{

?
2.

The next paragraphs analyse in more detail the plots for the Nash equilibrium
points using the Bell-like state.

Figure 5.8 shows the first three different payoffs for some of the Nash equilibrium
points. For the first two payoffs shown with blue and cyan lines, that correspond
to the payoffs marked with a blue and a cyan square in Table 5.2, it can be said that,
as the entanglement increases, the players’ payoff decreases to reach a minimum of
$A “ $B “ $C “ 65{108 « 0.602. That minimum for the cyan line is reached at
λ11 “ 1{

?
3 « 0.577 , whereas for the blue line is reached at λ11 “

a

2{3 « 0.816 .
Both solutions give the same payoff $A “ $B “ $C “ 5{8 “ 0.625 for a maximally-
entangled Bell state (λ11 “ 1{

?
2). In contrast, the payoff represented by the red

square increases as the amount of entanglement increases, to reach a maximum of
$A “ $B “ $C “ 9{16 “ 0.5625 for λ11 “ 1{

?
2.

It is interesting to analyse further this solution of the red line/square and
compare it with the corresponding classical solution, which is the same as for
the GHZ-like state. The classical solution is s˚ “ t1{2, 1{2, 1{2, 1{2, 1{2, 1{2u

– see Table 4.4 –, which gives $A “ $B “ $C “ 1{2 “ 0.5, while the one for
the Bell-like state is s˚ “ tuB1{2, uB1{2, uB1{2, uB1{2, uB1{2, uB1{2u, giving the
corresponding payoff in Table 5.2 marked with the red square, and plotted with
the red line in Figure 5.8. The equality uB1pλ11q{2 “ 1{2 is solved only for
λ11 “ 0, 1, 1{

?
2 – see also the red line in Figure 5.7 –, which would correspond

to the classical strategy. In principle that means that having no entanglement
at all or having a maximally-entangled state would correspond to the classical
strategy s˚ “ t1{2, 1{2, 1{2, 1{2, 1{2, 1{2u; however, from the red line in Figure 5.8,
choosing λ11 “ 1{

?
2 over λ11 “ 0, 1, gives a notably higher payoff (compare

1{2 “ 0.5 to 9{16 “ 0.5625), even though all of these correspond to the same

15See equations (B.86)-(B.92) for this particular case in appendix B.
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strategy. This result might remind the reader of the use of non-locality to detect
the possible “quantumness” of a device by just looking at the input and output
statistics (self-testing) – see section 2.3 in chapter 2. In this sense, one could
detect whether the strategy s˚ “ t1{2, 1{2, 1{2, 1{2, 1{2, 1{2u has been generated
without entanglement (λ11 “ 0, 1, giving $A “ $B “ $C “ 1{2 “ 0.5) or with a
maximally-entangled Bell state (λ11 “ 1{

?
2 giving $A “ $B “ $C “ 9{16 “ 0.5625)

by just looking at the players’ payoffs. Of course, this statement needs to be taken
with a pinch of salt because the players might use a classical correlating device
giving that same strategy and maybe with the same payoff as the pure Bell state. It
would be worth investigating if such classical strategies exist or not. If they do not
exist, then one could use this game set-up as a self-testing scenario. As stated, this
is something that needs to be researched into, falling into the future perspectives
of this dissertation.

It is worth comparing this situation of the Bell-like state to the results for the
GHZ-like state, shown in Table 5.1 and Figure 5.3 on pages 62 and 63. For
starters, the payoff for the GHZ-like state marked with blue circle is constant
$A “ $B “ $C “ 3{4, whereas for the Bell-like state, the payoffs depend explicitly
on λ11, and are unfolded into two different ones: the one marked with a blue square
and a cyan square. As for the payoffs marked with a red circle for the GHZ-like
state and with a red square for the Bell-like state, both payoffs increase as the
entanglement parameter increases, until reaching a maximum at λ111 “ λ11 “ 1{

?
2.

The maximum for the GHZ-like case is higher $A “ $B “ $C “ 5{8 “ 0.625 than
the one of the Bell-like state $A “ $B “ $C “ 9{16 “ 0.5625; but both are higher
than the classical constant of 1{2 “ 0.5 using mixed non-correlated strategies.
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Fig. 5.8: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with blue, cyan, and red squares in Table 5.2 as a function of the entanglement
parameter λ11. The colour of the lines matches the coloured squares, which mark/identify
the payoffs, in the same table. These results are for the choice of functions I “ f7,
O “ f15 (CHSH game), using the Bell-like state.

Figure 5.9 shows the players’ payoffs for the solutions identified with the green
square in Table 5.2 as a function of Carl’s strategy c̃11. The dark green lines cor-

71



CHAPTER 5. BI- AND TRI-PARTITE ENTANGLEMENT FOR BOOLEAN
GAMES WITH 3 PLAYERS IN A TRIANGLE

respond to the case without entanglement (λ11 “ 0 or λ11 “ 1) and the light-green
lines to a maximally entangled Bell state (λ11 “ 1{

?
2). Alice’s payoff is denoted

with a continuous line, Bob’s with a dashed line, and Carl’s with a dot-dashed line.
For these solutions, Carl’s payoff remains constant (1{2 “ 0.5 or 9{16 “ 0.5625)
but with his choice of c̃11 he can increase Alice (Bob’s) payoff at the expense of
decreasing Bob’s (Alice’s). From Carl’s perspective, he would prefer to have a max-
imally entangled state λ11 “ 1{

?
2 over no entanglement at all – compare 1{2 “ 0.5

with 9{16 “ 0.5625. Alice would prefer the situation with λ11 “ 1{
?
2 only when

0 ď c̃11 ă 1{
?
3, whereas Bob would only prefer it when

a

2{3 ă c̃11 ď 1.
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Fig. 5.9: Plot that shows the players’ average payoffs for the equilibrium point marked
with a green square in Table 5.2 as a function of Carl’s strategy c̃11. The darker green
lines are for λ11 “ 0, 1 , and the light green for λ11 “ 1{

?
2. These results are for the

CHSH game, identified with I “ f7 and O “ f15, for the Bell-like state.

Even though there are certain range of values of Carl’s strategy c̃11 for which Alice
and Bob would prefer a maximally entangled state over no entanglement at all –
explained before –, having a maximally entangled Bell state reduces pairwise the
inequality between the players’ payoffs. Figure 5.10 plots the payoff differences
$A ´$B and $A ´$C as a function of the square of Carl’s strategy c̃211. The difference
$A ´ $B is shown with a continuous line and $A ´ $C with a dotted line. The light
gray lines correspond to not having entanglement (λ11 “ 0 or λ11 “ 1) and the
dark gray / black to a maximally entangled Bell state λ11 “ 1{

?
2. For any choice

of c̃211 the pairwise payoff difference is reduced by 1{4 when λ11 “ 1{
?
2 compared

to when λ11 “ 0 or λ11 “ 1 .
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Fig. 5.10: Payoff difference $A ´ $B and $A ´ $C for the payoffs in the solutions from
Figure 5.9. Note that the horizontal axis is the square of Carl’s strategy c̃211, choice made
so that the differences correspond to lines.

Figure 5.11 shows the remaining different payoffs for the Bell-like state, which
are exclusive to this state, so they cannot be compared with the GHZ-like state.
These solutions give asymmetric payoffs, with one player receiving more – in the
plotted case, Carl’s payoff $C , in dotted lines – than the other two – Alice’s and
Bob’s $A “ $B in solid lines. Note also that these solutions are only valid in a
certain interval of λ11. The solution giving the payoffs in the purple line, from
the purple square in Table 5.2, show that as the entanglement increases, Alice and
Bob get a better payoff than 1{2 “ 0.5, up until reaching $A “ $B « 0.568 at
λ11 « 0.638, whereas Carl gets worse payoff as the entanglement increases to reach
a minimum of $C « 0.6212 at λ11 « 0.609. The solutions giving the payoffs in
the brown line, from the brown square, give the same payoffs for Alice and Bob
as the solution from the red square/line, while Carl gets the same payoff as the
solution from the cyan square/line – see Figure 5.8. To summarise again, Alice
and Bob increase their payoff from 1{2 “ 0.5 as the entanglement increases up to
$A “ $B “ 9{16 “ 0.5625 at λ11 “ 1{

?
2; whereas for Carl it decreases until it

reaches a minimum of $C “ 65{108 « 0.602 at λ11 “ 1{
?
3 « 0.577. The solutions

giving the payoffs in the orange line, is just the mirror image of the one from the
purple square. In this case, as the entanglement starts to decrease (1{

?
2 ď λ11 ď 1),

Carl’s payoff decreases slightly to a minimum of $C « 0.6212 at λ11 « 0.793, and then
increases again. For Alice and Bob, the payoff increases slightly to $A “ $B « 0.568
at λ11 « 0.770. Finally, the solution giving the payoffs in the magenta line, from
the magenta square, mirrors the payoffs in the brown line. This solution gives the
same payoff for Alice and Bob as the red square/line, and the same for Carl as the
blue square/line, both in Figure 5.8, with Carl’s minimum $C “ 65{108 « 0.602
located at λ11 “

a

2{3 « 0.816 .
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Fig. 5.11: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with purple, brown, orange, and magenta squares in Table 5.2 as a function of
the entanglement parameter λ11. The colour of the lines matches the coloured squares,
which mark/identify the payoffs, in the same table. These results are for the choice of
functions I “ f7, O “ f15 (CHSH game), using the Bell-like state.

It is illustrative to have all of the solutions together in one plot, in Figure
5.12, except the solutions identified with the green square because they exist only
for certain values of λ11 and depend on c̃11. The payoff from the Nash equilibrium
solution from the red line coincides with the brown and magenta solid lines, that
is why it is not visible. The cyan line also coincides exactly with the dot-dashed
brown line when 0 ď λ11 ď 1{

?
2, while the blue line coincides with the dot-dashed

magenta line when 1{
?
2 ď λ11 ď 1.

65/10865/108

9/16

0.568

0.6212

9/16

0.6212

0.568

5/8

$A=$B=$C

$A=$B

$C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 11

2

0.5

0.55

0.6

0.65

0.7

0.75

λ11

A
ve
ra
ge

pa
yo
ff

Bell-like state I=f7 , O=f15

Fig. 5.12: All payoffs from the seven different Nash equilibrium solutions showing the
players’ average payoff as a function of the entanglement parameter λ11 in a Bell-like
state for the CHSH game, identified by I “ f7, O “ f15. This plot is the combination of
Figures 5.8 and 5.11. The payoffs are found in Table 5.2.

As in the previous case with the GHZ-like state, the social welfare ($A`$B`$C)
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of each Nash equilibrium solution for the Bell-like state can be computed, which
depends on λ11. The specific expressions for the social welfare for all the equilibrium
points in Table 5.1 are found in Table B.1 in appendix B. Figure 5.6 plots the social
welfare of the Nash equilibrium solutions as a function of λ11, with the colour of the
line in the plot matching that of the square in Table B.1 (also in the main table,
Table 5.1). In this case, the preferred solution with the highest collective payoff
would be the blue line for 0 ď λ11 ď 1{

?
2, and the cyan line for 1{

?
2 ď λ11 ď 1 ,

while the red line gives the lower social welfare. The black points correspond to
the solutions with constant social welfare $A ` $B ` $C “ 7{4 for that particular
value of λ11, which are not marked in Table B.1. The purple, brown, orange,
and magenta lines show an interesting behaviour, which is shown more clearly
in another plot, in Figure 5.14.
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Fig. 5.13: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a
function of the entanglement parameter λ11 using a Bell-like state for I “ f7, O “ f15
(CHSH game). The Nash equilibrium solutions with the individual payoffs are found
in Table 5.2, while the social welfare of them is in Table B.2. The colour of the lines
matches the coloured squares, which mark/identify the payoffs, in the latter table. The
interesting behaviour of the purple, brown, orange, and magenta lines is shown in Figure
5.14.

Starting with the brown line in Figure 5.14, the maximum is $A ` $B ` $C “

7{4 “ 1.75 at λ11 “ 0, 1{
?
2 ; while the minimum is $A ` $B ` $C « 1.692 at

λ11 « 0.474 . Looking now at the individual payoffs in Figure 5.12, at the minimum
of the social welfare, the individual payoffs are $A “ $B « 0.539 and $C « 0.615 ,
which is closer to the minimum of Alice and Bob than of Carl’s. The maximum of the
social welfare occurs at λ11 “ 0, 1{

?
2 , which, for λ11 “ 0, Alice’s and Bob’s payoff

is maximum, while Carl’s is minimum; whereas for λ11 “ 1{
?
2, Alice’s and Bob’s

payoff is not a maximum or minimum but Carl’s is a maximum. Therefore for this
solution, having a pure Bell state gives the same total payoff but distributed among
the players in a “fairer” manner. The magenta solution is completely analogous
to the brown one, with a shift of the minimum to λ11 « 0.880 . The purple
solution presents a very interesting behaviour. It has three local minima and two
maxima. Two minima are 7{4 “ 1.75 at λ11 “ 0, 1{

?
2 , while the other minimum
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is slightly above $A ` $B ` $C « 1.754 at λ11 « 0.558 . The two maxima are:
$A ` $B ` $C « 1.772 at λ11 « 0.317 ; and $A ` $B ` $C « 1.758 at λ11 « 0.654 .
Again, looking at the individual payoffs for this purple solution at the minimum
points:

• λ11 “ 0 Ñ $A “ $B “ 1{2 “ 0.5 ; $C “ 3{4 “ 0.75

• λ11 “ 1{
?
2 Ñ $A “ $B “ 9{16 “ 0.5625 ; $C “ 5{8 “ 0.625

• λ11 « 0.558 Ñ $A “ $B « 0.545 ; $C « 0.624

and at the maximum points:

• λ11 « 0.317 Ñ $A “ $B « 0.537 ; $C « 0.698

• λ11 « 0.654 Ñ $A “ $B « 0.568 ; $C « 0.623

The analysis is similar for the orange line by just shifting the positions of the
minima and maxima. The purple and orange solution imply that if the players
decided to share their payoffs evenly, in this case, having “a little” entanglement –
not maximal, though – would be beneficial for them, with an absolute maximum
reached for λ11 « 0.317 and λ11 « 0.948 .
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Fig. 5.14: Sum of payoffs $A ` $B ` $C from some of the Nash equilibrium solutions as
a function of the entanglement parameter λ11 using a Bell-like state for I “ f7, O “ f15
(CHSH game). These solutions correspond to the solutions marked with purple, brown,
orange, and magenta squares in Table B.2.

This concludes the analysis for the CHSH game using the GHZ- and Bell-like
states. Now the same analysis will be performed for the rest of the representative
functions of the games for both states.

➤ I “ f15, O “ f15, Alice’s payoff when the players share a GHZ- and a
Bell-like state:

(GHZ) $A “
1

4

”

2 ` pa211 ´ ã211qpb211 ´ b̃211 ` c211 ´ c̃211q
`

1 ´ 2λ2111p1 ´ λ2111q
˘

ı

(5.16)
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(Bell) $A “
1

4

”

2 ` pa211 ´ ã211qpb211 ´ b̃211 ` c211 ´ c̃211q
`

1 ´ 3λ211p1 ´ λ211q
˘

ı

(5.17)

These two payoffs for the GHZ- and the Bell-like states are the same as the clas-
sical payoff using mixed strategies with an extra multiplying factor on the strategic
terms – see equation (4.36) on page 45 in chapter 4. That means that the Nash
equilibrium points will be the same as in the classical case; the only difference will
be in the presence of entanglement, i.e. λ111 or λ11, in the payoffs that those so-
lutions give, exactly as in the case with the CHSH game using the GHZ-like state.
These Nash equilibrium points with the corresponding payoffs for the GHZ- and
the Bell-like states are found in Table 5.3.

GHZ-like state with I “ f15 , O “ f15

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

t1, 0, 1, 0, 1, 0u
$A “ $B “ $C “ 1 ´ λ2111 ` λ4111 ‚

t0, 1, 0, 1, 0, 1u

ta211, a
2
11, b

2
11, b

2
11, c

2
11, c

2
11u $A “ $B “ $C “ 1

2

Bell-like state with I “ f15 , O “ f15

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

t1, 0, 1, 0, 1, 0u
$A “ $B “ $C “

1

2
r2 ´ 3λ211 ` 3λ411s

t0, 1, 0, 1, 0, 1u

ta211, a
2
11, b

2
11, b

2
11, c

2
11, c

2
11u $A “ $B “ $C “ 1

2

Tab. 5.3: Nash Equilibria for the game defined by I “ f15, O “ f15 using the GHZ- and
Bell-like states. The colour of the circle and square helps to identify the payoffs plotted in
Figure 5.15.

Figure 5.15 shows the values of the payoffs of all three players for the GHZ-
and Bell-like states marked with a blue circle and a red square in Table 5.3 as
a function of the entanglement parameter. From the plot, as the entanglement
increases, the payoff decreases, to reach a minimum at the pure GHZ and Bell
states, i.e. when λ111 “ λ11 “ 1{

?
2 . The minimum for the GHZ-like state

curve is 3{4 “ 0.75, whereas for the Bell-like state is 5{8 “ 0.625. For the
present game, the players would prefer to use the GHZ-like state, since the pay-
off is always strictly higher than (or equal to) that obtained using the Bell-like state.
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Fig. 5.15: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with a blue circle and a red square in Table 5.3 as a function of the correspond-
ing entanglement parameter (λ111 or λ11). The colour of the lines matches the coloured
circle and square, which mark/identify the payoffs, in the same table. These results are
for the choice of functions I “ f7, O “ f15, using the GHZ-like state (blue line/circle)
Bell-like state (red line/square).

➤ I “ f7, O “ f8, Alice’s payoff when the players share a GHZ-like state is:

(GHZ) $A “
1

8

“

2 ` 4λ2111p2 ´ λ2111q ´ 2λ4111
`

2a211 ` b211 ` c211
˘

`
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘ ``

a211 ` ã211
˘ `

b211 ` c211
˘

`
`

a211 ´ ã211
˘

´

b̃211 ` c̃211

¯¯ı

(5.18)

In this case, only when λ111 “ 1 this payoff recovers the classical payoff using
mixed strategies in equation (4.39) on page 45. λ111 “ 0 does not recover the classical
scenario because the players are using a correlating “agent”, i.e. the quantum state,
and choosing this correlating agent to be |ΨABCy “ |000000y (for λ111 “ 0) or
|ΨABCy “ |111111y (for λ111 “ 1) leads to different results16. The explicit equations
to solve for the Nash equilibria are found in subsection B.2.2 in appendix B –
equations (B.96)-(B.100).

Table 5.4 contains the solutions with the corresponding interval of validity
and associated payoffs. Analogously to what happened with the Bell-like state
for the CHSH game (I “ f7, O “ f15), there are some solutions that depend
on two functions of the entanglement parameter: tGpλ111q, and uGpλ111q. These
functions17 are:

tGpλ111q “
λ4111

1 ´ 2λ2111 p1 ´ λ2111q
(5.19)

16In contrast, for the CHSH game I “ f7, O “ f15, choosing λ111 “ 0 or λ111 “ 1 did indeed
recover the classical case. That is because it was parity of the outputs what mattered, i.e. equal
outputs or not, so using |ΨABCy “ |000000y or |ΨABCy “ |111111y did not affect that.

17The subscript “G” in tGpλ111q denotes “GHZ” and there is no further numbering because in
some of the upcoming solutions for different games using the GHZ-like state, these exact same
functions appear again.
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uGpλ111q “
´1 ` 2λ2111

1 ´ 2λ2111 p1 ´ λ2111q
(5.20)

Figure 5.16 plots these functions tGpλ111q and uGpλ111q. As can be seen, tGpλ111q lies
between 0 and 1 for the whole interval, while uGpλ111q only for 1{

?
2 ď λ111 ď 1.

tG(λ111)

uG(λ111)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 11

2

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

λ111

fu
nc
tio
ns

of
λ
11
1

Fig. 5.16: Plot of the two distinct functions of λ111 that appear in the Nash equilibrium
points for the GHZ-like state shown in Table 5.4 when I “ f7, O “ f8. The specific
expressions are found in equations (5.19)-(5.20).

79



CHAPTER 5. BI- AND TRI-PARTITE ENTANGLEMENT FOR BOOLEAN GAMES WITH 3 PLAYERS IN A TRIANGLE

GHZ-like state with I “ f7 , O “ f8

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

λ111 “ 0 , #̃211 “ 0 t0, ã211, 0, 0, 0, 0u

$A “ $B “ $C “
1

4
r1 ` 2λ2111 p2 ´ λ2111qs ‚0 ă λ111 ď

b

?
3´1
2

« 0.605 , 0 ď #̃211 ď 4tG t0, 0, 0, b̃211, 0, 0u

b

?
3´1
2

ă λ111 ď 1 , 0 ď #̃211 ď 1 t0, 0, 0, 0, 0, c̃211u

0 ď λ111 ď

b

3´
?
3

2
« 0.796 , 0 ď #̃211 ď 1 t1, ã211, 1, 1, 1, 1u

$A “ $B “ $C “
1

4
r3 ´ 2λ4111s ‚

b

3´
?
3

2
ă λ111 ă 1 , ´1 ` 2uG ď #̃211 ď 1 t1, 1, 1, b̃211, 1, 1u

λ111 “ 1 , #̃211 “ 1 t1, 1, 1, 1, 1, c̃211u

0 ď λ111 ď 1 ttG, tG, tG, tG, tG, tGu $A “ $B “ $C “
1

4
r1 ` 2λ2111 p2 ´ λ2111qs ´

λ8111
2 r1 ´ 2λ2111p1 ´ λ2111qs

‚

λ111 “ 1?
2

t1, 0, 0, 1, 1 ´ c̃211, c̃
2
11u

$A “
10 ´ c̃211

16
; $B “

9 ` c̃211
16

; $C “
9

16t0, 1, 1, 0, 1 ´ c̃211, c̃
2
11u

0 ď λ111 ď 1?
2

t0, 2tG, 0, 2tG, 2tG, 0u

$A “ $B “
1

4
r1 ` 2λ2111 p2 ´ λ2111qs ´

λ8111
2 r1 ´ 2λ2111p1 ´ λ2111qs

‚
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$C “
1

4
r1 ` 2λ2111 p2 ´ λ2111qs

1?
2

ď λ111 ď 1 t1, uG, 1, uG, uG, 1u

$A “ $B “
1

4
r1 ` 2λ2111 p2 ´ λ2111qs ´

λ8111
2 r1 ´ 2λ2111p1 ´ λ2111qs

‚

$C “
1

4
r3 ´ 2λ4111s

b

?
3´1
2

« 0.605 ď λ111 ď 1?
2

t1 ` 2uG, 0, 1 ` 2uG, 0, 0, 1u

$A “ $B “
1

4

„

2λ2111 ´ 3λ4111 `
1

1 ´ 2λ2111p1 ´ λ2111q

ȷ

‚

$C “
1

2

„

´1 ` λ2111p1 ´ λ2111q `
1

1 ´ 2λ2111p1 ´ λ2111q

ȷ

1?
2

ď λ111 ď

b

3´
?
3

2
« 0.796 t2uG, 1, 2uG, 1, 1, 0u

$A “ $B “
1

4

„

´1 ` 4λ2111 ´ 3λ4111 `
1

1 ´ 2λ2111p1 ´ λ2111q

ȷ

‚

$C “
1

2

„

´1 ` λ2111p1 ´ λ2111q `
1

1 ´ 2λ2111p1 ´ λ2111q

ȷ

Tab. 5.4: Nash Equilibria for the game defined by I “ f7, O “ f8 using the GHZ-like state. The symbol #̃211 in the first two rows of solutions denotes either ã211, b̃
2
11

or c̃211, depending on which solution is being considered. The specific expressions for tG and uG as functions of λ111 are found in equations (5.19)-(5.20). The colour
of the circles helps to identify the payoffs plotted in Figures 5.17, 5.18, and 5.19.
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From Table 5.4, the interval restrictions from the first two sets of solutions
– payoff marked with blue and cyan circles18 – come from the optimisation
conditions19; and the symbol #̃211 in those denotes either ã211, b̃211 or c̃211, depending
on which solution is being considered. For the rest of the solutions, the optimisation
conditions and the requirement that the strategies must be between 0 and 1 sets the
interval restrictions of the solution. The marked payoffs with a coloured circle are
plotted in Figures 5.17 and 5.18. The non-marked solution is not plotted anywhere
because it is the same solution as the one for the Bell-like state when I “ f7,
O “ f15 (CHSH game), marked with a green square in Table 5.2 and plotted with
a light-green line in Figure 5.9.

In comparison to the classical case, where there were only two different solutions
– see Table 4.6 on page 52 –, there are many more using the GHZ-like state. The
classical solutions correspond to the blue and cyan solutions when λ111 “ 1 in
Table 5.4. Figure 5.17 shows that the solutions giving the payoffs in the blue (cyan)
line monotonically increases (decreases) from a value of 0.25 (0.75) to 0.75 (0.25),
when moving from λ111 “ 0 to λ111 “ 1. This means that for each of these two sets
of solutions, there is a clearly preferred initial correlating state: the solutions from
the cyan line give a better payoff the closer to λ111 “ 0, while for the blue line, it
is better the closer to λ111 “ 1. The red solution, however, starts at 0.25 when
no entanglement is present and increases gradually until it reaches a maximum of
9{16 “ 0.5625 for the pure GHZ state (λ111 “ 1{

?
2).
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Fig. 5.17: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with blue, cyan, and red circles in Table 5.4 as a function of the entanglement
parameter λ111. The colour of the lines matches the coloured circles, which mark/identify
the payoffs, in the same table. These results are for the choice of functions I “ f7,
O “ f8, using the GHZ-like state.

18Technically, these solutions are defined in the whole interval 0 ď λ111 ď 1; only that the
specific values of ã211, b̃211 or c̃211 might be restricted, thus affecting the total number of solutions.
In any case, the corresponding payoffs do not depend on the specific values of ã211, b̃211 or c̃211,
only on λ111.

19As illustrated in the example for the Bell-like state for the CHSH game in equations (B.74)-
(B.85) in appendix B.
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The solutions plotted in Figure 5.18 give different payoffs to Carl – dash-doted
lines on the plot – in comparison to Alice and Bob – solid line. For the purple and
brown solutions, the players’ payoff increases up to a maximum of 9{16 “ 0.5625
for Alice and Bob, and a maximum of 5{8 “ 0.625 for Carl, at λ111 “ 1{

?
2.

In contrast, for the magenta and orange lines, the maximum for Alice and Bob
occurs at a different point than for Carl: while Carl’s maximum of 5{8 happens at
λ111 “ 1{

?
2, for Alice and Bob the maximum is $A “ $B « 0.5682 at λ111 « 0.67375

and λ111 « 0.7389 . This fact creates a mismatch between the preferences of one
player against the other two.
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Fig. 5.18: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with purple, brown, orange, and magenta circles in Table 5.4 as a function of the
entanglement parameter λ111. The colour of the lines matches the coloured circles, which
mark/identify the payoffs, in the same table. These results are for the choice of functions
I “ f7, O “ f8, using the GHZ-like state.

Figure 5.19 plots all the solutions together in one unique plot, which is an
amalgamation of Figure 5.17 and Figure 5.18. The red solid line is exactly the
same as the solid purple one in the first interval and the brown one in the second
interval. The dot-dashed lines (Carl’s payoff) for the purple and brown solutions
coincide with the cyan and blue lines, respectively, on each interval. The orange
and magenta solutions reduce to the cyan and blue solutions at λ111 “

b

p3 ´
?
3q{2

and at λ111 “

b

p
?
3 ´ 1q{2, respectively. Not only these strategies give the same

payoff at those points, as seen from the plot, but they also correspond to the same
strategy20.

20To be clearer, the orange strategy is s˚ “ t2uG, 1, 2uG, 1, 1, 0u and at λ111 “

b

p3 ´
?
3q{2

becomes s˚ “ t1, 1, 1, 1, 1, 0u, which is the same as the cyan strategy at the same value of λ111.
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Fig. 5.19: All payoffs from the different Nash equilibrium solutions showing the players’
average payoff as a function of the entanglement parameter λ111 in a GHZ-like state
when I “ f7, O “ f8. This plot is the combination of Figures 5.17 and 5.18. The red
solid line is hidden behind the purple and brown solid lines. The payoffs are found in Ta-
ble 5.4.

As before, the social welfare ($A ` $B ` $C) of each Nash equilibrium solution
can be computed. The specific expressions for the social welfare for all the
equilibrium points in Table 5.4 are found in Table B.4 in appendix B. Figure 5.20
plots the social welfare of all the solutions as a function of λ111, with the colour of
the line in the plot matching that of the circle in the latter table. The minimum
and maximum values are, as in the classical case, 3{4 “ 0.75 and 9{4 “ 2.25,
respectively, both achieved here only when there is no entanglement. In this case,
the preferred solution with the highest collective payoff would be the cyan line for
0 ď λ11 ď 1{

?
2 and the blue line for 1{

?
2 ď λ11 ď 1; while the worst social welfare

is given by the red line. The black point corresponds to a solution giving a constant
social welfare for the pure GHZ state. The maximum of the magenta and orange
solutions is $A ` $B ` $C « 1.756 at λ111 « 0.689 and at λ111 « 0.725, respectively.
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Fig. 5.20: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a
function of the entanglement parameter λ111 using a GHZ-like state for I “ f7, O “ f8.
The Nash equilibrium solutions with the individual payoffs are found in Table 5.4, while
the social welfare of them is in Table B.4. The colour of the lines matches the coloured
circles, which mark/identify the payoffs, in the latter table.

➤ I “ f7, O “ f8, Alice’s payoff when the players share a Bell-like state:

(Bell) $A “
1

8

“

2 ` 4λ211p1 ` λ211p1 ´ λ211qq ` 2λ211p1 ´ 3λ211 ` λ411q
`

2a211 ` b211 ` c211
˘

`
`

1 ´ 3λ211
`

1 ´ λ211
˘˘ ``

a211 ` ã211
˘ `

b211 ` c211
˘

`
`

a211 ´ ã211
˘

´

b̃211 ` c̃211

¯¯ı

(5.21)

As with the GHZ-like state, λ11 “ 1 recovers the classical payoff in equation
(4.41), while λ11 “ 0 does not. The explicit equations to solve for the Nash equilibria
are found in subsection B.2.2 in appendix B – equations (B.102)-(B.106).

Table 5.5 contains the solutions with the corresponding interval of validity
and associated payoffs. As with the GHZ-like state, the interval restrictions for the
solutions whose payoff is marked with blue and cyan squares comes from imposing
the optimisation conditions. For the rest of the solutions, the optimisation con-
ditions and the requirement that the strategies must be between 0 and 1 sets the
interval restrictions of the solution21. Some solutions depend on certain functions
of λ11, and this time, these function are slightly different than tB1pλ11q, vB1pλ11q,
and vB1pλ11q, in equations (5.13)-(5.15) for the Bell-like state when I “ f7, O “ f15
(CHSH game). These new functions, labelled as tB2, uB2, and vB2, look:

tB2pλ11q “
´λ211 p1 ´ 3λ211 ` λ411q

1 ´ 3λ211 p1 ´ λ211q
(5.22)

uB2pλ11q “ 2tB2pλ11q ´ 1 “
´1 ` λ211 ` 3λ411 ´ 2λ611

1 ´ 3λ211 p1 ´ λ211q
(5.23)

21As an illustrative example, the optimisation equations of the strategy whose payoff is
marked with a red square are worked out in equations (B.107)-(B.109) in appendix B.
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vB2pλ11q “ 4tB2pλ11q ´ 1 “
´1 ´ λ211 ` 9λ411 ´ 4λ611

1 ´ 3λ211 p1 ´ λ211q
(5.24)

Figure 5.21 plots tB2pλ11q, uB2pλ11q, and vB2pλ11q. As can be seen from the plot,

besides λ11 “ 0, 1 ; 0 ď tB2pλ11q ď 1 only for p
?
5 ´ 1q{2 ď λ11 ď

b

p
?
5 ´ 1q{2 22.

For 0 ď uB2pλ11q ď 1, then 1{
?
2 ď λ11 ď

b

p
?
5 ´ 1q{2. Finally, for 0 ď vB2pλ11q ď

1, then 0.6695 ď λ11 ď 1{
?
2.
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Fig. 5.21: Plot of the three distinct functions of λ11 that appear in the Nash equilibrium
points for the Bell-like state shown in Table 5.5 when I “ f7, O “ f8. The specific
expressions are found in equations (5.22)-(5.24).

22As a mathematical curiosity, p
?
5 ´ 1q{2 “ φ ´ 1 “ 1{φ, where φ “ 1.6180 . . . is the golden

ratio. Then
b

p
?
5 ´ 1q{2 “ 1{

?
φ.
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Bell-like state with I “ f7 , O “ f8

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

λ11 “ 0 or λ11 “
?
5´1
2

« 0.618, #̃211 “ 0 t0, ã211, 0, 0, 0, 0u

$A “ $B “ $C “
1

4
r1 ` 2λ211 p1 ` λ211 ´ λ411qs

?
5´1
2

ă λ11 ď 0.6695 , 0 ď #̃211 ď 4tB2 t0, 0, 0, b̃211, 0, 0u

0.6695 ă λ11 ď 1 , 0 ď #̃211 ď 1 t0, 0, 0, 0, 0, c̃211u

0 ď λ111 ď 0.743 , 0 ď #̃211 ď 1 t1, ã211, 1, 1, 1, 1u

$A “ $B “ $C “
1

4
r3 ´ 2λ411p2 ´ λ211qs0.743 ă λ111 ă

b

?
5´1
2

, ´2 ` vB2 ď #̃211 ď 1 t1, 1, 1, b̃211, 1, 1u

λ11 “ 1 or λ11 “

b

?
5´1
2

« 0.786 , #̃211 “ 1 t1, 1, 1, 1, 1, c̃211u

?
5´1
2

ď λ11 ď

b

?
5´1
2

ttB2, tB2, tB2, tB2, tB2, tB2u $A “ $B “ $C “
1

4
r1 ` 2λ211 p1 ` λ211 ´ λ411qs ´

λ411 p1 ´ 3λ211 ` λ411q
2

2 r1 ´ 3λ211p1 ´ λ211qs

λ11 “ 1?
2

t1, 0, 0, 1, 1 ´ c̃211, c̃
2
11u

$A “
18 ´ c̃211

32
; $B “

17 ` c̃211
32

; $C “
17

32t0, 1, 1, 0, 1 ´ c̃211, c̃
2
11u

?
5´1
2

ď λ11 ď 1?
2

t0, 2tB2, 0, 2tB2, 2tB2, 0u

$A “ $B “
1

4
r1 ` 2λ211 p1 ` λ211 ´ λ411qs ´

λ411 p1 ´ 3λ211 ` λ411q
2

2 r1 ´ 3λ211p1 ´ λ211qs
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$C “
1

4
r1 ` 2λ211 p1 ` λ211 ´ λ411qs

1?
2

ď λ11 ď

b

?
5´1
2

t1, uB2, 1, uB2, uB2, 1u

$A “ $B “
1

4
r1 ` 2λ211 p1 ` λ211 ´ λ411qs ´

λ411 p1 ´ 3λ211 ` λ411q
2

2 r1 ´ 3λ211p1 ´ λ211qs

$C “
1

4
r3 ´ 2λ411p2 ´ λ211qs

0.6695 ď λ11 ď 1?
2

tvB2, 0, vB2, 0, 0, 1u

$A “ $B “
p1 ´ λ211q p1 ´ λ211 ` 9λ611 ´ 11λ811 ` 4λ1011q

4 r1 ´ 3λ211p1 ´ λ211qs

$C “
´λ211 p1 ´ 12λ211 ` 14λ411 ` 13λ611 ´ 24λ811 ` 8λ1011q

4 r1 ´ 3λ211p1 ´ λ211qs

1?
2

ď λ11 ď 0.743 t´1 ` vB2, 1,´1 ` vB2, 1, 1, 0u

$A “ $B “
λ211 p2 ´ 2λ211 ` λ411 ´ 5λ611 ` 9λ811 ´ 4λ1011q

4 r1 ´ 3λ211p1 ´ λ211qs

$C “
´λ211 p1 ´ 12λ211 ` 14λ411 ` 13λ611 ´ 24λ811 ` 8λ1011q

4 r1 ´ 3λ211p1 ´ λ211qs

Tab. 5.5: Nash Equilibria for the game defined by I “ f7, O “ f8 using the Bell-like state. The symbol #̃211 in the first two rows of solutions denotes either ã211, b̃
2
11 or

c̃211, depending on which solution is being considered. The specific expressions for tB2, uB2, and vB2 are found in equations (5.22)-(5.24). The colour of the squares
helps to identify the payoffs plotted in Figures 5.22, 5.24, 5.23, and 5.25.
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The results of Table 5.5 for the Bell-like state and the results in Table 5.4 for
the GHZ-like look quite similar: they have the same number of points – coloured-
marked in a similar fashion –, but with a different dependence on the entanglement
parameter and interval restrictions. In any case, the analysis of the plots will be
rather similar.

Figure 5.22 plots the solutions whose payoffs are marked with blue, cyan, and
red squares in Table 5.5 as a function of λ11. The analysis is very similar to the
first three solutions using the GHZ-like state in Figure 5.17, but in this case, the
solutions are not defined for the whole interval of λ11. The cyan (blue) solution
decreases (increases) monotonically to a minimum (maximum) at the end of its
defined interval, while the red one increases as the entanglement increases to reach
the maximum of 17{32 “ 0.53125 at λ11 “ 1{

?
2. The minimum value of these

solutions at λ11 “ p
?
5´1q{2 and λ11 “

b

p
?
5 ´ 1q{2 is $A “ $B “ $C “

?
5´7{4 «

0.486
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Fig. 5.22: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with blue, cyan, and red squares in Table 5.5 as a function of the entanglement
parameter λ11. The colour of the lines matches the coloured squares, which mark/identify
the payoffs, in the same table. These results are for the choice of functions I “ f7,
O “ f8, using the Bell-like state.

Figure 5.23(a) plots the solution with payoffs marked with a green square in
Table 5.5 as a function of Carl’s strategy c̃11. Carl’s payoff, the dash-dotted green
line, is constant 17{32, while Alice’s and Bob’s, the solid and dashed green lines,
respectively, depend directly on c̃11. As Carl’s choice of c̃11 increases, Alice’s payoff
decreases, while Bob’s increases. Figure 5.23(b) plots the differences $A´$B, $A´$C ,
and $B ´$C with solid, dashed, and dot-dashed gray lines, respectively, as a function
of c̃211. In that case, Alice and Bob always get a higher or equal payoff than Carl
(positive slope for both lines). For c̃211 “ 1{2, Alice and Bob get the same payoff,
and for c̃211 “ 1{3 the difference between Alice’s and Bob’s payoff is the same as
between Bob’s and Carl’s.
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Fig. 5.23: paq Players’ average payoffs for the equilibrium point marked with a green
square in Table 5.2 as a function of Carl’s strategy c̃11. These results are for I “ f7
and O “ f8, for the Bell-like state. pbq Payoff difference $A ´ $B, $A ´ $C , and $B ´ $C
for the payoffs plotted in paq. Note that the horizontal axis is the square of Carl’s strat-
egy c̃211, choice made so that the differences correspond to lines.

The solutions plotted in Figure 5.24 give different payoffs to Carl – dash-dotted
lines on the plot – in comparison to Alice and Bob – solid line. For the purple and
brown solutions, the players’ payoff increases up to a maximum of 17{32 “ 0.53125
for Alice and Bob, and a maximum of 9{16 “ 0.5625 for Carl, at λ11 “ 1{

?
2.

In contrast, for the magenta and orange lines, the maximum for Alice and Bob
occurs at a different point than for Carl: while Carl’s maximum of 9{16 happens at
λ11 “ 1{

?
2, for Alice and Bob the maximum is $A “ $B « 0.5348 at λ11 « 0.6906

and λ11 « 0.7232 23. Again, these two solutions create a mismatch between the
preferences of one player against the other two.

23These solutions are close to the ones for the GHZ-like state, where the maximum for Alice
and Bob was $A “ $B « 0.5682 at λ111 « 0.67375 and at λ111 « 0.7389.
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Fig. 5.24: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with purple, brown, orange, and magenta squares in Table 5.5 as a function of
the entanglement parameter λ11. The colour of the lines matches the coloured squares,
which mark/identify the payoffs, in the same table. Note the short interval validity of
those solutions. These results are for the choice of functions I “ f7, O “ f8, using the
GHZ-like state.

Figure 5.25 plots all the solutions that depend on λ11 in a unique plot –
not the green-square solution, since it does not depend on λ11 –, which is an
amalgamation of Figure 5.22 and Figure 5.24. In the exact same way as in the
GHZ-like state, the red solid line is the same as the solid purple one in the first
interval and the brown one in the second interval. The dot-dashed lines (Carl’s
payoff) for the purple and brown solutions coincide with the cyan and blue lines,
respectively, on each interval.
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Fig. 5.25: Payoffs from the different Nash equilibrium solutions showing the players’ av-
erage payoff as a function of the entanglement parameter λ11 in a Bell-like state when
I “ f7, O “ f8. This plot is the combination of Figures 5.22 and 5.24. The payoffs are
found in Table 5.5.
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The social welfare ($A ` $B ` $C) of each Nash equilibrium point in Table
5.5 is computed and shown in Table B.5 in appendix B. Figure 5.26 shows
the social welfare for all solutions as a function of λ11. Exactly as with the
GHZ-like state, the preferred solutions are the cyan and blue ones at each
interval, while the red one is the worst one. The maximum for the orange and
magenta lines is $A`$B`$C « 1.629 at λ11 « 0.699 and at λ11 « 0.715, respectively.
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Fig. 5.26: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a
function of the entanglement parameter λ11 using a Bell-like state for I “ f7, O “ f8.
The Nash equilibrium solutions with the individual payoffs are found in Table 5.5, while
the social welfare of them is in Table B.5. The colour of the lines matches the coloured
circles, which mark/identify the payoffs, in the latter table.

➤ I “ f7, O “ f10, Alice’s payoff when the players share a GHZ-like state:

(GHZ) $A “
1

8

“

2 ` 2pa211 ` c211qp1 ´ λ2111q
2

` 2λ4111
`

a211 ` b211
˘

´
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘ ``

a211 ` ã211
˘ `

b211 ` c211
˘

`
`

a211 ´ ã211
˘

´

b̃211 ` c̃211

¯¯ı

(5.25)

In this case, only λ111 “ 1 recovers the classical payoff in equation (4.41), while
λ111 “ 0 does not. The explicit equations to solve for the Nash equilibria are found
in subsection B.2.2 in appendix B – equations (B.111)-(B.115).

The solutions are found in Table 5.6. Interestingly enough, despite the payoff
using the GHZ-like state in equation (5.25) being different to the classical one,
the points that optimise both payoffs are the same24. That means, that the
Nash equilibrium points are identical – compare Table 5.6 and Table 4.7 –, the only
difference is the appearance of λ111 in the corresponding payoffs.

24This result arises because the corresponding Karush–Kuhn–Tucker (KKT) conditions using
the GHZ-like state are the same as the ones using mixed strategies up to a (positive) factor that
depends on λ111. See equations (B.111)-(B.115) in appendix B.

92



CHAPTER 5. BI- AND TRI-PARTITE ENTANGLEMENT FOR BOOLEAN
GAMES WITH 3 PLAYERS IN A TRIANGLE

GHZ-like state with I “ f7 , O “ f10
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11u
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4
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2
11u

$A “
1

4

”

1 ` λ4111 ` c211 p1 ´ λ2111q
2
ı

˚

$B “
1

4
r2 p1 ´ λ2111 ` λ4111q ´ c211 p1 ´ 2λ2111 ` λ4111qs ˚

$C “
1

4
r2 ´ 2λ2111 ` λ4111s ‚

t1, 0, 1, 0, c211, 0u

$A “
1

8
r3 ´ 2λ2111 ` 4λ4111 ` c211 p1 ´ 2λ2111qs ˚

$B “
1

8
r5 ´ 6λ2111 ` 4λ4111 ´ c211 p1 ´ 2λ2111qs ˚

$C “
1

2
r1 ´ λ2111 p1 ´ λ2111qs ‚

t0, 1, 0, 1, c211, 1u

$A “
1

8
r4 p1 ´ λ2111 ` λ4111q ` c211 p1 ´ 2λ2111qs ˚

$B “
1

8
r4 p1 ´ λ2111 ` λ4111q ´ c211 p1 ´ 2λ2111qs ˚

$C “
1

2
r1 ´ λ2111 p1 ´ λ2111qs ‚

"

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

*

$A “ $B “ $C “
1

8
r3 ´ 2λ2111 p1 ´ λ2111qs ‚

Tab. 5.6: Nash Equilibria for the game defined by I “ f7, O “ f10 using the GHZ-like
state. The colour of the circles identifies the payoffs plotted in Figure 5.28. The solutions
with asterisks are plotted in Figure 5.27.

The payoffs marked with an asterisk in Table 5.6 depend on Carl’s strategy c211
and λ111, while the ones marked with a circle only on λ111. For each of the solutions
marked with an asterisk, Bob’s payoff $B is plotted in a density plot as a function
of Alice’s payoff $A and λ111 in Figure 5.27, plots that also include the possible
values of $A, as was done in the GHZ-like state for I “ f7, O “ f15 – see equation
(5.11) and Figure 5.5.
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Fig. 5.27: Density plots showing Bob’s payoffs as a function of $A and the entanglement
parameter λ111. These payoffs correspond to the Nash equilibrium solutions marked with
purple, brown, orange, and magenta asterisks in Table 5.6. These results are when I “

f7, O “ f10, and using the GHZ-like state.

A detailed analysis of each plot in Figure 5.27 is as follows:

• The players’ payoffs in Figure 5.27(a) (purple asterisk) vary from 1{4 “ 0.25
to 1{2 “ 0.5 , and there is a clear distinction between λ111 “ 0 and λ111 “ 1.
Around λ111 “ 0, the payoff for both players is approximately the same 1{2 “

0.5 (fine yellow “line” in the plot), while around λ111 “ 1 the payoff for each
player can vary widely at the expense of the other player’s payoff (wide vertical
region with all range of colours/payoff) – corresponding to the classical case.
For λ111 “ 1{

?
2, the players’ payoff varies from 5{16 “ 0.3125 to 3{8 “ 0.375 .

• The analysis of Figure 5.27(b) (brown asterisk) is very similar to the one
of Figure 5.27(a), but in this case, the players receive the same (maximum)
payoff of 1{2 “ 0.5 at λ111 “ 1, and the region around λ111 “ 0 recovers the
classical case with the high variability in payoffs. As before, at λ111 “ 1{

?
2,

the players’ payoff varies from 5{16 “ 0.3125 to 3{8 “ 0.375 . The new feature
is that this region with higher variability is much wider in terms of λ111;
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compare, for example, the region 0 ď λ111 ď 0.1 in Figure 5.27(b) with the
region 0.9 ď λ111 ď 1 in Figure 5.27(a), the latter being much more reduced
in terms of payoffs than the first one. That means that varying λ111 slightly
around those two “more-classical” regions, the solution marked with a purple
asterisk will be impacted much more than the one with the brown asterisk.

• Figure 5.27(c) (orange asterisk) is different from the previous two. The play-
ers’ payoffs in this case are higher since they vary from 11{32 “ 0.34375 to
5{8 “ 0.625 . For λ111 “ 0, Alice’s payoff varies from 3{8 “ 0.375 to 1{2 “ 0.5,
while Bob’s from 1{2 “ 0.5 to 5{8 “ 0.625 ; whereas for λ111 “ 1, it is the
other way around. At λ111 “ 1{

?
2, Alice and Bob receive the same payoff

3{8 “ 0.375 , which is why it is not very visible in the density plot, because it
corresponds to a unique point and the plotting software – Wolfram Mathemat-
ica – excluded it. It is interesting to see that the absolute minimum for Alice’s
payoff occurs exactly at λ111 “ 1{2 (and c11 “ 0), giving her 11{32 “ 0.34375,
while Bob’s minimum payoff is the same and occurs at λ111 “

?
3{2 « 0.866

(and c11 “ 0). The highest payoff values for Alice are located around λ111 “ 1,
while for Bob, they are located around λ111 “ 0

• The analysis for Figure 5.27(d) (magenta asterisk) is very similar to the
one for Figure 5.27(c); it is just swapping some of the values. Again, the
players’ payoff ranges from 11{32 “ 0.34375 to 5{8 “ 0.625 . Analogously
to the previous plot, in the region around λ111 “ 0, Alice’s payoff is between
1{2 “ 0.5 and 5{8 “ 0.625, while Bob’s is between 3{8 “ 0.375 and 1{2 “ 0.5 ;
whereas in the region around λ111 “ 1 it is the other way around. Again, at
λ111 “ 1{

?
2 corresponds to a single point where both players get 3{8 “ 0.375 .

The minimum for Alice of 11{32 “ 0.34375 occurs at λ111 “
?
3{2 « 0.866

(and c11 “ 1), while is the same minimum for Bob at λ111 “ 1{2 (and c11 “ 1).

Moving now to the payoffs that only depend on λ111, marked with a circle
in Table 5.6, these are plotted in Figure 5.28. The purple, brown, and orange
dot-dashed lines correspond to Carl’s payoff, while the solid red line is the only
solution that gives equal payoff to all players. The purple and brown dot-dashed
lines increase and decrease monotonically, respectively. In any case, from Carl’s
perspective, he would prefer the orange solution – corresponding to the third and
fourth solution in Table 5.6 – because it gives him a strictly higher payoff than the
other solutions. Both for the red and orange solutions, they give worse payoff as
the entanglement increases.
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Fig. 5.28: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with purple, brown, orange, and red circles in Table 5.6 as a function of the en-
tanglement parameter λ111. The colour of the lines matches the coloured circles, which
mark/identify the payoffs, in the same table. These results are for the choice of functions
I “ f7, O “ f10, using the GHZ-like state.

The expressions for the social welfare ($A ` $B ` $C) of each equilibrium
solution in Table 5.6 are found in Table B.6 in appendix B. Figure 5.29 shows
the social welfare as a function of λ111. The social welfare of the payoffs coloured
in purple and brown is the same, and also for the ones coloured in orange and
magenta. That is why in the plot there are only three different lines. In this case,
the social welfare worsens as the entanglement increases, therefore the players
would prefer to have a fully non-entangled state.
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Fig. 5.29: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a
function of the entanglement parameter λ111 using a GHZ-like state for I “ f7, O “ f10.
The Nash equilibrium solutions with the individual payoffs are found in Table 5.6, while
the social welfare of them is in Table B.6. The colour of the lines matches the coloured
circles, which mark/identify the payoffs, in the latter table.
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➤ I “ f7, O “ f10, Alice’s payoff when the players share a Bell-like state:

(Bell) $A “
1

8

“

2 ` 4λ211p1 ´ λ211q
2

` 2pa211 ` c211qp1 ´ λ211q
3

´ 2λ211p1 ´ 3λ211 ` λ411q
`

a211 ` b211
˘

´
`

1 ´ 3λ211
`

1 ´ λ211
˘˘ ``

a211 ` ã211
˘ `

b211 ` c211
˘

`
`

a211 ´ ã211
˘

´

b̃211 ` c̃211

¯¯ı

(5.26)

As before, λ11 “ 1 recovers the classical payoff in equation (4.41), while λ11 “ 0
does not. The explicit equations to solve for the Nash equilibria are found in
subsection B.2.2 in appendix B – equations (B.117)-(B.121).

The results are found in Table 5.7. This time there are quite a few more
solutions and are different. The first four solutions, strategies marked with a
coloured star, are the same as the ones for the GHZ-like state (and the classical)
except that there are interval restrictions on λ11 and Carl’s strategy c11, coming
from the optimisation conditions. These restrictions change the solutions and their
payoffs shown in that table. To avoid having a rather long table, these solutions
marked with a coloured star are further detailed in another table, Table 5.8.

Looking now only at Table 5.7, some of the solutions explicitly depend on func-
tions of the entanglement parameter: tB1pλ11q, uB1pλ11q, and vB1pλ11q, which are
exactly the same functions that appeared for the Bell-like state when I “ f7,
O “ f15 (CHSH game). Their expressions are found in equations (5.13)-(5.15).
Again, the interval restrictions of the solutions come from imposing the optimisa-
tion conditions and requiring that the strategies lie between 0 and 1. The marked
payoffs with coloured squares will be shown in a plot next, while the two non-marked
solutions (eighth and ninth solution) correspond, up to player permutations, to some
solutions in the table detailing the star-marked solutions, Table 5.8.
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11`2λ6

11qp1´4λ2
11`6λ4

11´2λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$B “
1

4

„

1 ` 2λ411 `
p1´3λ2

11`3λ4
11´2λ6

11qp1´4λ2
11`6λ4

11´2λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$C “

„

1 ` 2λ411 `
p´1`2λ2

11qp´1`4λ2
11´9λ4

11`14λ6
11´13λ8

11`4λ10
11q

1´3λ2
11p1´λ2

11q

ȷ

1?
2

ď λ11 ď 1 t2tB1, 1, 2tB1, 1, 0, 1u

$A “
1

4

„

3 ´ 2λ211 ´ 4λ411 ` 4λ611 ´
p1´λ2

11´3λ4
11`2λ6

11qp1´4λ2
11`6λ4

11´2λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$B “
1

4

„

1 ` 2λ211 ´ 4λ411 ` 4λ611 `
p1´3λ2

11`3λ4
11´2λ6

11qp1´4λ2
11`6λ4

11´2λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$C “

„

1 ` 2λ211 ´ 4λ411 ` 4λ611 `
p´1`2λ2

11qp´1`4λ2
11´9λ4

11`14λ6
11´13λ8

11`4λ10
11q

1´3λ2
11p1´λ2

11q

ȷ

Tab. 5.7: Nash Equilibria for the game defined by I “ f7, O “ f10 using the Bell-like state. The strategies marked with a star are detailed on the next Table 5.8
because of the interval restrictions. The specific expressions for tB1, uB1, and vB1 as functions of λ11 are found in equations (5.13)-(5.15) on page 69. The colour of
the squares helps to identify the payoffs plotted in Figure 5.30. The non-marked solutions are the same (up to player permutations) as some in Table 5.8.
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Figure 5.30 contains two plots of all the marked solutions with coloured squares
in Table 5.7. As always, the colour of the lines in the plots matches that of the
square identifying the payoff in the same table. Figure 5.30(a) shows the solutions
marked with blue, cyan, and red squares, which all give the same payoff to all
players. The blue and cyan lines show that, without entanglement, the players get
1{2 “ 0.5, and as the entanglement increases, the payoff decreases. Interestingly,
the minimum is reached closer to λ11 “ 1{

?
2, but not at that exact point. This

minimum is $A “ $B “ $C « 0.36986 at λ11 « 0.646 and at λ11 « 0.764. After
this minimum, the payoff starts to increase again until reaching 3{8 “ 0.375
for the pure Bell state. For the red line, without entanglement, the players
receive 3{8 “ 0.375, and as the entanglement increases, the payoff decreases to
reach a minimum of 11{32 “ 0.34375 for the pure Bell state. This red solution
s˚ “ tuB1{2, uB1{2, uB1{2, uB1{2, uB1{2, uB1{2u is exactly the same as the solution
in the CHSH game (I “ f7, O “ f15) for the Bell-like state – see red square solution
in Table 5.2. In this case, it also exhibits a similar interesting behaviour – see the
analysis on page 70 –, because, again, λ11 “ 0, 1, 1{

?
2 recovers the classical

strategy of s˚ “ t1{2, 1{2, 1{2, 1{2, 1{2, 1{2u, but the payoff distinguishes between
λ11 “ 0, 1 , which gives 3{8 “ 0.375, and λ11 “ 1{

?
2, which gives in this case

a little less 11{32 “ 0.34375 . As mentioned in the analysis on page 70, it would
be interesting to investigate whether this distinction between producing this exact
same strategy with a maximally-entangled Bell state and a fully separable state (or
classically), is a fundamental consequence of quantum mechanics, which cannot be
reproduced using classical means, or not.

Figure 5.30(b) shows the solutions marked with purple, brown, orange, and ma-
genta squares; these give different payoffs for all three players. For the purple and
brown lines, Alice monotonically increases her payoff (solid line) as the entangle-
ment increases, while Bob’s (dashed line) decreases, both reaching 11{32 “ 0.34375
for the pure Bell state. Carl’s payoff (dot-dashed line) for the purple and brown lines
follows the same pattern as the blue and cyan lines in Figure 5.30(a): it decreases
until it reaches the minimum of $C « 0.36986 at λ11 « 0.646 and at λ11 « 0.764. In
this case, the pure Bell state gives Carl a payoff of 3{8 “ 0.375 – more than for Alice
and for Bob. For the orange and magenta lines, the players’ payoff decreases until
it reaches a minimum and then increases again. Now, the minimum of all three play-
ers occurs at different points: for Alice, the minimum is $A « 0.3727 at λ11 « 0.6809
and at λ11 « 0.7323; for Bob, the minimum is $B « 0.3557 at λ11 « 0.5637 and
at λ11 « 0.826; for Carl, the minimum is $C « 0.3711 at λ11 « 0.66001 and at
λ11 « 0.7512. For a pure Bell state, all three players get 3{8 “ 0.375 .
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Fig. 5.30: Plots that show the players’ average payoff for the Nash equilibrium points
marked with paq blue, cyan, and red squares in Table 5.7; and pbq purple, brown, orange,
and magenta squares in Table 5.7 as a function of the entanglement parameter λ11. The
colour of the lines matches the coloured squares, which mark/identify the payoffs, in the
same table. These results are for the choice of functions I “ f7, O “ f10, using the Bell-
like state.

As mentioned previously, the next table, Table 5.8 details the solutions marked
with a star in Table 5.7. That means that the first three solutions in Table 5.8,
marked with a purple star, correspond to the solution marked with the same star
in Table 5.7. The solutions in Table 5.8 are more classical in the sense that they
do not depend explicitly on λ11, only the corresponding payoffs do. To distinguish
these solutions a bit more from the long list of solutions, the corresponding payoffs
are marked with coloured diamonds and triangles, instead of squares. The marked
solutions with the diamonds in Table 5.8 are plotted as a function of λ11 in Figure
5.31, with the colour of the line matching that of the diamond; while the marked
solutions with the triangles are plotted as a function of Carl’s strategy c11 in Figure
5.32, again, with the colour of the lines matching that of the triangle. The non-
marked solutions correspond to a player permutation of the other ones, or give
constant payoff for all three players.
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(2/2) Bell-like state with I “ f7 , O “ f10

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

λ11 “ 0

t1, 1, 0, 0, c211, c
2
11u ‹

$A “ $B “
1

2
; $C “

1

4

λ11 “ 1?
2

$A “
12 ´ c211

32
; $B “

11 ` c211
32

; $C “
11

32
İ

λ11 “ 1 $A “
2 ´ c211

4
; $B “

1 ` c211
4

; $C “
1

2
İ

0 ă λ11 ă 1?
2

t1, 1, 0, 0, 0, 0u ‹

$A “
1

2
r1 ´ λ211 ` λ411s

$B “
1

4
r2 ´ λ211 ´ λ411 ` λ611s ♦

$C “
1

4
r1 ` λ211 ´ λ411 ` λ611s

1?
2

ă λ11 ă 1 t1, 1, 0, 0, 1, 1u ‹

$A “
1

4
r2 ´ 2λ211 ` 2λ411 ´ λ611s

$B “
1

2
r1 ´ λ211 ` λ411s ♦

$C “
1

4
r1 ` 2λ411 ´ λ611s

λ11 “ 0

t0, 0, 1, 1, c211, c
2
11u ‹

$A “
1 ` c211

4
; $B “

2 ´ c211
4

; $C “
1

2

λ11 “ 1?
2

$A “
11 ` c211

32
; $B “

12 ´ c211
32

; $C “
11

32

λ11 “ 1 $A “ $B “
1

2
; $C “

1

4
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0 ă λ11 ă 1?
2

t0, 0, 1, 1, 0, 0u ‹

$A “
1

4
r1 ` λ211 ´ λ411 ` λ611s

$B “
1

2
r1 ´ λ211 ` λ411s

$C “
1

4
r2 ´ λ211 ´ λ411 ` λ611s

1?
2

ă λ11 ă 1 t0, 0, 1, 1, 1, 1u ‹

$A “
1

2
r1 ´ λ211 ` λ411s

$B “
1

4
r1 ` 2λ411 ´ λ611s

$C “
1

4
r2 ´ 2λ211 ` 2λ411 ´ λ611s

λ11 “ 0

t1, 0, 1, 0, c211, 0u ‹

$A “
3 ` c211

8
; $B “

5 ´ c211
8

; $C “
1

2

λ11 “ 1?
2

$A “ $B “ $C “
3

8

λ11 “ 1 $A “
5 ´ c211

8
; $B “

3 ` c211
8

; $C “
1

2
İ

0 ă λ11 ă 1?
2

t1, 0, 1, 0, 0, 0u ‹

$A “
1

8
r3 ´ 3λ211 ` 7λ411 ´ 2λ611s

$B “
1

8
r5 ´ 7λ211 ` 7λ411 ´ 2λ611s ♦

$C “
1

2
r1 ´ λ211 ` λ411s

1?
2

ă λ11 ă 1 t1, 0, 1, 0, 1, 0u ‹ $A “ $B “ $C “
1

4
r2 ´ 3λ211 ` 5λ411 ´ 2λ611s ♦
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λ11 “ 0

t0, 1, 0, 1, c211, 1u ‹

$A “
4 ` c211

8
; $B “

4 ´ c211
8

; $C “
1

2

λ11 “ 1?
2

$A “ $B “ $C “
3

8

λ11 “ 1 $A “
4 ´ c211

8
; $B “

4 ` c211
8

; $C “
1

2
İ

0 ă λ11 ă 1?
2

t0, 1, 0, 1, 0, 1u ‹ $A “ $B “ $C “
1

4
p1 ` λ211q p2 ´ 3λ211 ` 2λ411q ♦

1?
2

ă λ11 ă 1 t0, 1, 0, 1, 1, 1u ‹

$A “
1

8
r5 ´ 5λ211 ` λ411 ` 2λ611s

$B “
1

8
r3 ´ λ211 ` λ411 ` 2λ611s ♦

$C “
1

2
r1 ´ λ211 ` λ411s

Tab. 5.8: Detailed Nash equilibrium solutions of the cases marked with a star on Table 5.7, for the game defined by I “ f7, O “ f10 using the Bell-like state. The
colour of the diamonds and the triangles help to identify the payoffs plotted in Figure 5.31 and Figure 5.32, respectively. The solutions not marked with any diamond
are equivalent to other ones with the purple diamonds by permuting the players.
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For the solutions marked with a diamond, the red and blue lines in Figure 5.31
give the same payoff for all three players, which, as the entanglement increases, the
payoff decreases to reach the minimum of 3{8 “ 0.375 for the pure Bell state. As is
immediately seen from Table 5.8 and the plot, in the first interval25, Alice’s payoff
for the purple solution (solid line) coincides with Carl’s for the brown solution (dot-
dashed line); in the second interval, Bob’s payoff for the magenta line (dashed line)
coincides with Carl’s payoff for the orange line (dot-dashed). For the purple lines,
Alice’s and Bob’s payoffs (solid and dashed lines) decrease as the entanglement
increases, while Carl’s (dot-dashed) increases. Similarly, for the magenta lines,
which mirror the purple solutions in the second interval, Bob’s and Carl’s decreases
as the entanglement increases, and Alice’s increases. For the brown and orange
lines, the maxima for Bob $B “ 5{8 “ 0.625 and for Carl $C “ 1{2 “ 0.5 are located
at λ11 “ 0 , 1, and as the entanglement increases, their payoff decreases. However,
for Alice, the maximum of her payoff is $A “ 3{8 “ 0.375 at λ11 “ 0 , 1{

?
2 , 1, while

the minimum is $A “
`

316 ´ 31
?
31

˘

{432 « 0.332 at λ11 “

b

p7 ´
?
31q{6 « 0.489

and at λ11 “

b

p
?
31 ´ 1q{6 « 0.873 .
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Fig. 5.31: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with purple, magenta, brown, blue, red, and orange diamonds in Table 5.8 as a
function of the entanglement parameter λ11. The colour of the lines matches the coloured
diamonds, which mark/identify the payoffs, in the same table. These results are for the
choice of functions I “ f7, O “ f10, using the Bell-like state.

Figure 5.32 shows the solutions marked with a triangle in Table 5.8 as a
function of Carl’s strategy c11. The behaviour of all the same lines with different
colours is very similar: Carl’s payoff (dot-dashed line) is constant; Alice’s payoff
(solid line) decreases monotonically as c11 increases; while for Bob’s (dashed line),
it increases monotonically. The magenta, orange, and brown lines correspond to
solutions with λ11 “ 1, whereas the purple line corresponds to λ11 “ 1{

?
2, which

is why the difference between the players’ payoffs is narrower26.

25The first interval comprises 0 ď λ11 ď 1{
?
2, while the second is 1{

?
2 ď λ11 ď 1.

26As happened with the Bell-like state for I “ f7, O “ f15 (CHSH game), see Figure 5.9 and
Figure 5.10 on page 72.
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Fig. 5.32: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with paq purple and magenta; and pbq brown, and orange triangles in Table 5.8
as a function of Carl’s strategy c11. The colour of the lines matches the coloured tri-
angles, which mark/identify the payoffs, in the same table. The brown dot-dashed line
coincides with the orange dot-dashed line. These results are for the choice of functions
I “ f7, O “ f10, using the Bell-like state.

The expressions for the social welfare ($A ` $B ` $C) of each equilibrium
point in Table 5.7 and Table 5.8 are found in Table B.7 and Table B.8 in appendix
B, respectively. Figure 5.33 plots the social welfare for all the solutions as a
function of λ11. The lines of the solutions marked with a square in the social
welfare table, Table B.7, which are also marked with the same square in Table
5.7, are shown in full colour; while the ones marked with a diamond in Table
B.8, also marked with the same diamond in Table 5.8, are shown with a fainter
line. Finally, the points correspond to solutions with constant social welfare at
that particular λ11 shown non-marked in Table B.8, but marked with a triangle
in Table 5.8. It is remarkable the small difference between the vivid-orange and
the vivid-blue line, and between the vivid-magenta and the vivid-cyan line. The
vivid-orange and vivid-magenta corresponded to solutions where each player would
get a different payoff – see Figure 5.30(b) – while the vivid-blue and vivid-cyan to
solutions with the same payoff for all – see Figure 5.30(a). For these four solutions,
for the social welfare, the solutions that give different payoffs are slightly better
than the ones giving the same to all. Focusing now on the overall picture, the
vivid-colour solutions, corresponding to the squares and that are “more quantum”,
perform worse than the fainter lines, which correspond to the diamonds and
are more classical. The solutions giving the highest social welfare correspond to
the red and blue faint lines – see the same coloured lines in Figure 5.31 – while
the lowest one is given by the vivid-red line – see the same red line in Figure 5.30(a).
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Fig. 5.33: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a func-
tion of the entanglement parameter λ11 using a Bell-like state for I “ f7, O “ f10. The
Nash equilibrium solutions with the individual payoffs are found in Table 5.7 and Table
5.8; while the social welfare of them is found in Table B.7 and Table B.8. The colour of
the lines matches the coloured squares and diamonds, which mark/identify the payoffs, in
both the latter tables. The fainter lines (purple, brown, blue, red, and orange) correspond
to the payoffs in Table B.8 with the diamonds, while the solid lines, to the payoffs in Ta-
ble B.7 with the squares.

➤ I “ f9, O “ f7, Alice’s payoff when the players share a GHZ-like state:

(GHZ) $A “
1

8

”

6 ´ 4λ2111p2 ´ λ2111q ` 2λ4111

´

a211 ` ã211 ` b̃211 ` c211

¯

´
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘

´

`

a211 ` ã211
˘

´

b̃211 ` c211

¯

`
`

a211 ´ ã211
˘ `

b211 ´ c̃211
˘˘‰

(5.27)

In this case, only λ111 “ 1 recovers the classical payoff in equation (4.42), while
λ111 “ 0 does not. The explicit equations to solve for the Nash equilibria are found
in subsection B.2.2 in appendix B – equations (B.123)-(B.127).

The solutions are found in Table 5.9. As always, the restrictions of the solu-
tions come from imposing the optimisation conditions and requiring that the strate-
gies must be between 0 and 1. For this GHZ-like, the same functions of λ111 for
the strategies appear again: tGpλ111q and uGpλ111q, defined in equations (5.19)-(5.20)
and plotted in Figure 5.16.
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GHZ-like state with I “ f9 , O “ f7

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

λ111 “ 0
t0, 0, 0, 0, 0, 0u

$A “ $B “ $C “
3

4t0, 0, 0, 0, 1, 1u

λ111 “ 1?
2

t1, 1, 1, 0, 0, 0u

$A “ $B “ $C “
1

2t1, 1, 0, 0, 0, 1u

λ111 “ 1
t1, 1, 1, 1, 0, 0u

$A “ $B “ $C “
3

4t1, 1, 1, 1, 1, 1u

0 ď λ111 ď 1?
2

t0, 1, 1, 0, 0, 0u
$A “ $B “

7

8
´

1

4
r5λ2111 ´ 4λ4111s ‚

$C “
3

4
´ λ2111 ` λ4111

1?
2

ď λ111 ď 1 t1, 0, 0, 1, 1, 1u
$A “ $B “

5

8
´ 1

4
r3λ2111 ´ 4λ4111s ‚

$C “
3

4
´ λ2111 ` λ4111

0 ď λ111 ď 1 ttG, tG, tG, tG, tG, tGu $A “ $B “ $C “
1

8
r7 ´ 6λ2111 p1 ´ λ2111qs ´

1

8 r1 ´ 2λ2111p1 ´ λ2111qs
‚
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0 ď λ111 ď 1?
2

t2tG, 0, 0, 2tG, 1, 1u

$A “ $B “
1

8
r7 ´ 6λ2111 ` 8λ4111s ´

1

8 r1 ´ 2λ2111p1 ´ λ2111qs
‚

$C “
3

4
´ λ2111 ` λ4111

1?
2

ď λ111 ď 1 tuG, 1, 1, uG, 0, 0u

$A “ $B “
1

8
r9 ´ 10λ2111 ` 8λ4111s ´

1

8 r1 ´ 2λ2111p1 ´ λ2111qs
‚

$C “
3

4
´ λ2111 ` λ4111

Tab. 5.9: Nash Equilibria for the game defined by I “ f9, O “ f7 using the GHZ-like state. The specific expressions for tG and uG are found in equations (5.19)-
(5.20) on page 78. The colour of the circles helps to identify the payoffs plotted in Figure 5.34.
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Figure 5.34 shows all the equilibrium points in Table 5.9 as a function of λ111.
As always, the colour of the lines in the plot matches the colour of the squares
in the same table. There are only two classical solutions – see Table 4.8 to see
the strategies – one that gives Alice and Bob $A “ $B “ 7{8 “ 0.875 and Carl
$C “ 3{4 “ 0.75, and one that gives $A “ $B “ $C “ 3{4 “ 0.75 to all three. These
classical solutions correspond, respectively, to the solution marked with a cyan
circle, and the third constant solution (for λ111 “ 1) in Table 5.9. The red and
purple solutions reduce to the mentioned constant solution (third solution) and the
cyan line/square for λ111 “ 1 and λ111 “ 1{

?
2, respectively. This is true not only

in the sense of giving the same payoff, but of corresponding to exactly the same
strategy.

In this case, besides the first three solutions with constant payoff in Table 5.9,
there is only one solution that gives the same payoff to all players (red line), and as
the entanglement increases, the payoff decreases until it reaches 7{16 “ 0.4375. The
other solutions give the same payoff for Alice and Bob, and different to Carl. Carl’s
payoff (dot-dashed lines) for the solutions identified with blue, cyan, purple, and
brown lines/squares is the same – see the table to see that the payoff is the same
–, which forms a continuous line without any jumps27. The blue and cyan solutions
give $A “ $B “ 7{8 “ 0.875 and $C “ 3{4 “ 0.75 at λ111 “ 0 , 1 . The payoffs
gradually decrease as the entanglement increases, until they reach an equalising
minimum of $A “ $B “ $C “ 1{2 “ 0.5 for the pure GHZ state. For the purple and
brown solutions, the minimum for Alice and Bob is $A “ $B « 0.492 at λ111 « 0.661
and at λ111 « 0.751 ; while for Carl, the minimum is $C “ 1{2 “ 0.5 at λ111 “ 1{

?
2.
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Fig. 5.34: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with blue, cyan, red, purple, and brown circles in Table 5.9 as a function of the
entanglement parameter λ111. The colour of the lines matches the coloured circles, which
mark/identify the payoffs, in the same table. The dash-dotted blue and dash-dotted purple
lines coincide, and also the dash-dotted cyan and brown lines. These results are for the
choice of functions I “ f9, O “ f7, using the GHZ-like state.

27Technically, it cannot be said that it is a continuous line because that payoff is being given
by different solutions defined locally at a certain interval. So it is not technically correct to talk
about continuity and “differentiability” when matching the payoffs of different solutions.
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The expressions for the social welfare ($A ` $B ` $C) for all the equilibrium
points in Table 5.9 are found in Table B.9 in appendix B. Figure 5.35 shows the
social welfare as a function of λ111. The black points correspond to solutions giving
a constant payoff for that particular value of λ111. The plot shows that the highest
social welfare comes from the blue and cyan solutions depending on the interval,
while the lowest comes from the red solution. The minimum value for the purple
and brown lines is $A ` $B ` $C « 1.487 at λ111 « 0.670 and at λ111 « 0.742 . For
all of the solutions, the presence of entanglement in the GHZ-like state leads to a
decrease of the payoffs.
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Fig. 5.35: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a
function of the entanglement parameter λ111 using a GHZ-like state for I “ f9, O “ f7.
The Nash equilibrium solutions with the individual payoffs are found in Table 5.9, while
the social welfare of them is in Table B.9. The colour of the lines matches the coloured
circles, which mark/identify the payoffs, in the latter table.

➤ I “ f9, O “ f7, Alice’s payoff when the players share a Bell-like state:

(Bell) $A “
1

8

“

6 ´ 4λ211p1 ` λ211p1 ´ λ211qq

´ 2λ211p1 ´ 3λ211 ` λ411q

´

a211 ` ã211 ` b̃211 ` c211

¯

´
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

´

`

a211 ` ã211
˘

´

b̃211 ` c211

¯

`
`

a211 ´ ã211
˘ `

b211 ´ c̃211
˘˘‰

(5.28)

As before, λ111 “ 1 recovers the classical payoff in equation (4.42), while
λ111 “ 0 does not. The explicit equations to solve for the Nash equilibria are found
in subsection B.2.2 in appendix B – equations (B.129)-(B.133).

The solutions are found in Table 5.10. In this case, there are some remarkable
differences when considering the constant solutions for the Bell- and the GHZ-like
state. The first constant solution, valid only for λ11 “ 1{

?
2 is identical to that

for the GHZ-like state in Table 5.9, and so are the solutions s˚ “ t0, 1, 1, 0, 0, 0u

and s˚ “ t1, 0, 0, 1, 1, 1u, both restricted to the same interval using either the
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GHZ- or the Bell-like state. However, the solutions s˚ “ t0, 0, 0, 0, 0, 0u and
s˚ “ t1, 1, 1, 1, 1, 1u are valid in an interval using the Bell-like state, while they
were only valid, respectively, at λ111 “ 0 and at λ111 “ 1 for the GHZ-like state. In
addition, the solutions s˚ “ t0, 0, 0, 0, 1, 1u and s˚ “ t1, 1, 1, 1, 0, 0u that appeared
for the GHZ-like state are not a solution anymore using the Bell-like state.

The rest of the solutions depend on functions of the entanglement parameter:
tB2pλ11q, uB2pλ11q, and vB3pλ11q. The functions tB2pλ11q and uB2pλ11q are the same
that appeared for the Bell-like state when I “ f7, O “ f8 in equations (5.22)-(5.23),
while vB3pλ11q is a new function, exclusive to this game, that looks like:

vB3pλ11q “ 3 ´ 2tB2pλ11q “
3 ´ 7λ211 ` 3λ411 ` 2λ611

1 ´ 3λ211 p1 ´ λ211q
(5.29)

The interval for which 0 ď vB3pλ11q ď 1 is
b

p
?
5 ´ 1q{2 ď λ11 ď 1 . As a last

illustrative example to see the restrictions imposed by the optimisation conditions
and the requirement of the strategies being between 0 and 1, the equations for the
solutions marked with a magenta square are shown in equations (B.134)-(B.138) in
appendix B.
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Bell-like state with I “ f9 , O “ f7

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

λ11 “ 1?
2

t1, 1, 1, 0, 0, 0u

$A “ $B “ $C “
1

2
t1, 1, 0, 0, 0, 1u

0 ď λ11 ď
?
5´1
2

t0, 0, 0, 0, 0, 0u $A “ $B “ $C “
1

4
r3 ´ 2λ211 p1 ` λ211 ´ λ411qs

b

?
5´1
2

ď λ11 ď 1 t1, 1, 1, 1, 1, 1u $A “ $B “ $C “
1

4
r1 ` 4λ411 ´ 2λ611s

?
5´1
2

ď λ11 ď

b

?
5´1
2

ttB2, tB2, tB2, tB2, tB2, tB2u $A “ $B “ $C “
1

4
r1 ` 4λ411 ´ 2λ611s `

p1 ´ 2λ211 ` λ611q
2

2 r1 ´ 3λ211p1 ´ λ211qs

0 ď λ11 ď 1?
2

t0, 1, 1, 0, 0, 0u

$A “ $B “
1

8
r7 ´ 9λ211 ` 5λ411 ` 2λ611s

$C “
3

4
´ λ211 ` λ411

1?
2

ď λ11 ď 1 t1, 0, 0, 1, 1, 1u

$A “ $B “
1

8
r5 ´ 7λ211 ` 11λ411 ´ 2λ611s
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$C “
3

4
´ λ211 ` λ411

0 ď λ11 ď
?
5´1
2

t0,´2tB2,´2tB2, 0, 0, 0u

$A “ $B “
1

4
r3 ´ 2λ211 p1 ` λ211 ´ λ411qs

$C “
1

4
r1 ` 4λ411 ´ 2λ611s `

p1 ´ 2λ211 ` λ611q
2

´ 3λ411 p1 ´ 3λ211 ` λ411q
2

2 r1 ´ 3λ211p1 ´ λ211qs

?
5´1
2

ď λ11 ď 1?
2

t2tB2, 0, 0, 2tB2, 1, 1u

$A “ $B “
1

4
rλ211 ` 7λ411 ´ 4λ611s ´

p1 ´ λ211q p´1 ` λ211 ` λ411q p3 ´ 7λ211 ` 3λ411 ` 2λ611q

4 r1 ´ 3λ211p1 ´ λ211qs

$C “
3

4
´ λ211 ` λ411

1?
2

ď λ11 ď

b

?
5´1
2

tuB2, 1, 1, uB2, 0, 0u

$A “ $B “
1

4
r1 ` 4λ411 ´ 2λ611s ´

p1 ´ λ211q p´1 ` λ211 ` λ411q p3 ´ 7λ211 ` 3λ411 ` 2λ611q

4 r1 ´ 3λ211p1 ´ λ211qs

$C “
3

4
´ λ211 ` λ411

b

?
5´1
2

ď λ11 ď 1 t1, vB3, vB3, 1, 1, 1u

$A “ $B “
1

4
r1 ` 4λ411 ´ 2λ611s

$C “
1

4
r1 ` 4λ411 ´ 2λ611s ´

p1 ´ 2λ211 ` λ611q
2

1 ´ 3λ211p1 ´ λ211q

Tab. 5.10: Nash Equilibria for the game defined by I “ f9, O “ f7 using the Bell-like state. The specific expressions for tB2 and uB2 are found in equations (5.22)-
(5.23) on page 85, while the new vB3 is found in equation (5.29). The colour of the squares helps to identify the payoffs plotted in Figure 5.36.
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Figure 5.36 plots the solutions of Table 5.10 as a function of λ11.

Figure 5.36(a) contains the solutions marked with blue, cyan, and red
squares/lines, which give the same payoff to all the players. For all three
solutions, as the entanglement increases, the payoff decreases. The blue and
red lines are joined at λ11 “ p

?
5 ´ 1q{2 « 0.618, while the cyan and red are

joined at λ11 “

b

p
?
5 ´ 1q{2 « 0.786; the payoff at these joined points is

$A “ $B “ $C “ 11{4 ´
?
5 « 0.514 . The red solution at the joining points with

the blue and cyan line corresponds exactly with the blue and cyan solutions, i.e.
identical strategy.

The solutions in Figure 5.36(b) give the same payoff to Alice and Bob (solid
lines), but different to Carl (dot-dashed lines). The payoffs of the purple and
brown solutions for all players monotonically decrease as the entanglement
increases. Similarly for the orange and black solutions, which are defined
between 0 ď λ11 ď p

?
5 ´ 1q{2 and

b

p
?
5 ´ 1q{2 ď λ11 ď 1, respectively. The

players’ payoffs where the orange and magenta, and green and black lines meet
( λ11 “ p

?
5´1q{2 and λ11 “

b

p
?
5 ´ 1q{2 ) is $A “ $B “ $C “ 11{4´

?
5 « 0.514.

The most interesting solutions are the magenta and green solutions because
Carl’s payoff is strictly higher than Alice’s and Bob’s, as opposed to the other
solutions in purple, brown, orange, and black lines, in which Alice and Bob always
receive more than Carl. For the magenta and green lines, the minimum for Alice
and Bob is $A “ $B « 0.494, located at λ11 « 0.679 and at λ11 « 0.734 , respectively.
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Fig. 5.36: Plots that show the players’ average payoff for the Nash equilibrium points
marked with paq blue, cyan, and red; and pbq purple, brown, orange, magenta, green, and
black squares in Table 5.10 as a function of the entanglement parameter λ11. The colour
of the lines matches the coloured squares, which mark/identify the payoffs, in the same
table. These results are for the choice of functions I “ f9, O “ f7, using the Bell-like
state.

The expressions for the social welfare ($A `$B `$C) for the equilibrium points
in Table 5.10 are found in Table B.10 in appendix B. Figure 5.37 plots the social
welfare as a function of λ11, with the colour of the line matching that of the square
in the latter table. For the social welfare, the best solutions would be the purple
and brown, depending on the interval considered. The lowest social welfare is given
by the orange, red, and black solutions in their respective intervals. It is worth
mentioning the slight difference between the blue and orange lines, and between the
cyan and black lines. As opposed to what happened with the social welfare for the
Bell-like for I “ f7, O “ f10 – see the analysis on page 107 and see Figure 5.33 –
this time the solutions that give the same to all three players (blue and cyan lines)
are slightly better than the ones giving different payoffs to the players (orange and
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black lines). The minimum of the magenta and green lines is $A ` $B ` $C « 1.489
at λ11 « 0.682 and at λ11 « 0.731 .
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Fig. 5.37: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a
function of the entanglement parameter λ11 using a Bell-like state for I “ f9, O “ f7.
The Nash equilibrium solutions with the individual payoffs are found in Table 5.10, while
the social welfare of them is in Table B.10. The colour of the lines matches the coloured
circles, which mark/identify the payoffs, in the latter table.

➤ I “ f9, O “ f10, Alice’s payoff when the players share a GHZ-like state:

(GHZ) $A “
1

8

”

2 ` 2pa211 ` c211q
`

1 ´ λ2111
˘2

` 2λ4111

´

ã211 ` b̃211

¯

´
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘

´

`

a211 ` ã211
˘

´

b̃211 ` c211

¯

`
`

a211 ´ ã211
˘ `

b211 ´ c̃211
˘˘‰

(5.30)

Setting λ111 “ 1 recovers the classical payoff in equation (4.45), while λ111 “ 0
does not. The explicit equations to solve for the Nash equilibria are found in
subsection B.2.2 in appendix B – equations (B.140)-(B.144).

The solutions are found in Table 5.11. As always, the interval restrictions of
the solutions come from imposing the optimisation conditions and requiring that
the strategy is between 0 and 1. As in some of the previous results for the GHZ-
like state, the functions of λ111 for the strategies are tGpλ111q and uGpλ111q, whose
expressions are in equations (5.19)-(5.20), but in this case, there is also a new
function: vGpλ111q, that is given by:

vGpλ111q “ tG ´ uG “
p1 ´ λ2111q

2

1 ´ 2λ2111 p1 ´ λ2111q
(5.31)

Just like tGpλ111q, this function as a strategy is not restricted to a certain interval,
i.e. 0 ď vGpλ111q ď 1 for 0 ď λ111 ď 1, whereas uGpλ111q was restricted to 1{

?
2 ď

λ111 ď 1.
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GHZ-like state with I “ f9 , O “ f10

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

λ111 “ 0
t1, 0, 1, 0, 1, 0u

$A “ $B “ $C “
1

2

t1, 0, 1, 0, 0, 1u

λ111 “ 1
t0, 1, 0, 1, 0, 1u

t0, 1, 0, 1, 1, 0u

λ111 “ 1?
2

t0, 0, 0, 1, 1, 0u

$A “ $B “ $C “
3

8
t1, 1, 1, 0, 0, 1u

0 ď λ111 ď 1 tvG, tG, vG, tG, vG, tGu $A “ $B “ $C “
1

2

«

1 ´ λ2111 ` λ4111 ´
λ4111 p1 ´ λ2111q

2

1 ´ 2λ2111p1 ´ λ2111q

ff

‚

0 ď λ111 ď 1?
2

t0, 0, 1, 1, 1, 0u

$A “ $B “
1

2
r1 ´ λ2111 ` λ4111s ‚

$C “
1

4
r3 ´ 4λ2111 ` 2λ4111s

1?
2

ď λ111 ď 1 t1, 1, 0, 0, 0, 1u

$A “ $B “
1

2
r1 ´ λ2111 ` λ4111s ‚
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$C “
1

4
r1 ` 2λ4111s

0 ď λ111 ď 1?
2

t1, 2tG,´uG, 0, 0, 1u

$A “ $B “
1

2
r1 ´ λ2111 ` λ4111s ‚

$C “
1

4

„

3 ` 2λ4111 ´
1

1 ´ 2λ2111p1 ´ λ2111q

ȷ

1?
2

ď λ111 ď 1 t0, uG, 2vG, 1, 1, 0u

$A “ $B “
1

2
r1 ´ λ2111 ` λ4111s ‚

$C “
1

4

„

5 ´ 4λ2111 ` 2λ4111 ´
1

1 ´ 2λ2111p1 ´ λ2111q

ȷ

Tab. 5.11: Nash Equilibria for the game defined by I “ f9, O “ f10 using the GHZ-like state. The specific expressions for tG and uG are found in equations (5.19)-
(5.20) on page 78, while the new vG is found in equation (5.31). The colour of the circles helps to identify the payoffs plotted in Figure 5.38.
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Figure 5.38 shows all the solutions marked with the corresponding coloured
circle/line in Table 5.11. There are only two classical solutions – see Table 4.9 on
page 53 – the first classical solution corresponds to the second set in Table 5.11
(only valid for λ111 “ 1); and the second classical is the sixth in the same table
(payoff marked with a brown circle), only that this time, that particular solution
is restricted to 1{

?
2 ď λ111 ď 1. Now it comes the analysis of the solutions in

this figure. The red solutions give the same payoff to all three players, and as the
entanglement increases, the payoff decreases to reach a minimum of 5{16 “ 0.3125
for the pure GHZ state. From the same table and the plot itself, it can be seen
that the orange and purple solid lines ($A “ $B) coincide, and also the brown and
magenta solid lines. The purple and brown solutions follow the same pattern:
Carl’s payoff (dot-dashed lines) is strictly higher than Alice’s and Bob’s, and as
the entanglement increases, their payoffs decrease until they reach the minimum of
3{8 “ 0.375 . The orange and magenta solutions, however, give Alice and Bob a
higher payoff than to Carl; Carl’s minimum for these two solutions is $C « 0.349,
located at λ11 « 0.627 and at λ11 « 0.779 .
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Fig. 5.38: Plot that shows the players’ average payoff for the Nash equilibrium points
marked with red, purple, brown, orange, and magenta circles in Table 5.11 as a function
of the entanglement parameter λ111. The colour of the lines matches the coloured circles,
which mark/identify the payoffs, in the same table. These results are for the choice of
functions I “ f9, O “ f10, using the GHZ-like state.

The expressions for the social welfare ($A `$B `$C) for the equilibrium points
in Table 5.11 are found in Table B.11 in appendix B. Figure 5.39 plots the social
welfare as a function of λ111, with the colour of the line matching that of the square
in the latter table. The black points correspond to giving a constant payoff for that
particular value of λ111. The social welfare has the same behaviour as the one for the
GHZ-like for I “ f9, O “ f7 – see Figure 5.35. The purple and brown solutions are
the best in their interval of validity, while the worst is the red line. The minimum
value for the orange and magenta lines is $A ` $B ` $C « 1.107 at λ111 « 0.653
and at λ111 « 0.757 . For all the solutions, the presence of entanglement leads to a
decrease of payoffs.
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Fig. 5.39: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a
function of the entanglement parameter λ111 using a GHZ-like state for I “ f9, O “ f10.
The Nash equilibrium solutions with the individual payoffs are found in Table 5.11, while
the social welfare of them is in Table B.11. The colour of the lines matches the coloured
circles, which mark/identify the payoffs, in the latter table.

➤ I “ f9, O “ f10, Alice’s payoff when the players share a Bell-like state:

(Bell) $A “
1

8

“

2 ` 4λ211p1 ´ λ211q
2

` 2pa211 ` c211qp1 ´ λ211q
3

´ 2λ211p1 ´ 3λ211 ` λ411qpã211 ` b̃211q

´
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

´

`

a211 ` ã211
˘

´

b̃211 ` c211

¯

`
`

a211 ´ ã211
˘ `

b211 ´ c̃211
˘˘‰

(5.32)

As before, setting λ111 “ 1 recovers the classical payoff in equation (4.45), while
λ111 “ 0 does not. The explicit equations to solve for the Nash equilibria are found
in subsection B.2.2 in appendix B – equations (B.146)-(B.150).

The solutions are found in Table 5.11. In this case, there are quite a few
more solutions than with the GHZ-like state, and than in any other game,
though some of them are tightly restricted in a short interval. As with the GHZ-like
state, the classical ones correspond to the second set/row of solutions in Table 5.11
(with λ11 “ 1) and the one whose payoff is marked with a black square. Remarkably,
besides solutions appearing at the usual points of λ11 “ 0, 1, 1{

?
2, there are new

constant solutions at λ11 “ p
?
5 ´ 1q{2 « 0.618 and at λ11 “

b

p
?
5 ´ 1q{2 «

0.786 28. The other solutions, whose payoff is marked with a coloured square, depend
on some functions of λ11. This time, the only function of λ11 that is common to
the ones from previous games is tB2pλ11q – in equation (5.22) – while three new
expressions appear: uB3pλ11q, vB4pλ11q, and wB1pλ11q. These are defined as:

28These numbers appeared before for the Bell-like state when I “ f7, O “ f8 – see footnote

22 on page 86. They are related to the golden ratio: p
?
5 ´ 1q{2 “ φ ´ 1 and

b

p
?
5 ´ 1q{2 “

1{
?
φ .
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uB3pλ11q “ 2 rtB1pλ11q ´ tB2pλ11qs ´ 1 “
1 ´ 3λ211 ` 3λ411 ´ 2λ611

1 ´ 3λ211 p1 ´ λ211q
(5.33)

vB4pλ11q “ tB1pλ11q ´ tB2pλ11q ` 1 “
p1 ´ λ211q

3

1 ´ 3λ211 p1 ´ λ211q
(5.34)

wB1pλ11q “ 2tB2pλ11q ´ 2 “
´2 p1 ´ 2λ211 ` λ611q

1 ´ 3λ211 p1 ´ λ211q
(5.35)

where the expression for tB1pλ11q is in equation (5.13). Some of the solutions in Table
5.12 might seem a bit strange because they are linear combinations of uB3pλ11q,
vB4pλ11q, and wB1pλ11q. Having those linear combinations could have been avoided
by adding more definitions of functions of λ11, but to keep the definitions to a
minimum, the author decided not to. The bottom line is that all of the (strategy)
functions of λ11 for the Bell-like state in all games are some linear combinations
of tB1pλ11q and tB2pλ11q. Again, the interval restrictions of the functions come from
the optimisation conditions and requiring that the strategies must be between 0 and
1.
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Bell-like state with I “ f9 , O “ f10

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

λ11 “ 0
t1, 0, 1, 0, 1, 0u

$A “ $B “ $C “
1

2

t1, 0, 1, 0, 0, 1u

λ11 “ 1
t0, 1, 0, 1, 0, 1u

t0, 1, 0, 1, 1, 0u

λ11 “ 1?
2

t0, 0, 0, 1, 1, 0u

$A “ $B “ $C “
3

8
t1, 1, 1, 0, 0, 1u

λ11 “
?
5´1
2

"

1 `
?
5

4
, 0,

1 `
?
5

4
, 0,

1 `
?
5

4
, 0

*

$A “ $B “ $C “
1

16

“

35 ´ 13
?
5
‰

« 0.371

λ11 “

b

?
5´1
2

"

3 ´
?
5

4
, 1,

3 ´
?
5

4
, 1,

3 ´
?
5

4
, 1

*

0 ď λ11 ď
?
5´1
2

tvB4, 0, vB4, 0, vB4, 0u $A “ $B “ $C “
1

4

«

2 ´ λ211 ´ λ411 ` λ611 ´
λ611 p1 ´ λ211q

3

1 ´ 3λ211 p1 ´ λ211q

ff

?
5´1
2

ď λ11 ď

b

?
5´1
2

tvB4, tB2, vB4, tB2, vB4, tB2u $A “ $B “ $C “
1

4

„

4 ´ 4λ211 ´ 4λ411 ` 3λ611 `
p´1`2λ2

11qp2´5λ2
11`λ4

11`11λ6
11´7λ8

11`λ10
11q

1´3λ2
11p1´λ2

11q

ȷ
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b

?
5´1
2

ď λ11 ď 1 tvB4, 1, vB4, 1, vB4, 1u $A “ $B “ $C “
1

4

»

–1 `

λ411

´

2 ´ λ211 p2 ´ λ211q
3
¯

1 ´ 3λ211 p1 ´ λ211q

fi

fl

0 ď λ11 ď 1?
2

t0, 0, 1, 1, 1, 0u

$A “ $B “
1

2
r1 ´ λ211 ` λ411s

$C “
1

4
r3 ´ 4λ211 ` 2λ411s

1?
2

ď λ11 ď 1 t1, 1, 0, 0, 0, 1u

$A “ $B “
1

2
r1 ´ λ211 ` λ411s

$C “
1

4
r1 ` 2λ4111s

0 ď λ11 ď 1?
3

tuB3, 0, 1, 0, uB3, 0u

$A “
1

4

„

5 ´ 5λ211 ´ 7λ411 ` 5λ611 `
´3`13λ2

11´15λ4
11`2λ6

11p´6`18λ2
11´9λ4

11`λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$B “
1

4

„

5 ´ 5λ211 ´ 7λ411 ` 6λ611 `
´3`13λ2

11´15λ4
11`2λ6

11p´6`18λ2
11´9λ4

11`λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$C “
1

4
r2 ´ λ211 ´ λ411 ` λ611s
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1?
3

ď λ11 ď
a

3 ´
?
7 twB1 ` 3, 0, 0, uB3, 1, 0u

$A “
1

4

„

4 ´ 4λ211 ´ 4λ411 ` 3λ611 `
p´1`2λ2

11qp1`λ2
11´λ4

11qp2´6λ2
11`6λ4

11´λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$B “
1

4

„

4 ´ 5λ211 ´ λ411 ` 2λ611 `
p´1`2λ2

11qp1`λ2
11´λ4

11qp2´6λ2
11`6λ4

11´λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$C “
1

4
r2 ´ 4λ411 ` λ611s

a

3 ´
?
7 ď λ11 ď

b

3´
?
3

3

tvB4, 0, 0, 2 ` wB1 ` vB4,

$A “
1

4

„

2 ´ λ211 ´ λ411 ` λ611 `
λ2
11p1´3λ2

11`λ4
11qp´1`5λ2

11´9λ4
11`3λ6

11q

1´3λ2
11p1´λ2

11q

ȷ

1, wB1 ´ vB4 ` 3u

$B “
1

4

„

2 ´ λ211 ´ λ411 ` λ611 `
λ4
11p2´13λ2

11`24λ4
11´12λ6

11`2λ8
11q

1´3λ2
11p1´λ2

11q

ȷ

$C “
1

2
r1 ´ λ211 ` λ411s

b

3´
?
3

3
ď λ11 ď 1?

2
t1, 2pvB4 ´ uB3q,´wB1 ´ 1, 0, 0, 1qu

$A “ $B “
1

2
r1 ´ λ211 ` λ411s

$C “
1

4

„

´2 ` λ411 ` 2λ611 ´ λ811 `
4`λ2

11p1´λ2
11qp´13`λ4

11´2λ6
11`λ8

11q

1´3λ2
11p1´λ2

11q

ȷ

1?
2

ď λ11 ď 1??
3

t0,´uB3,´wB1, 1, 1, 0u

$A “ $B “
1

2
r1 ´ λ211 ` λ411s

126



CHAPTER 5. BI- AND TRI-PARTITE ENTANGLEMENT FOR BOOLEAN GAMES WITH 3 PLAYERS IN A TRIANGLE

$C “
1

4

„

´4λ211 ` λ411 ` 2λ611 ´ λ811 `
4`λ2

11p1´λ2
11qp´13`λ4

11´2λ6
11`λ8

11q

1´3λ2
11p1´λ2

11q

ȷ

1??
3

ď λ11 ď
a?

7 ´ 2 tvB4, 1, 1, wB1 ` vB4, 0, wB1 ´ vB4 ` 1u

$A “
1

4

„

3 ´ λ211 ´ 7λ411 ` 5λ611 `
λ2
11p1´3λ2

11`λ4
11qp´1`5λ2

11´9λ4
11`3λ6

11q

1´3λ2
11p1´λ2

11q

ȷ

$B “
1

4

„

4 ´ 4λ211 ´ 4λ411 ` 3λ611 `
λ4
11p2´13λ2

11`24λ4
11´12λ6

11`2λ8
11q

1´3λ2
11p1´λ2

11q

ȷ

$C “
1

2
r1 ´ λ211 ` λ411s

a?
7 ´ 2 ď λ11 ď

b

2
3

twB1, 1, 1, 2vB4, 0, 1u

$A “
1

4

„

2 ´ 4λ411 ` 3λ611 `
p´1`2λ2

11qp1`λ2
11´λ4

11qp2´6λ2
11`6λ4

11´λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$B “
1

4

„

3 ´ 2λ211 ´ 4λ411 ` 4λ611 `
p´1`2λ2

11qp1`λ2
11´λ4

11qp2´6λ2
11`6λ4

11´λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$C “
1

4
r´1 ` 5λ211 ´ λ411 ´ λ611s

b

2
3

ď λ11 ď 1 t2vB4, 1, 0, 1, 2vB4, 1u

$A “
1

4

„

4 ´ 4λ211 ´ 4λ411 ` 3λ611 `
´3`13λ2

11´15λ4
11`2λ6

11p´6`18λ2
11´9λ4

11`λ6
11q

1´3λ2
11p1´λ2

11q

ȷ
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$B “
1

4

„

5 ´ 7λ211 ´ λ411 ` 2λ611 `
´3`13λ2

11´15λ4
11`2λ6

11p´6`18λ2
11´9λ4

11`λ6
11q

1´3λ2
11p1´λ2

11q

ȷ

$C “
1

4
r1 ` 2λ411 ´ λ611s

Tab. 5.12: Nash Equilibria for the game defined by I “ f9, O “ f10 using the Bell-like state. The specific expression of tB2 as a function of λ11 is found in equation
(5.22) on page 85, while the expressions for the new uB3, vB3, and wB1 are found in equations (5.33)-(5.35). The colour of the squares helps to identify the payoffs
plotted in Figures 5.40, 5.41, and 5.42.
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Figure 5.40 plots the solutions from Table 5.12 marked with blue, cyan, red,
green, and black squares. The blue, cyan, and red solutions give the same payoff
to all three players, while the green and black solutions distinguish between Alice
and Bob (solid line), and Carl (dot-dashed line). From the table and the plot,
the blue solution ends, and matches the start of the cyan one, at λ11 “ p

?
5 ´ 1q{2,

while the red solution starts at λ11 “

b

p
?
5 ´ 1q{2, also matching the cyan one. The

behaviour of all lines is similar: the payoff decreases as the entanglement increases.
The crossing point between the blue and solid green line, and between the red and
the solid black line, gives a payoff of 0.388 and is located at λ11 « 0.582 and at
λ11 « 0.812 , respectively. That means that in the interval 0.582 ď λ11 ď 0.812, the
green and black solutions are preferable to all players over the existing solution for
that particular λ11 (either blue, cyan, or red solutions).
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$A=$B=$C

$A=$B

$C
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Fig. 5.40: Plots that shows the players’ average payoff for the Nash equilibrium points
marked with blue, cyan, red, green, and black squares in Table 5.12 as a function of the
entanglement parameter λ11. The colour of the lines matches the coloured squares, which
mark/identify the payoffs, in the same table. These results are for the choice of functions
I “ f9, O “ f10, using the Bell-like state.

The rest of the solutions from Table 5.12 are shown in Figure 5.41. Figure 5.41(a)
plots the solutions marked with a purple square – the sixth marked solution – and a
dark-purple square – the last solution – in the table, which are valid in the interval
0 ď λ11 ď 1{

?
3 and

a

2{3 ď λ11 ď 1, respectively. These two solutions give differ-
ent payoffs to all three players, with Carl (dot-dashed line) receiving the most and
Alice the least (solid line); and as the entanglement increases, their payoffs decrease.

Figure 5.41(b), however, is more interesting because it shows that there are six
different solutions with different behaviours in the very short interval 1{

?
3 ď

λ11 ď
a

2{3. In any case, the solutions in dark-blue, dark-red, and light-green lines
are a mirrored version of the solutions in brown, orange, and magenta, respectively,
meaning that their analysis is the same, which is why it will be omitted. Starting
with the brown solution – showing the same behaviour as the light-green – the
interval of validity is the shortest: from 0.577 « 1{

?
3 ď λ11 ď

a

3 ´
?
7 « 0.595.

In that tiny interval, Bob’s payoff (dashed line) is practically constant, while Alice’s
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varies slightly (solid line), and Carl’s (dot-dashed line) changes the most. While
for most of the interval, Carl’s payoff is the highest, at λ11 « 0.592, then Carl’s
and Alice’s payoff are equal, and subsequently, Alice gets the highest payoff of
all three. For the orange solution – similar to the dark-red solution – valid in
0.595 «

a

3 ´
?
7 ď λ11 ď

b

p3 ´
?
3q{3 « 0.650, Bob’s payoff is the lowest and

it decreases the most as the entanglement increases, while Alice’s and Carl’s do
not vary much. In this case, Alice’s payoff starts off to be higher than Carl’s, and
at λ11 « 0.618 the tendency changes: Carl’s payoff is higher than Alice’s, until
the end of the interval at λ11 “

b

p3 ´
?
3q{3 « 0.650, where they both become

equal $A “ $C “ p4 ´
?
3q{6 « 0.378 . For the magenta solution – similar to the

dark-blue solution – both Alice and Bob have the same payoff, while Carl’s payoff is
strictly less. For Alice and Bob, their payoff does not vary much in that interval, but
it decreases slightly as λ11 decreases. For Carl, his payoff decreases until it reaches
a minimum of $C « 0.36 at λ11 « 0.660, and then starts to increase again until it
reaches the equalising maximum for all three players of $A “ $B “ $C “ 3{8 “ 0.375
for the pure Bell state. As mentioned, the analysis of the dark-blue, dark-red, and
light-green solutions corresponds to the analysis for the brown, orange, and magenta
solutions, but with the values of λ11 shifted.
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Fig. 5.41: Plots that show the players’ average payoff for the Nash equilibrium points
marked with paq purple, and dark purple squares in Table 5.12; and pbq brown, orange,
magenta, dark blue, dark red, and light green squares in Table 5.12, as a function of the
entanglement parameter λ11. The colour of the lines matches the coloured squares, which
mark/identify the payoffs, in the same table. These results are for the choice of functions
I “ f9, O “ f10, using the Bell-like state.

To gain some perspective of the solutions in the two plots in Figure 5.41, these
are plotted all together in Figure 5.42.
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Fig. 5.42: Payoffs from the different Nash equilibrium solutions showing the players’ av-
erage payoff as a function of the entanglement parameter λ11 in a Bell-like state when
I “ f9, O “ f10. This plot is the combination of the two plots in Figure 5.41. The pay-
offs are found in Table 5.12.

The expressions for the social welfare ($A ` $B ` $C) for the equilibrium
points in Table 5.12 are found in Table B.12 in appendix B. Figure 5.43 plots the
social welfare as a function of λ11, with the colour of the line matching that of the
square in the latter table. The blue and purple lines in the interval 0 ď λ11 ď 1{

?
3,

and the red and dark-purple lines in the interval
a

2{3 ď λ11 ď 1 seem to fully
overlap, but they do not. The blue and red lines are slightly above the purple and
dark-purple lines, but the difference between them is so small that it cannot be
appreciated (difference ranges from 0 to 1{972 « 0.00102). The minimum values
of the magenta and dark-blue line is $A ` $B ` $C « 1.113 at λ11 « 0.671 and
at λ11 « 0.741 . From the players’ perspective, the best solutions would be the
green and the black lines in their respective intervals. The lowest payoffs are given
by the purple, blue, cyan, red, and dark-purple lines, in that order, each at their
non-overlapping intervals; while the brown, orange, magenta, dark-blue, dark-red,
and light-green solutions give an intermediate social welfare in their respective
intervals of validity.
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Fig. 5.43: Sum of payoffs $A ` $B ` $C from all the Nash equilibrium solutions as a
function of the entanglement parameter λ11 using a Bell-like state for I “ f9, O “ f10.
The Nash equilibrium solutions with the individual payoffs are found in Table 5.12, while
the social welfare of them is in Table B.12. The colour of the lines matches the coloured
circles, which mark/identify the payoffs, in the same table. The black points correspond
to the solutions with constant payoffs in the same table.

➤ I “ f15, O “ f7, Alice’s payoff when the players share a GHZ- and the
Bell-like state:

(GHZ) $A “
1

8

”

4 ´ pa211 ´ ã211qpb211 ´ b̃211 ` c211 ´ c̃211q
`

1 ´ 2λ2111p1 ´ λ2111q
˘

ı

(5.36)

(Bell) $A “
1

8

”

4 ´ pa211 ´ ã211qpb211 ´ b̃211 ` c211 ´ c̃211q
`

1 ´ 3λ211p1 ´ λ211q
˘

ı

(5.37)

As was also the case with I “ O “ f15, the payoffs are the same as the classical
one using mixed strategies with a multiplying factor. That means, that the Nash
equilibrium points will be the same as classically. These points with the correspond-
ing payoffs are found in Table 5.13.
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GHZ-like state with I “ f15 , O “ f7

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

t1, 0, 0, 1, c211, c̃
2
11u

$A “
1

8
r4 ` p1 ´ c211 ` c̃211q p1 ´ 2λ2111 p1 ´ λ2111qqs ˚

$B “
1

8
r4 ` p1 ` c211 ´ c̃211q p1 ´ 2λ2111 p1 ´ λ2111qqs ˚

$C “
1

2

t0, 1, 1, 0, c211, c̃
2
11u

$A “
1

8
r4 ` p1 ` c211 ´ c̃211q p1 ´ 2λ2111 p1 ´ λ2111qqs

$B “
1

8
r4 ` p1 ´ c211 ` c̃211q p1 ´ 2λ2111 p1 ´ λ2111qqs

$C “
1

2

ta211, a
2
11, b

2
11, b

2
11, c

2
11, c

2
11u $A “ $B “ $C “

1

2

Bell-like state with I “ f15 , O “ f7

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u Payoffs

t1, 0, 0, 1, c211, c̃
2
11u

$A “
1

8
r4 ` p1 ´ c211 ` c̃211q p1 ´ 3λ211 p1 ´ λ211qqs ˚

$B “
1

8
r4 ` p1 ` c211 ´ c̃211q p1 ´ 3λ211 p1 ´ λ211qqs ˚

$C “
1

2

t0, 1, 1, 0, c211, c̃
2
11u

$A “
1

8
r4 ` p1 ` c211 ´ c̃211q p1 ´ 3λ211 p1 ´ λ211qqs

$B “
1

8
r4 ` p1 ´ c211 ` c̃211q p1 ´ 3λ211 p1 ´ λ211qqs

$C “
1

2

ta211, a
2
11, b

2
11, b

2
11, c

2
11, c

2
11u $A “ $B “ $C “

1

2

Tab. 5.13: Nash equilibrium points for the game defined by I “ f15, O “ f7 using GHZ-
and Bell-like states. The blue and red asterisk help to identify the payoffs plotted in Fig-
ure 5.44. The non-marked points correspond to the other ones by permuting the players.

The results show that there are three different solutions. The first solution –
marked with asterisks – gives a constant payoff for Carl, and Alice’s and Bob’s
payoffs depend on Carl’s choice of c11 and c̃11. The second one – without asterisks
– is just a permutation of the first one. The third one gives a constant payoff to all
three players.

The first solution, marked with asterisks, gives payoffs for Alice and Bob that
depend on the difference between Carl’s strategy parameters c211 ´ c̃211 and the en-
tanglement parameter (λ111 or λ11). As was done in some of the previous games, it
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is more illustrative to plot Bob’s payoff as a function of $A and the corresponding
entanglement parameter. Figure 5.44 contains the two plots for the GHZ- and the
Bell-like states. From the plots, Alice’s and Bob’s payoff varies from 1{2 “ 0.5 (green
regions) to 3{4 “ 0.75 (yellow regions). The more remarkable feature of the plot
is the decrease of both Alice’s and Bob’s payoff as the entanglement increases, but
the decrease is more pronounced in the Bell-like state than in the GHZ-like state –
see the deeper white region in Figure 5.44(b) in comparison to Figure 5.44(a). That
means that, for this game, the entanglement from the GHZ-like state provides the
players with better payoffs than the Bell-like state. The presence of entanglement,
at any case, helps to reduce the difference between the players payoffs when com-
pared to the non-entangled case, in which Alice’s (Bob’s) payoff $A ($B) can vary
from the minimum to the maximum at the expense of Bob’s (Alice’s) payoff ($A).
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(b) $B ˚ using the Bell-like state.

Fig. 5.44: Density plot showing Bob’s payoff $B as a function of $A and the correspond-
ing entanglement parameter. These payoffs correspond to the Nash equilibrium solutions
marked with a coloured asterisk in Table 5.13. These results are when I “ f15, O “ f7,
and using the GHZ- and Bell-like state.

This was the last case to analyse, which completes the analysis of the 7 different
boolean games, represented by the chosen input and output functions, played on
the triangle using two GHZ-like states and three Bell-like states. As mentioned in
chapter 4 on page 50, the solutions for the other 7 games represented by the other
(non-chosen) functions can be obtained directly with the same payoffs analysed in
this chapter by minimising them instead of maximising them.

Summary of the chapter

This chapter has presented the results for all the different boolean games played in a
triangle when the players use quantum resources in the form of bi-partite (Bell-like
states) and tri-partite (GHZ-like states) entanglement. With this work, the research
questions at the start of this chapter, on page 55, can be answered. The answers
to the research questions, along with some of the conclusions to be drawn from this
research (and its limitations), are found in the next and last chapter, chapter 6, in
section 6.2 .
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CHAPTER 5

The previous chapter, chapter 5 contained all the results for the representative
functions of the games when using the GHZ- and Bell-like states, which was the
main research focus of this dissertation. This chapter gives a short summary of
the highlights for each game and each state, and compares the overall performance
of these two states. Finally, this chapter also focuses on the conclusions from this
dissertation, as well as on the future perspectives and interesting avenues of research.

6.1 Comparison of results
After having all of the results, now it is the time to compare the overall performance
of each state for each of the games.

Figure 6.1 contains all seven plots comparing all the Nash equilibrium
solutions that depended only on the corresponding entanglement parameter (λ111
or λ11, denoted generically as λ in the plots) for all the representative functions
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using the GHZ- and the Bell-like states. That means that some of the solutions
are not plotted there because they did not depend on the entanglement parameter,
or depended only on Carl’s strategy (c11 or c̃11). Each sub-figure in Figure 6.1
collects into a unique plot the corresponding plots for the GHZ- and Bell-like
states, showing all the lines in one unique colour: blue for the solutions using the
GHZ-like state, and red for the Bell-like state. Similarly, Figure 6.2 has all
seven plots comparing the social welfare ($A `$B `$C) of all the Nash equilibrium
solutions, also as a function of the entanglement parameter, for the GHZ-like state
(blue lines) and the Bell-like state (red lines). In the case of the social welfare, the
solutions that depended only on Carl’s strategy (c11 or c̃11) are indeed included as
points at their given λ, and the solutions that depended on both Carl’s strategy
and λ give a social welfare that is a function of only λ, which means that these so-
lutions are also included in Figure 6.2, whereas they were not included in Figure 6.1.
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Fig. 6.1: Comparison between the Nash equilibrium solutions that depended only on the
corresponding entanglement parameter λ for all the representative functions using the
GHZ- and the Bell-like states. The sub-caption identifies the functions of the games I
and O of that plot. These plots amalgamate the corresponding figures for both states and
show all the lines in one unique colour: blue for the GHZ-like state, and red for the Bell-
like state.
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Fig. 6.2: Comparison of the social welfare, i.e. $A ` $B ` $C , of all the Nash equilibrium
solutions for all the representative functions using the GHZ- and the Bell-likes state, as
a function of the corresponding entanglement parameter λ. These plots amalgamate the
corresponding figures of the social welfare for both states and show all the lines in one
unique colour: blue for the GHZ-like state, and red for the Bell-like state.
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Just for reference, the next list indicates for each of the sub-figures in Figure 6.1
and in Figure 6.2 which of the previous figures in chapter 5 these correspond to:

NASH EQUILIBRIUM POINTS (Figure 6.1)

• Figure 6.1(a) (I “ f7, O “ f15, CHSH game) is the combination of Figure 5.3
(GHZ-like) with all lines in blue, and Figure 5.12 (Bell-like) with all lines in
red.

• Figure 6.1(b) (I “ f15, O “ f15) is the same as Figure 5.15.

• Figure 6.1(c) (I “ f7, O “ f8) is the combination of Figure 5.19 (GHZ-like)
with all lines in blue, and Figure 5.25 (Bell-like) with all lines in red.

• Figure 6.1(d) (I “ f7, O “ f10) is the combination of Figure 5.28 (GHZ-like)
with all lines in blue, and all the plots in Figure 5.30 and Figure 5.31 (Bell-like)
with all lines in red.

• Figure 6.1(e) (I “ f9, O “ f7) is the combination of Figure 5.34 (GHZ-like)
with all lines in blue, and the two plots in Figure 5.36 (Bell-like) with all lines
in red.

• Figure 6.1(f) (I “ f9, O “ f10) is the combination of Figure 5.38 (GHZ-like)
with all lines in blue, and Figure 5.40 and Figure 5.42 (Bell-like) with all lines
in red.

• Figure 6.1(g) (I “ f15, O “ f7) is a horizontal line corresponding to the
solution with constant payoff $A “ $B “ $C “ 1{2 for the GHZ- and Bell-like
state in Table 5.13.

SOCIAL WELFARE (Figure 6.2)

• Figure 6.2(a) (I “ f7, O “ f15, CHSH game) is the combination of Figure 5.6
with all lines in blue and Figure 5.13 with all lines in red.

• Figure 6.2(b) (I “ f15, O “ f15) is basically Figure 5.15 when the payoff is
multiplied by 3, since for these solutions, the players’ payoffs are identical.

• Figure 6.2(c) (I “ f7, O “ f8) is the combination of Figure 5.20 with all lines
in blue and Figure 5.26 with all lines in red.

• Figure 6.2(d) (I “ f7, O “ f10) is the combination of Figure 5.29 with all lines
in blue and Figure 5.33 with all lines in red.

• Figure 6.2(e) (I “ f9, O “ f7) is the combination of Figure 5.35 with all lines
in blue and Figure 5.37 with all lines in red.

• Figure 6.2(f) (I “ f9, O “ f10) is the combination of Figure 5.39 with all lines
in blue and Figure 5.43 with all lines in red.

• Figure 6.2(g) (I “ f15, O “ f7) is a new figure after adding the players’ payoffs
$A`$B`$C from Table 5.13, which results in a function only of λ111 (GHZ-like,
blue line) and of λ11 (Bell-like, red line) and a constant payoff of 3{2.

140



CHAPTER 6. CONCLUSIONS

6.2 Conclusions
Looking at the results from chapter 5 and at the comparison between both states
for all games, shown in Figure 6.1 and 6.2, a few general statements can be made:

• The game itself determines which of the two quantum states performs better,
i.e. has Nash equilibrium points that give higher payoffs.

• The considered (restricted) states and strategies do not surpass the classical
bounds of the solutions, i.e. no non-locality was found. This might be related
to the choice here of the quantum states and strategies, since for certain val-
ues of some parameters in the quantum setting, the situation is no different
than using classical mixed strategies; maybe using more-general quantum re-
sources would lead to finding some non-local results. This is only speculation
because, perhaps, the specific combination of probabilities, which come from
the boolean games defined in the triangle, do not gather the conditions to
exhibit non-locality. Clearly more research is necessary in this direction.

• The Bell-like state offers in general a richer situation with many new equilib-
rium points appearing for all games, in contrast to the GHZ-like state, which
for some of the games gives exactly the same equilibrium points as classically
using mixed strategies1.

• Only for the CHSH game and for the game defined by I “ f7 (AND) O “ f8
(NAND), there are certain Nash equilibrium points that give higher payoffs
as the entanglement increases compared to when there is less entanglement or
none at all2. Some of these better-with-more-entanglement equilibrium points
exist for the whole range of the entanglement parameter (λ111 or λ11) and
some others only for a certain range. In some other games, the presence of
entanglement might help to reduce the differences between the players’ payoffs,
but sometimes it does not.

Continuing with the tradition in this dissertation of having lots of tables, a very
short summary of the results for each game for both states is found in Table
6.1, where the state whose solutions give, in general, higher payoffs is highlighted
in green.

The research conducted in this dissertation provides the answers to the research
questions on page 55 in chapter 5:

1Keep in mind the fundamental difference in the correspondence between the quantum and
the classical mixed strategies; the quantum strategies imply performing (maybe entangled) mea-
surements on a shared quantum state, while the mixed strategies could be implemented with just
tossing a coin – biased coin when necessary.

2Only these two games of the 7 analysed here have some equilibrium points offering a higher-
than-classical payoff thanks to entanglement. Nevertheless, remember that there were other 7
games to be analysed defined by the non-chosen representative functions – not marked in bold
on pages 45-47 –, whose payoffs added to 1 with the payoffs of the representative functions, i.e.
the games fully analysed here. That meant that the Nash equilibrium points for these 7 non-
chosen representative games can be obtained directly from the payoffs of the 7 games fully anal-
ysed here by just minimising instead of maximising – see the long paragraph on page 50 for the
justification. In the results for the 7 remaining games, not analysed here, there could be some
equilibrium points showing the same payoff-higher-than-classical behaviour.
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1) What are the (new) Nash equilibrium points and how do they compare to the
classical ones using mixed strategies? See all the results in section 5.2 in
chapter 5.

2) Do the players prefer to use tri-partite or bi-partite (quantum) resources? It
depends on the game. See the green-highlighted states in the summary table,
Table 6.1.

3) Which Nash equilibrium solutions give the highest social welfare for the tri-
partite and bi-partite case? See the comparison in Figure 6.2 for each game,
and the green-highlighted states in Table 6.1.

Game Summary

I “ f7, O “ f15
AND - XOR

(CHSH game)

GHZ: same equilibrium points as classically. Bell: richer
situation in terms of many new equilibrium points, but
give lower payoffs than the GHZ.

I “ f15, O “ f15
XOR - XOR

Same equilibrium points as classically for GHZ and Bell.
The entanglement of the GHZ-like state is better because
it decreases less the payoffs than Bell-like.

I “ f7, O “ f8
AND - NAND

Same number of points for the GHZ and Bell, but the
entanglement in the GHZ gives higher payoffs.

I “ f7, O “ f10
AND - IMPLY

GHZ: same equilibrium points as classically even though
the (quantum) payoff function is very different. Bell:
very rich situation with many equilibrium points, and
they give higher payoffs than the GHZ.

I “ f9, O “ f7
NIMPLY - NAND

Same number of total points for the GHZ and Bell, and
different than classical, but the entanglement in the Bell
gives slightly higher payoffs.

I “ f9, O “ f10
NIMPLY - IMPLY

GHZ: new equilibrium points different than classical.
Bell: richest situation with the highest number of new
equilibrium points of all games, and they give higher pay-
offs than the GHZ.

I “ f15, O “ f7
XOR - AND

Same equilibrium points as classically for GHZ and Bell.
The entanglement of the GHZ-like state is better because
it decreases less the payoffs than the Bell-like state.

Tab. 6.1: Summary of the results for each game, represented by their input I “ f˚ and
output functions O “ f˚ – identified by their gate names, and whose boolean expressions
are found in Table 4.1 in chapter 4 – and for each quantum state: the GHZ-like and the
Bell-like state. The quantum state highlighted in green would be the “winner” when com-
paring the performance of both states.
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Even though the research conducted was interesting, it has two main sources of
limitations:

1) Difference between the classical and quantum setting. As mentioned
previously, the results in chapter 4 for the classical part stem from the players
using mixed strategies (probabilistic mixture of pure strategies). This means
that the players are not using any source of advice in the classical setting;
whereas in the quantum results from chapter 5, the players are indeed using
a quantum state to inform their output bits. Naturally, this difference in
the setting leads to different qualitative behaviour, which explains why the
quantum setting gives, in some of the games, more – and different – Nash
equilibrium points than classically. Even though for certain non-entangled
states the quantum results “reduce” to the classical ones, a direct comparison
without warning is not correct. A proper comparison would require obtaining
first the classical results when the players use some classical source of advice,
and compare them with the ones using a quantum source of advice, i.e. some
quantum state and measurements.

2) Restrictive measurement settings. The measurement operators tΠx,au,
tΠy,bu, tΠz,cu used in this research are a small subset of projection-valued
measures (PVMs). The next step would be using a generic set of PVMs, and
ultimately climb up to full generality by considering a generic set of positive
operator-valued measures (POVMs). Expanding the allowed set of measure-
ments would lead perhaps to different results.

The main conclusion that can be drawn from this dissertation is that the pro-
posed research, even with its many assumptions/restrictions/limitations, offers
an interesting and rich situation worth exploring, since comparing two
different types of quantum resources performing tasks (or playing games) in
a quantum-network setting is crucial in the present and future of quan-
tum information.

6.3 Future perspectives
In the results of this dissertation one very interesting question arose that was
not answered due to the lack of time, but that would be worth exploring next.
The question appeared for the Bell-like state in the CHSH game (I “ f7, O “ f15)
and also in the game defined by I “ f7, O “ f10. In both games, one of the
Nash equilibrium solutions was s˚ “ tuB1{2, uB1{2, uB1{2, uB1{2, uB1{2, uB1{2u 3,
which reduced to the the classical solution s˚ “ t1{2, 1{2, 1{2, 1{2, 1{2, 1{2u at
λ11 “ 0, 1, 1{

?
2. However, the corresponding players’ payoffs were different

for λ11 “ 0, 1 and for λ11 “ 1{
?
2. As mentioned in the analysis on page

70 and on page 101, that might open the possibility of (maybe) being able to
distinguish if the strategy s˚ “ t1{2, 1{2, 1{2, 1{2, 1{2, 1{2u was generated
with a quantum device using a pure Bell state or with a classical/unentangled
device. The next task would be to investigate if there exist classical correlated
strategies that reduce to s˚ “ t1{2, 1{2, 1{2, 1{2, 1{2, 1{2u and give the same payoff

3See equation (5.14) on page 69 for the specific expression of uB1pλ11q, which was also plot-
ted in Figure 5.7.
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as s˚ “ tuB1{2, uB1{2, uB1{2, uB1{2, uB1{2, uB1{2u for λ11 “ 1{
?
2. If they do

not exist, then this result would be encompassed into the vast and useful field of
self-testing.

It would be natural to gap the limitations of this research – described above
– by, firstly, properly studying the games classically when the players use indeed
some classical source of advice, and not only mixed strategies. The second step
would be studying the games in the quantum setting when the players use a generic
set of measurements (POVMs). Lastly and more importantly, it would be very
useful to have a more-proper characterisation of the payoffs – in equation (4.8) on
page 33 – only in terms of conditional probabilities, so that these combinations of
probabilities can be analysed, leading maybe to general statements; as is typically
done for local and non-local correlations in general local hidden-variables theories
and non-signalling theories, e.g. [86, 88].

The previous two paragraphs mentioned one immediate avenue to be explored
and addressing the limitations of this research, but since this dissertation mixed
the sub-fields of quantum games, quantum networks, and quantum resources – see
the diagram of the author’s inspiration on page 55 – it gives infinite possibilities
to extend this work. Just to name a few in each area:

• Quantum resources : 1q Do the same analysis but considering a more-generic
quantum strategy with more parameters than the ones considered – in equa-
tions (5.5) and (5.8) on page 57 – to see if there exist better strategies. 2q

Do the same analysis of the Nash equilibrium points for all the games with a
W-like state – see equation (3.9) on page 28 – , and maybe add some asymme-
try in the used state for the players. 3q Investigate if there are states (in any
dimension) that are optimal, and if such states achieve a higher payoff than
the classical bounds (non-locality).

• Quantum games : 1q Choose a different input/output boolean function for each
game instead of only two functions I, O for all games as presented here, i.e.
I1, O1 (game between Alice and Bob); I2, O2 (game between Bob and Carl);
I3, O3 (game between Carl and Alice). 2q Use input/output function of the
3 input/output variables at the same time, e.g. Ipx, y, zq and Opa, b, cq, and
from these define pairwise – to maintain the triangle network structure – some
winning conditions for each game.

• Quantum networks : 1q Consider the situation of a square network with an
extra player. 2q Have one player playing more games than the others, e.g.
remove the game between Bob and Carl, or have a central player playing 2 or
3 games.

The focus of this dissertation and of these possible extensions is purely
theoretical, just for the sake of knowledge, so one important task is finding
practical applications of the results in this dissertation, most likely to be
found within quantum information and maybe quantum cryptography. In any case,
regardless of the possible applicability or not of the research conducted, this disser-
tation serves as a significant step for the author in this research direction.
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[100] K. Bolonek-Lasoń. “Examining the effect of quantum strategies on symmetric
conflicting interest games”. In: International Journal of Quantum Information
15.05 (2017), p. 1750033. doi: 10.1142/S0219749917500332.

[101] Wolfram Research, Inc. Mathematica, Version 12.0. Champaign, IL, 2019.

[102] S. Boyd and L. Vandenberghe. Convex Optimization. https : / / web .
stanford.edu/~boyd/cvxbook/ (accessed Mar 2024). Cambridge Univer-
sity Press, (2004). doi: 10.1017/CBO9780511804441.

151

https://doi.org/10.1103/PhysRevA.84.062107
https://doi.org/10.1103/PhysRevA.84.062107
https://doi.org/10.1017/CBO9780511794216
https://doi.org/10.1002/lpor.202100219
https://doi.org/10.1103/physrevlett.123.140401
https://doi.org/10.1103/physrevlett.123.140401
https://doi.org/10.1103/PRXQuantum.3.030342
https://doi.org/10.1103/physreva.98.022113
https://doi.org/10.1103/physreva.103.l060401
https://doi.org/10.1103/physrevlett.125.240505
https://doi.org/https://doi.org/10.1002/qute.202000123
https://doi.org/https://doi.org/10.1002/qute.202000123
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1038/s41566-018-0342-x
https://doi.org/10.1103/PhysRevLett.114.020401
https://doi.org/10.1142/S0219749917500332
https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~boyd/cvxbook/
https://doi.org/10.1017/CBO9780511804441


Appendix A

A.1 Optimisation of the angles for the CHSH game
The winning probability Probpwinq, in the next calculation shortened as Pwin, of the
CHSH game in equation (2.21) in chapter 2 is:

Pwin “
1

4

“

cos2pα0 ´ β0q ` cos2pα0 ´ β1q ` cos2pα1 ´ β0q ` sin2
pα1 ´ β1q

‰

(A.1)

To optimise this winning probability, the partial derivatives are needed:

BPwin

Bα0

“ ´
1

2
cospβ0 ´ β1q sinp2α0 ´ β0 ´ β1q (A.2)

BPwin

Bα1

“
1

2
sinpβ0 ´ β1q cosp2α1 ´ β0 ´ β1q (A.3)

BPwin

Bβ0
“ ´

1

2
cospα0 ´ α1q sinp2β0 ´ α0 ´ α1q (A.4)

BPwin

Bβ1
“

1

2
sinpα0 ´ α1q cosp2β1 ´ α0 ´ α1q (A.5)

where some trigonometric identities were used to write the partial derivatives as
products. The partial derivatives must vanish1, which implies the following relations:

β0 ´ β1 “ π
2
p2n1 ` 1q (A.6)

BPwin
Bα0

“ 0

2α0 ´ β0 ´ β1 “ πn2 (A.7)

β0 ´ β1 “ πk1 (A.8)
BPwin
Bα1

“ 0

2α1 ´ β0 ´ β1 “ π
2
p2k2 ` 1q (A.9)

1To shorten the notation for the next calculation, the name of the variables at the crit-
ical points will be the same as the variables themselves. For instance, BPwin

Bα0
“ 0 needs to

be read as the partial derivative with respect to variable α0 evaluated at the critical angles
cr “ tαcr0 , α

cr
1 , β

cr
0 , β

cr
1 u, usually denoted by BPwin

Bα0

ˇ

ˇ

ˇ

cr
“ 0.
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α0 ´ α1 “ π
2
p2m1 ` 1q (A.10)

BPwin
Bβ0

“ 0

2β0 ´ α0 ´ α1 “ πm2 (A.11)

α0 ´ α1 “ πl1 (A.12)
BPwin

Bβ1
“ 0

2β1 ´ α0 ´ α1 “ π
2
p2l2 ` 1q (A.13)

where n1, n2, k1, k2,m1,m2, l1, l2 P Z.

The next step is finding all the possible sets of solutions such that all four deriva-
tives vanish simultaneously. Not all combinations are possible, for example, if equa-
tion (A.6) holds, then equation (A.8) cannot hold, so equation (A.9) must hold. The
specific steps to obtain all the (compatible) solutions are skipped because it is a long
tedious calculation. In terms of the free angle α0, the solutions tθu ” tα0, α1, β0, β1u
that make all derivatives in equations (A.2)–(A.5) vanish are:

tθp1q
u “tα0, α0 ´

π

2
p2m1 ` 1q, α0 `

π

2
p2n1 ` l2 ´ m1 ` 1q, α2 `

π

2
pl2 ´ m1qu

(A.14)

tθp2q
u “tα0, α0 ´ l1π, α0 `

π

2
pm2 ´ l1q, α0 ´

π

2
p3l1 ` 2k2 ` m2 ` 1qu (A.15)

tθp3q
u “tα0, α0 ´

π

2
p2m1 ` 1q, α0 `

π

2
p2k1 ` l2 ´ m1q, α0 `

π

2
pl2 ´ m1qu (A.16)

tθp4q
u “tα0, α0 ´ πpn2 ` m2 ´ k1q, α0 `

π

2
pk1 ´ n2q, α0 ´

π

2
pk1 ´ n2qu (A.17)

tθp5q
u “tα0, α0 `

π

4
p2k2 ´ 2n2 ` 1q, α0 `

π

8
p2k2 ´ 2n2 ` 4m2 ` 1q,

α0 ´
π

8
p2k2 ` 6n2 ` 4m2 ` 1qu (A.18)

Substituting the solutions in equations (A.14)-(A.18) into the winning probabil-
ity in equation (A.1) and using some trigonometric identities, the extreme values
are:

Pwinptθp1q
uq “

1

4

“

2 ` p´1q
l2

‰

with m1 “ n1 “ 0 (A.19)

Pwinptθp2q
uq “

1

4
r2 ` p´1q

m2s with l1 “ k2 “ 0 (A.20)

Pwinptθp3q
uq “

1

4

“

2 ` p´1q
l2

‰

with m1 “ k1 “ 0 (A.21)

Pwinptθp4q
uq “

1

4
r2 ` p´1q

n2s with m2 “ k1 “ 0 (A.22)
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Pwinptθp5q
uq “

1

4

”

2 ` p´1q
m2

?
2
ı

with k2 “ n2 “ 0 (A.23)

where, to simplify the expressions, some of the free parameters
n1, n2, k1, k2,m1,m2, l1, l2 P Z were set to 0.

Clearly, the global maximum and minimum of the winning probability is achieved
with tθp5qu in equation (A.23). The maximum is p2 `

?
2q{4 « 0.853 and the

minimum is p2 ´
?
2q{4 « 0.146. The canonical choice of angles for the maximum

corresponds to choosing m2 “ k2 “ n2 “ 0, which translates into angles tθ
p5q
maxu “

tα0, α0 ` π
4
, α0 ` π

8
, α0 ´ π

8
u; for the minimum, the choice m2 “ ´1 and k2 “ n2 “ 0

gives some minimising angles tθ
p5q

minu “ tα0, α0 ` π
4
, α0 ´ 3π

8
, α0 ` 3π

8
u.

A.2 3-tangle of the GHZ and W states
This section contains a detailed computation of the 3-tangle τABC of a GHZ-like
state and a W-like state. Remember that the tangle between parties A and B is
computed from the density matrix ρAB:

τAB “ maxp0,
?
η1 ´

?
η2 ´

?
η3 ´

?
η4q

2 (A.24)

with ηj being the eigenvalues in descending order of the matrix ρABρ̃AB, where ρ̃AB “

pσy b σyqρ˚
ABpσy b σyq; σy is the Pauli matrix, and ρ˚

AB denotes only conjugation of
ρAB. The 3-tangle is then computed as:

τABC “ τApBCq ´ τAB ´ τAC (A.25)

where, for pure states, τApBCq “ 4 detpρAq. With all these definitions, the only
ingredients needed to compute the τABC of a tri-partite pure state are the reduced
density matrices ρAB, ρAC , and ρA 2.

A.2.1 GHZ-like state

The chosen GHZ-like state is |GHZy “ α |000y ` β |111y, with |α|2`|β|2 “ 1 3. The
first step is computing the density matrix ρABC “ |GHZy xGHZ|, which takes a
very simple form:

ρABC “|α|2 |000y x000| `|β|2 |111y x111| ` αβ˚
|000y x111| ` βα˚

|111y x000| (A.26)

The reduced density matrices take a simple form too:

ρAB “ TrCpρABCq “|α|2 |00y x00| `|β|2 |11y x11| “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

|α|2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 |β|2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A.27)

2Remember that τABC does not depend on the chosen party. The 3-tangle is an invariant
and could be computed using also the reduced density matrices ρBA, ρBC , and ρB ; or ρCA, ρCB ,
and ρC .

3It has been chosen to write the state using two parameters α and β and not with α and
a

1´|α|2 to make evident that β can be purely imaginary too, since it is usually assumed that
a

1´|α|2 is a real number.

154



APPENDIX A.

ρAC “ TrBpρABCq “|α|2 |00y x00| `|β|2 |11y x11| “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

|α|2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 |β|2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A.28)

ρA “ TrABpρABCq “|α|2 |0y x0| `|β|2 |1y x1| “

¨

˚

˝

|α|2 0

0 |β|2

˛

‹

‚

(A.29)

From ρA in equation (A.29), the tangle between A and BC can directly be
computed: τApBCq “ 4 detpρAq “ 4|α|2|β|2 “ 4|α|2p1´|α|2q, where the normalisation
condition has been used |β|2 “ 1´|α|2.

The next step to compute τAB needs the flipped density matrix ρ̃AB “ pσy b

σyqρ˚
ABpσy bσyq. The reduced density matrix is diagonal ρAB “ diagr|α|2, 0, 0, |β|2s,

and the effect of the flipping operators σy b σy over a diagonal matrix with di-
agonal entries a11, a22, a33, a44 is easily explained: it flips the order of the diago-
nal. That is, the new diagonal is a44, a33, a22, a11. Taking this into account, then
ρ̃AB “ diagr|β|2, 0, 0, |α|2s. Finally, the ρABρ̃AB can be easily computed, whose
result is:

ρABρ̃AB “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

|α|2|β|2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 |α|2|β|2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A.30)

The eigenvalues of ρABρ̃AB are clearly η1 “ η2 “|α|2|β|2; η3 “ η4 “ 0, which,
by the definition of the tangle in equation (A.24), implies τAB “ 0. The tangle
between subsystem AB vanishes, which means there is no entanglement; they
share a separable state. This can be seen directly from the density matrix in
equation (A.27): ρAB “|α|2 |00y x00| `|β|2 |11y x11| “|α|2 |ϕ1y xϕ1| `|β|2 |ϕ2y xϕ2|,
where |ϕ1y “ |0yA b |0yB and |ϕ2y “ |1yA b |1yB. This result implies the fol-
lowing: upon measurement of subsystem AB, state |ϕ1y “ |0yA b |0yB will be
measured with probability |α|2, and state |ϕ2y “ |1yA b |1yB will be measured
with probability |β|2 “ 1´|α|2. Clearly, state |ϕ1y is separable and so is state
|ϕ2y, even though the outcomes for A and B will be correlated. This means that
if A measures state |0y (|1y), B will measure |0y (|1y) too with probability one. In
this sense, the (classical) correlation is there but the subsystem AB is not entangled.
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The subsystem AC has the same results as subsystem AB because both reduced
density matrices in equations (A.27) and (A.28) are identical: τAC “ τAB “ 0. The
3-tangle of the GHZ-like state is:

τABC “ τApBCq ´ τAB ´ τBC “ 4|α|
2
p1 ´ |α|

2
q (A.31)

It is interesting to note that τABC and τApBCq, which are the same for this GHZ-
like state, τABC “ τApBCq “ 4|α|2p1´|α|2q is identical to the tangle of a (bi-partite)
Bell-like state. That is, the tangle of the 2-qubit state |ψy “ α |00y ` β |11y is also
τAB “ 4|α|2p1´|α|2q. This means that the GHZ-like state has the same tri-partite
entanglement (measured with τABC) as the bi-partite entanglement (measured with
τAB) in a Bell-like state.

The maximum value of the τABC for the GHZ-like state is 1; achieved when
|α| “ 1{

?
2, which, up to relative phases, corresponds to the standard GHZ state

|GHZy “ p|000y ` |111yq{
?
2.

A.2.2 W-like state

The chosen W-like state is: |W y “ α |100y `β |010y `γ |001y, and by normalisation,
|α|2`|β|2`|γ|2 “ 1. As before, the first step is computing the density matrix ρABC “

|W y xW |, which is:

ρABC “|α|2 |100y x100| ` αβ˚
|100y x010| ` αγ˚

|100y x001|

` βα˚
|010y x100| `|β|2 |010y x010| ` βγ˚

|010y x001|

` α˚γ |001y x100| ` β˚γ |001y x010| `|γ|2 |001y x001| (A.32)

The reduced density matrices are:

ρAB “|α|2 |10y x10| ` αβ˚
|10y x01| ` βα˚

|01y x10| `|β|2 |01y x01| `|γ|2 |00y x00|

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

|γ|2 0 0 0

0 |β|2 α˚β 0

0 β˚α |α|2 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A.33)

ρAC “|α|2 |10y x10| ` αγ˚
|10y x01| ` γα˚

|01y x10| `|β|2 |00y x00| `|γ|2 |01y x01|

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

|β|2 0 0 0

0 |γ|2 αγ˚ 0

0 γα˚ |α|2 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A.34)
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ρA “|α|2 |1y x1| ` p|β|2`|γ|2q |0y x0| “

¨

˚

˝

|β|2`|γ|2 0

0 |α|2

˛

‹

‚

(A.35)

The tangle between A and BC is τApBCq “ 4 detpρAq “ 4|α|2p|β|2`|γ|2q.

The flipped density matrix ρ̃AB is:

ρ̃AB “ pσy b σyqρ˚
ABpσy b σyq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0

0 |α|2 α˚β 0

0 β˚α |β|2 0

0 0 0 |γ|2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A.36)

The product ρABρ̃AB is:

ρABρ̃AB “ pσy b σyqρ˚
ABpσy b σyq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0

0 2|α|2|β|2 2|β|2α˚β 0

0 2|α|2αβ˚ 2|α|2|β|2 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A.37)

The eigenvalues of ρABρ̃AB are: η1 “ 4|α|2|β|2 and η2 “ η3 “ η4 “ 0. Then,
the tangle between subsystem A and B is τAB “ 4|α|2|β|2. Since the reduced
density matrix ρAC in equation (A.34) can be obtained from ρAB in equation (A.33)
by interchanging β and γ, the result for τAC is straightforward from τAB with that
swap: τAC “ 4|α|2|γ|2.

With these results for the tangles, the 3-tangle of the W-like state is 0 regard-
less of the parameters α, β, γ:

τABC “ τApBCq ´ τAB ´ τBC “ 4|α|2p|β|2`|γ|2q ´ 4|α|2|β|2 ´ 4|α|2|γ|2 “ 0 (A.38)
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B.1 Convex optimisation
This section has been extracted from the book about convex optimisation in [102]
and it follows a similar notation. An objective (real) function fpxq is to be minimised
subject to some inequality constraints defined by gipxq ď 0, and some equality
constraints defined by hjpxq “ 0. In the standard form, this optimisation problem
is usually written as:

minimize
x

fpxq

subject to (B.1)
gipxq ď 0, i “ 1, ...,m

hjpxq “ 0, j “ 1, ..., p

where x P Rn and f : D Ď Rn Ñ R. The optimal value of this problem will be
denoted as p‹. If instead of minimising, the objective is maximising a function,
then it is enough to change the sign of the function to turn it into a minimisation
problem, i.e. max pfpxqq “ min p´fpxqq

The problem defined in (B.1) is said to be a convex optimisation problem when
fpxq and gipxq are convex functions and hjpxq are linear. Many of the convex
optimisation problems can be solved using well-established algorithms that run in
polynomial time.

The idea behind optimising a function with constraints is to transform it into
optimising a weighted function that incorporates the constraints. This weighted
function is the Lagrangian of the problem stated in (B.1). The Lagrangian is defined
as:

Lpx,λ,νq “ fpxq `

m
ÿ

i“1

λigipxq `

p
ÿ

j“1

νjhjpxq (B.2)

where λi and νj are known as the Lagrange multipliers of the inequality and equality
constraints gipxq ď 0 and hjpxq “ 0, respectively. The minimum value of the
Lagrangian over x, for λ P Rm and ν P Rp is called the dual function gpλ,νq “

inf
xPD

Lpx,λ,νq 1. In the case of λi ě 0 and for any value of νj, the dual function
gpλ,νq provides a lower bound of the optimal value of the primal problem in (B.1),

1The dual function gpλ,νq should not be confused with the functions of the inequality con-
straints gipxq
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i.e. gpλ,νq ď p‹ for λi ě 0. This lower bound can also be optimised and written as
an optimisation problem in standard form:

maximise
λ,ν

gpλ,νq

subject to λi ě 0
(B.3)

This optimisation problem in (B.3) is referred to as the dual problem of the
primal problem in (B.1). Even if the primal problem is not convex, the dual problem
is indeed convex. The reason is that the function to maximise gpλ,νq is concave
since it is the pointwise infimum of a family of affine functions of pλ,νq, and the
constraints are convex, therefore the optimisation (dual) problem in (B.3) can be
solved using standard techniques. The optimum value of the dual problem in (B.3),
denoted as d‹, is the best lower bound possible from the Lagrange dual function
of the original – possibly non-convex – (primal) problem in (B.1), i.e. d‹ ď p‹.
This relation is called weak duality. Strong duality is when d‹ “ p‹, that is, the
optimal solution of the dual problem gives exactly the optimal solution of the
primal problem. Strong duality is also phrased in the literature as a problem with
zero duality gap. For convex problems, that is, when fpxq and gipxq are convex
functions and hjpxq linear, strong duality usually holds – but not always.

There are cases and conditions under which strong duality can be proven;
such conditions are called constraint qualifications. One of the simplest of these
constraints comes from Slater’s theorem. Slater’s theorem states that strong duality
holds if the problem is convex and the next condition (Slater’s condition) holds:
if there exists a relative interior x P relint D such that gipxq ă 0 , i “ 1, ...,m ,
where the equality constraints are Ax “ b, previously denoted generically with
hjpxq. Slater’s condition says that the feasible region must have an interior point,
that is, a point for which the equality constraints Ax “ b are satisfied and the
inequality constraints strictly hold.

When strong duality holds and the fpxq, gipxq, hjpxq are differentiable, it can be
proven that the optimal value of the primal and dual problem, achieved by the pairs
x‹, pλ‹, ν‹q, must fulfill certain conditions. These are known as the Karush-Kuhn-
Tucker conditions (KKT conditions), which are:

1q Primal feasibility: gipx
‹
q ď 0 i “ 1, ...,m

hjpx
‹
q “ 0 j “ 1, ..., p

2q Dual feasibility: λ‹
i ě 0 i “ 1, ...,m (B.4)

3q Complementary slackness: λ‹
i gipx

‹
q “ 0 i “ 1, ...,m

4q Stationarity: ∇fpx‹
q `

m
ÿ

i“1

λ‹
i∇gipx‹

q `

p
ÿ

j“1

ν‹
j∇hjpx‹

q “ 0

where the last equation is just the gradient of the Lagrangian in equation (B.2)
∇L “ 0.
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The KKT conditions generalise the method of Lagrange multipliers used to op-
timise a function with only equality constraints. If the primal problem is convex,
then any point satisfying the KKT conditions in the equations in (B.4) is optimal
for the primal and dual problem, with zero duality gap (strong duality). In other
words, for a convex problem, the KKT conditions are sufficient to find the optimal
solution.

B.2 Nash equilibrium and convex optimisation
Remember that the condition for a Nash Equilibrium to happen is that no player
wants to unilaterally deviate from it given that the other players do not deviate.
Mathematically, a strategy profile s˚ “ ts˚

1 , s
˚
2 , ..., s

˚
nu is a Nash equilibrium if:

$ips
˚
i , s

˚
´iq ě $ips

1
i, s

˚
´iq @i, where si denotes player i’s strategy and s´i the strategies

of all the players except player i’s.

Then, in this case with three players, Alice, Bob and Carl must maximise
their own payoffs as a function of their own strategies, denoted as $App0|0, p0|1q,
$Bpq0|0, q0|1q, and $Cpr0|0, r0|1q, respectively. For Alice, this maximisation prob-
lem can be written in standard form:

maximise
p0|0,p0|1

$App0|0, p0|1q

subject to ´ p0|0 ď 0, (B.5)
´ p0|1 ď 0,

´ 1 ` p0|0 ď 0,

´ 1 ` p0|1 ď 0

This problem is convex2 and fulfills Slater’s condition3, which implies that strong
duality holds. This fact means that this problem can be solved using the techniques
explained in the previous section B.1. To do that, the Lagrangian of the primal
problem stated in (B.5) is:

LApp0|0, p0|1q “ ´$A ´ λ1p0|0 ´ λ2p0|1 ` λ3p´1 ` p0|0q ` λ4p´1 ` p0|1q (B.6)

where the minus sign in front of $A comes from the fact that it is a maximisation
problem, instead of the usual minimisation. The objective is to maximise LA with
respect to variables p0|0 and p0|1.

The corresponding KKT conditions encompassed in (B.4), which, in this case,
are sufficient to find optimality, are:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.7)

2The function to optimise $App0|0, p0|1q and the inequality constraints g1pp0|0q “ ´p0|0 ď 0,
g2pp0|1q “ ´p0|1 ď 0, g3pp0|0q “ ´1` p0|0 ď 0, g4pp0|1q “ ´1` p0|1 ď 0 are both convex functions,
that is, they all fulfill the convexity condition: for any pair of points x,y P D and any 0 ď µ ď 1
Ñ fpµx ` p1 ´ µqyq ď µfpxq ` p1 ´ µqfpyq. In fact, they are all affine functions, which means
they are both convex and concave.

3In this case, there are no equality constraints which implies that the feasible region has an
interior point, i.e. a point for which the inequality constraints strictly hold gipxq ă 0.
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2q λ̃1 ě 0, λ̃2 ě 0, λ̃3 ě 0, λ̃4 ě 0, (B.8)

3q p0|0λ̃1 “ 0, p0|1λ̃2 “ 0, p1 ´ p0|0qλ̃3 “ 0, p1 ´ p0|1qλ̃4 “ 0 (B.9)

4q ´
B$A
Bp0|0

´ λ̃1 ` λ̃3 “ 0 (B.10)

´
B$A
Bp0|1

´ λ̃2 ` λ̃4 “ 0 (B.11)

By combining equations (B.9), (B.10) and (B.11), it is simple to reduce the
system of equations by eliminating the Lagrange multipliers4 λ̃i so that the equations
depend only on p0|0 and p0|1:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.12)

2q λ̃1 “ ´p1 ´ p0|0q
B$A
Bp0|0

ě 0 (B.13)

λ̃2 “ ´p1 ´ p0|1q
B$A
Bp0|1

ě 0 (B.14)

λ̃3 “ p0|0
B$A
Bp0|0

ě 0 (B.15)

λ̃4 “ p0|1
B$A
Bp0|1

ě 0 (B.16)

The Nash equilibrium solutions s˚ “ tp˚
0|0, p

˚
0|1, q

˚
0|0, q

˚
0|1, r

˚
0|0, r

˚
0|1u are obtained

from the solutions to equations (B.12)-(B.16) and the analogous equations for Bob
and Carl.

B.2.1 Nash Equilibria for boolean games in a triangle using
classical strategies

This section gives the KKT conditions in equations (B.12)-(B.16) for Alice’s payoff
for all the representative functions when the players are using mixed (classical)
strategies.

• I “ f7, O “ f15, – CHSH game –, Alice’s payoff in equation (4.34) on page
45 is:

$App0|0, p0|1q “
1

4

“

3 ´ p2p0|0 ` q0|0 ` r0|0q ` pp0|0 ` p0|1qpq0|0 ` r0|0q

`pp0|0 ´ p0|1qpq0|1 ` r0|1q
‰

(B.17)

4These Lagrange multipliers have been denoted with a tilde λ̃i instead of λ‹
i because, in gen-

eral for non-convex problems, the KKT conditions in (B.4) might not be sufficient, though they
are necessary conditions. In this case, the problem is convex and strong duality holds, hence
these λ̃i provide the optimal solution.
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In this particular case, after computing the partial derivatives of $A, the KKT
conditions are:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.18)

2q λ̃1 “ ´p1 ´ p0|0q
1

4

“

´2 ` q0|0 ` q0|1 ` r0|0 ` r0|1

‰

ě 0 (B.19)

λ̃2 “ ´p1 ´ p0|1q
1

4

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.20)

λ̃3 “ p0|0
1

4

“

´2 ` q0|0 ` q0|1 ` r0|0 ` r0|1

‰

ě 0 (B.21)

λ̃4 “ p0|1
1

4

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.22)

Analogous equations apply for Bob and Carl by performing an appropriate per-
mutation of players. The solutions that fulfill these equations (B.18)-(B.22) for all
players are found in Table 4.4 on page 51.

• I “ f15, O “ f15, Alice’s payoff in equation (4.36) on page 45 is:

$A “
1

4

“

2 ` pp0|0 ´ p0|1qpq0|0 ` r0|0 ´ q0|1 ´ r0|1q
‰

(B.23)

The KKT conditions are:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.24)

2q λ̃1 “ ´p1 ´ p0|0q
1

4

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.25)

λ̃2 “ p1 ´ p0|1q
1

4

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.26)

λ̃3 “ p0|0
1

4

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.27)

λ̃4 “ ´p0|1
1

4

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.28)

The results are found in Table 4.5 on page 51.

• I “ f7, O “ f8, Alice’s payoff in equation (4.39) on page 45 is:

$A “
1

8

“

6 ´ 2p2p0|0 ` q0|0 ` r0|0q ` pp0|0 ` p0|1qpq0|0 ` r0|0q

`pp0|0 ´ p0|1qpq0|1 ` r0|1q
‰

(B.29)
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The KKT conditions are:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.30)

2q λ̃1 “ ´p1 ´ p0|0q
1

4

“

´4 ` q0|0 ` q0|1 ` r0|0 ` r0|1

‰

ě 0 (B.31)

λ̃2 “ ´p1 ´ p0|1q
1

4

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.32)

λ̃3 “ p0|0
1

4

“

´4 ` q0|0 ` q0|1 ` r0|0 ` r0|1

‰

ě 0 (B.33)

λ̃4 “ p0|1
1

4

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.34)

The results are found in Table 4.6 on page 52.

• I “ f7, O “ f10, Alice’s payoff in equation (4.41) on page 46 is:

$A “
1

8

“

2 ` 2pp0|0 ` q0|0q ´ pp0|0 ` p0|1qpq0|0 ` r0|0q

´pp0|0 ´ p0|1qpq0|1 ` r0|1q
‰

(B.35)

The KKT conditions are:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.36)

2q λ̃1 “ p1 ´ p0|0q
1

8

“

´2 ` q0|0 ` q0|1 ` r0|0 ` r0|1

‰

ě 0 (B.37)

λ̃2 “ p1 ´ p0|1q
1

8

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.38)

λ̃3 “ ´p0|0
1

8

“

´2 ` q0|0 ` q0|1 ` r0|0 ` r0|1

‰

ě 0 (B.39)

λ̃4 “ ´p0|1
1

8

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.40)

The results are found in Table 4.7 on page 52.

• I “ f9, O “ f7, Alice’s payoff in equation (4.42) on page 46 is:

$A “
1

8

“

2 ` 2pp0|0 ` p0|1 ` q0|1 ` r0|0q ´ pp0|0 ` p0|1qpq0|1 ` r0|0q

´pp0|0 ´ p0|1qpq0|0 ´ r0|1q
‰

(B.41)

The KKT conditions are:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.42)
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2q λ̃1 “ p1 ´ p0|0q
1

8

“

´2 ` q0|0 ` q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.43)

λ̃2 “ ´p1 ´ p0|1q
1

8

“

2 ` q0|0 ´ q0|1 ´ r0|0 ´ r0|1

‰

ě 0 (B.44)

λ̃3 “ ´p0|0
1

8

“

´2 ` q0|0 ` q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.45)

λ̃4 “ p0|1
1

8

“

2 ` q0|0 ´ q0|1 ´ r0|0 ´ r0|1

‰

ě 0 (B.46)

The results are found in Table 4.8 on page 52.

• I “ f9, O “ f10, Alice’s payoff in equation (4.45) on page 46 is:

$A “
1

8

“

2 ` 2pp0|1 ` q0|1q ´ pp0|0 ` p0|1qpq0|1 ` r0|0q

´pp0|0 ´ p0|1qpq0|0 ´ r0|1q
‰

(B.47)

The KKT conditions are:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.48)

2q λ̃1 “ p1 ´ p0|0q
1

8

“

q0|0 ` q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.49)

λ̃2 “ ´p1 ´ p0|1q
1

8

“

2 ` q0|0 ´ q0|1 ´ r0|0 ´ r0|1

‰

ě 0 (B.50)

λ̃3 “ ´p0|0
1

8

“

q0|0 ` q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.51)

λ̃4 “ p0|1
1

8

“

2 ` q0|0 ´ q0|1 ´ r0|0 ´ r0|1

‰

ě 0 (B.52)

The results are found in Table 4.9 on page 53.

• I “ f15, O “ f7, Alice’s payoff in equation (4.46) on page 47 is:

$A “
1

8

“

4 ´ pp0|0 ´ p0|1qpq0|0 ` r0|0 ´ q0|1 ´ r0|1q
‰

(B.53)

The KKT conditions are:

1q ´ p0|0 ď 0, ´p0|1 ď 0, ´1 ` p0|0 ď 0, ´1 ` p0|1 ď 0 (B.54)

2q λ̃1 “ p1 ´ p0|0q
1

8

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.55)

λ̃2 “ ´p1 ´ p0|1q
1

8

“

q0|0 ´ q0|1 ´ r0|0 ´ r0|1

‰

ě 0 (B.56)
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λ̃3 “ ´p0|0
1

8

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.57)

λ̃4 “ p0|1
1

8

“

q0|0 ´ q0|1 ` r0|0 ´ r0|1

‰

ě 0 (B.58)

The results are found in Table 4.10 on page 53

B.2.2 Nash Equilibria for boolean games in a triangle using
quantum states

To optimise the payoffs to find the Nash equilibrium points for the GHZ- and Bell-
like states, it is convenient to perform a change of variables to linearise the
problem because the payoffs depend only on the square of the players’ strategies,
i.e. on a211, ã211, b211, b̃211, c211, c̃211. The new variables are defined as:

p ” a211 ; p̃ ” ã211 (B.59)

q ” b211 ; q̃ ” b̃211 (B.60)
r ” c211 ; r̃ ” c̃211 (B.61)

The payoffs can then be rewritten in terms of tp, p̃, q, q̃, r, r̃u and the corre-
sponding KKT conditions to find the equilibrium points. Since the KKT conditions
will depend on λ111 for the GHZ-like state and on λ11 for the Bell-like state, and to
avoid any confusion with the notation, the Lagrange multipliers for this quantum
case will be denoted as µ̃i, instead of using λ̃i.

➤ I “ f7, O “ f15 – CHSH game –, Alice’s payoff when the players share a
GHZ-like state is found in equation (5.10) on page 60. Here, the same payoff
is written in terms of the newly defined variables:

(GHZ) $A “
1

4
r3 ` p´ p2p ` q ` rq ` pp ` p̃qpq ` rq

`pp ´ p̃qpq̃ ` r̃qq
`

1 ´ 2λ2111p1 ´ λ2111q
˘‰

(B.62)

The KKT conditions for Alice’s payoffs with the new variables are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.63)

2q µ̃1 “
´1

4
p1 ´ pq r´2 ` q ` q̃ ` r ` r̃s

“

1 ´ 2λ2111p1 ´ λ2111q
‰

ě 0 (B.64)

µ̃2 “
´1

4
p1 ´ p̃q rq ´ q̃ ` r ´ r̃s

“

1 ´ 2λ2111p1 ´ λ2111q
‰

ě 0 (B.65)

µ̃3 “
1

4
p r´2 ` q ` q̃ ` r ` r̃s

“

1 ´ 2λ2111p1 ´ λ2111q
‰

ě 0 (B.66)

µ̃4 “
1

4
p̃ rq ´ q̃ ` r ´ r̃s

“

1 ´ 2λ2111p1 ´ λ2111q
‰

ě 0 (B.67)

These KKT conditions are the same as the corresponding conditions in the classi-
cal case with mixed strategies in equations (B.18)-(B.22) with the extra multiplying
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factor 1´ 2λ2111p1´λ2111q, which is clearly always positive. That is why, in this case,
the Nash equilibrium points using the GHZ-like state are the same as in the classical
case; the only change now is that the specific payoffs might depend on λ111. The
results are found in Table 5.1 on page 62.

➤ I “ f7, O “ f15, Alice’s payoff when the players share a Bell-like state is:

(Bell) $A “
1

4
r3 ` p´ p2p ` q ` rq ` pp ` p̃qpq ` rq

`pp ´ p̃qpq̃ ` r̃qq
`

1 ´ 3λ211p1 ´ λ211q
˘

´ 4λ211
`

1 ´ λ211
˘2

` p2p ` q ` rqλ211
`

1 ´ 3λ211 ` 2λ411
˘‰

(B.68)

The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.69)

2q µ̃1 “
´1

4
p1 ´ pq

“

p´2 ` q ` q̃ ` r ` r̃q
`

1 ´ 3λ211p1 ´ λ211q
˘

`2λ211
`

1 ´ 3λ211 ` 2λ411
˘‰

ě 0 (B.70)

µ̃2 “
´1

4
p1 ´ p̃q rq ´ q̃ ` r ´ r̃s

“

1 ´ 3λ211p1 ´ λ211q
‰

ě 0 (B.71)

µ̃3 “
1

4
p

“

p´2 ` q ` q̃ ` r ` r̃q
`

1 ´ 3λ211p1 ´ λ211q
˘

`2λ211
`

1 ´ 3λ211 ` 2λ411
˘‰

ě 0 (B.72)

µ̃4 “
1

4
p̃ rq ´ q̃ ` r ´ r̃s

“

1 ´ 3λ211p1 ´ λ211q
‰

ě 0 (B.73)

The results are found in Table 5.2 on page 68. Two particular solutions will
be checked to illustrate some of the interval restrictions that appear in some
of the solutions. To do that, the KKT conditions for Bob and Carl are needed, and
they are easily obtained from permuting the players in the KKT conditions for Alice.

As a first example, considering the strategy s “ tvB1, 0, vB1, 0, 0, 1u in Table
5.2, with vB1pλ11q defined in equation (5.15), the corresponding KKT conditions for
Alice, Bob, and Carl are:

µ̃1 “0 ě 0 (B.74)

µ̃2 “
1

2

`

λ211 ´ 3λ411 ` 2λ611
˘

ě 0 (B.75)

µ̃3 “0 ě 0 (B.76)

µ̃4 “0 ě 0 (B.77)
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µ̃5 “0 ě 0 (B.78)

µ̃6 “
1

2

`

λ211 ´ 3λ411 ` 2λ611
˘

ě 0 (B.79)

µ̃7 “0 ě 0 (B.80)

µ̃8 “0 ě 0 (B.81)

µ̃9 “
1

2

`

λ211 ´ 3λ411 ` 2λ611
˘

ě 0 (B.82)

µ̃10 “0 ě 0 (B.83)

µ̃11 “0 ě 0 (B.84)

µ̃12 “
1

2

`

1 ´ 5λ211 ` 9λ411 ´ 4λ611
˘

ě 0 (B.85)

where Alice’s Lagrange multipliers are µ̃1, µ̃2, µ̃3, µ̃4; Bob’s are µ̃5, µ̃6, µ̃7, µ̃8; and
Carl’s µ̃9, µ̃10, µ̃11, µ̃12. The strategy must also be between 0 and 1, which, in this
case, it requires that 0 ď vB1pλ11q ď 1 – see Figure 5.7 on page 69. All of these
equations and restrictions are only satisfied for 0 ď λ11 ď 1{

?
2 or λ11 “ 1, so that

is why this solution is restricted to that particular interval in Table 5.2. Such is the
case with many other solutions in other games.

As a second example, considering the solution s “ t1, 0, 0, 1, 1 ´ r̃, r̃u in Table
5.2, using the optimisation variables r̃ ” c̃211, the corresponding KKT conditions for
Alice, Bob, and Carl are:

µ̃1 “ µ̃4 “ µ̃6 “ µ̃7 “ µ̃10 “ µ̃12 “ 0 ě 0 (B.86)

µ̃2 “
1

2
r̃

`

1 ´ 3λ211 ` 3λ411
˘

ě 0 (B.87)

µ̃3 “
1

2

`

λ211 ´ 3λ411 ` 2λ611
˘

ě 0 (B.88)

µ̃5 “
´1

2
λ211

`

1 ´ 3λ211 ` 2λ411
˘

ě 0 (B.89)

µ̃8 “
1

2
p1 ´ r̃q

`

1 ´ 3λ211 ` 3λ411
˘

ě 0 (B.90)

µ̃9 “
´1

2
r̃

`

λ211 ´ 3λ411 ` 2λ611
˘

ě 0 (B.91)

µ̃11 “
1

2
p1 ´ r̃q

`

λ211 ´ 3λ411 ` 2λ611
˘

ě 0 (B.92)

The only possible solution to all of these equations is when λ11 “ 0 or λ11 “ 1 or
λ11 “ 1{

?
2, for 0 ď r̃ ď 1. That is why in Table 5.2 that particular solution is
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restricted to these values of λ11.

➤ I “ f15, O “ f15, Alice’s payoff when the players share a GHZ-like and a
Bell-like state:

(GHZ) $A “
1

4

“

2 ` pp ´ p̃qpq ´ q̃ ` r ´ r̃q
`

1 ´ 2λ2111p1 ´ λ2111q
˘‰

(B.93)

(Bell) $A “
1

4

“

2 ` pp ´ p̃qpq ´ q̃ ` r ´ r̃q
`

1 ´ 3λ211p1 ´ λ211q
˘‰

(B.94)

As it happened with the GHZ-like state in the CHSH game, the entanglement of
the states, i.e. λ111 and λ11, appear on these payoffs as a multiplying factor on the
strategic terms, thus leaving the Nash equilibrium points unchanged. The results
are found in Tables 5.3 on page 77.

➤ I “ f7, O “ f8, Alice’s payoff when the players share a GHZ-like state is:

(GHZ) $A “
1

8

“

2 ` 4λ2111p2 ´ λ2111q ´ 2λ4111 p2p ` q ` rq

`
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘

ppp ` p̃q pq ` rq

` pp ´ p̃q pq̃ ` r̃qqs (B.95)

The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.96)

2q µ̃1 “
´1

8
p1 ´ pq

“

´4λ4111 ` pq ` q̃ ` r ` r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘‰

ě 0 (B.97)

µ̃2 “
´1

8
p1 ´ p̃q rq ´ q̃ ` r ´ r̃s

“

1 ´ 2λ2111p1 ´ λ2111q
‰

ě 0 (B.98)

µ̃3 “
1

8
p

“

´4λ4111 ` pq ` q̃ ` r ` r̃q
`

1 ´ 2λ2111
`

p1 ´ λ2111
˘˘‰

ě 0 (B.99)

µ̃4 “
1

8
p̃ rq ´ q̃ ` r ´ r̃s

“

1 ´ 2λ2111p1 ´ λ2111q
‰

ě 0 (B.100)

The results are found in Table 5.4 on page 81.

➤ I “ f7, O “ f8, Alice’s payoff when the players share a Bell-like state:

(Bell) $A “
1

8

“

2 ` 4λ211p1 ` λ211p1 ´ λ211qq ` 2λ211p1 ´ 3λ211 ` λ411q p2p ` q ` rq

`
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

ppp ` p̃q pq ` rq

` pp ´ p̃q pq̃ ` r̃qqs (B.101)
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The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.102)

2q µ̃1 “
´1

8
p1 ´ pq

“

pq ` q̃ ` r ` r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`4λ211
`

1 ´ 3λ211 ` λ411
˘‰

ě 0 (B.103)

µ̃2 “
´1

8
p1 ´ p̃q rq ´ q̃ ` r ´ r̃s

“

1 ´ 3λ211
`

1 ´ λ211
˘‰

ě 0 (B.104)

µ̃3 “
1

8
p

“

pq ` q̃ ` r ` r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`4λ211
`

1 ´ 3λ211 ` λ411
˘‰

ě 0 (B.105)

µ̃4 “
1

8
p̃ rq ´ q̃ ` r ´ r̃s

“

1 ´ 3λ211
`

1 ´ λ211
˘‰

ě 0 (B.106)

The results are found in Table 5.5 on page 88. As an illustrative example,
considering the strategy s “ ttB2, tB2, tB2, tB2, tB2, tB2u, with tB1pλ11q defined in
equation (5.13), the corresponding KKT conditions for Alice, Bob, and Carl vanish:

µ̃1 “ µ̃2 “ µ̃3 “ µ̃4 “0 ě 0 (B.107)

µ̃5 “ µ̃6 “ µ̃7 “ µ̃8 “0 ě 0 (B.108)

µ̃9 “ µ̃10 “ µ̃11 “ µ̃12 “0 ě 0 (B.109)

but there is the requirement that 0 ď tB2pλ11q ď 1, which only happens for p
?
5 ´

1q{2 ď λ11 ď

b

p
?
5 ´ 1q{2. That is why in in Table 5.5 that solution is restricted

to that particular interval.

➤ I “ f7, O “ f10, Alice’s payoff when the players share a GHZ-like state:

(GHZ) $A “
1

8

“

2 ` 2pp ` rqp1 ´ λ2111q
2

` 2λ4111 pp ` qq

´
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘

ppp ` p̃q pq ` rq

` pp ´ p̃q pq̃ ` r̃qqs (B.110)

The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.111)

2q µ̃1 “
1

8
p1 ´ pq r´2 ` q ` q̃ ` r ` r̃s

“

1 ´ 2λ2111
`

1 ´ λ2111
˘‰

ě 0 (B.112)

µ̃2 “
1

8
p1 ´ p̃q rq ´ q̃ ` r ´ r̃s

“

1 ´ 2λ2111
`

1 ´ λ2111
˘‰

ě 0 (B.113)
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µ̃3 “
´1

8
p r´2 ` q ` q̃ ` r ` r̃s

“

1 ´ 2λ2111
`

1 ´ λ2111
˘‰

ě 0 (B.114)

µ̃4 “
´1

8
p̃ rq ´ q̃ ` r ´ r̃s

“

1 ´ 2λ2111
`

1 ´ λ2111
˘‰

ě 0 (B.115)

These last four equations are the same KKT conditions as in the classical case in
equations (B.36)-(B.40) with the multiplying factor 1´2λ2111 p1 ´ λ2111q. Even though
the payoff for the GHZ-like state in equation (B.110) is different from the classical
case in equation (B.35), the partial derivatives only differ by that multiplying factor.
This implies that the Nash Equilibrium points using the GHZ-like state will be the
same as the classical ones using mixed strategies; the only difference is the presence
of entanglement, i.e. the parameter λ111, in the payoffs that those equilibrium points
give. The results are found in Table 5.6 on page 93.

➤ I “ f7, O “ f10, Alice’s payoff when the players share a Bell-like state:

(Bell) $A “
1

8

“

2 ` 4λ211p1 ´ λ211q
2

` 2pp ` rqp1 ´ λ211q
3

´ 2λ211p1 ´ 3λ211 ` λ411q pp ` qq

´
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

ppp ` p̃q pq ` rq

` pp ´ p̃q pq̃ ` r̃qqs (B.116)

The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.117)

2q µ̃1 “
1

8
p1 ´ pq

“

pq ` q̃ ` r ` r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`2
`

´1 ` 4λ211 ´ 6λ411 ` 2λ611
˘‰

ě 0 (B.118)

µ̃2 “
1

8
p1 ´ p̃q rq ´ q̃ ` r ´ r̃s

“

1 ´ 3λ211
`

1 ´ λ211
˘‰

ě 0 (B.119)

µ̃3 “
´1

8
p

“

pq ` q̃ ` r ` r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`2
`

´1 ` 4λ211 ´ 6λ411 ` 2λ611
˘‰

ě 0 (B.120)

µ̃4 “
´1

8
p̃ rq ´ q̃ ` r ´ r̃s

“

1 ´ 3λ211
`

1 ´ λ211
˘‰

ě 0 (B.121)

The results are found in Table 5.7 on page 100.

➤ I “ f9, O “ f7, Alice’s payoff when the players share a GHZ-like state:

(GHZ) $A “
1

8

“

6 ´ 4λ2111p2 ´ λ2111q ` 2λ4111 pp ` p̃ ` q̃ ` rq

170



APPENDIX B.

´
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘

ppp ` p̃q pq̃ ` rq

` pp ´ p̃q pq ´ r̃qqs (B.122)

The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.123)

2q µ̃1 “
´1

8
p1 ´ pq

“

2λ4111 ´ pq ` q̃ ` r ´ r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘‰

ě 0 (B.124)

µ̃2 “
´1

8
p1 ´ p̃q

“

2λ4111 ´ p´q ` q̃ ` r ` r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘‰

ě 0 (B.125)

µ̃3 “
1

8
p

“

2λ4111 ´ pq ` q̃ ` r ´ r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘‰

ě 0 (B.126)

µ̃4 “
1

8
p̃

“

2λ4111 ´ p´q ` q̃ ` r ` r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘‰

ě 0 (B.127)

The results are found in Table 5.9 on page 110.

➤ I “ f9, O “ f7, Alice’s payoff when the players share a Bell-like state:

(Bell) $A “
1

8

“

6 ´ 4λ211p1 ` λ211p1 ´ λ211qq

´ 2λ211p1 ´ 3λ211 ` λ411q pp ` p̃ ` q̃ ` rq

´
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

ppp ` p̃q pq̃ ` rq

` pp ´ p̃q pq ´ r̃qqs (B.128)

The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.129)

2q µ̃1 “
1

8
p1 ´ pq

“

pq ` q̃ ` r ´ r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`2λ211
`

1 ´ 3λ211 ` λ411
˘‰

ě 0 (B.130)

µ̃2 “
1

8
p1 ´ p̃q

“

p´q ` q̃ ` r ` r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`2λ211
`

1 ´ 3λ211 ` λ411
˘‰

ě 0 (B.131)

µ̃3 “
´1

8
p

“

pq ` q̃ ` r ´ r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`2λ211
`

1 ´ 3λ211 ` λ411
˘‰

ě 0 (B.132)

µ̃4 “
´1

8
p̃

“

p´q ` q̃ ` r ` r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘
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`2λ211
`

1 ´ 3λ211 ` λ411
˘‰

ě 0 (B.133)

The results are found in Table 5.10 on page 115. As an illustrative example,
considering the strategy s “ t2tB2, 0, 0, 2tB2, 1, 1u, with tB2pλ11q defined in equation
(5.22), from Table 5.10, the corresponding KKT conditions for Alice, Bob, and Carl
are:

µ̃1 “µ̃3 “ µ̃4 “ µ̃6 “ µ̃7 “ µ̃8 “ µ̃9 “ µ̃10 “ 0 ě 0 (B.134)

µ̃2 “
1

4

`

1 ´ 3λ211 ` 3λ411
˘

ě 0 (B.135)

µ̃5 “
1

4

`

1 ´ 3λ211 ` 3λ411
˘

ě 0 (B.136)

µ̃11 “
´1

4
λ211

`

1 ´ 3λ211 ` λ411
˘

ě 0 (B.137)

µ̃12 “
´1

4
λ211

`

1 ´ 3λ211 ` λ411
˘

ě 0 (B.138)

whose solution is the interval p
?
5 ´ 1q{2 ď λ11 ď 1; however, requiring that the

strategic term 0 ď 2tB2pλ11q ď 1, that only happens when p
?
5´1q{2 ď λ11 ď 1{

?
2.

That is why that solution in Table 5.10 is restricted to the latter interval.

➤ I “ f9, O “ f10, Alice’s payoff when the players share a GHZ-like state:

(GHZ) $A “
1

8

”

2 ` 2pp ` rq
`

1 ´ λ2111
˘2

` 2λ4111 pp̃ ` q̃q

´
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘

ppp ` p̃q pq̃ ` rq

` pp ´ p̃q pq ´ r̃qqs (B.139)

The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.140)

2q µ̃1 “
´1

8
p1 ´ pq

”

2
`

1 ´ λ2111
˘2

´ pq ` q̃ ` r ´ r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘

ı

ě 0

(B.141)

µ̃2 “
´1

8
p1 ´ p̃q

“

2λ4111 ´ p´q ` q̃ ` r ` r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘‰

ě 0 (B.142)

µ̃3 “
1

8
p

”

2
`

1 ´ λ2111
˘2

´ pq ` q̃ ` r ´ r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘

ı

ě 0 (B.143)

µ̃4 “
1

8
p̃

“

2λ4111 ´ p´q ` q̃ ` r ` r̃q
`

1 ´ 2λ2111
`

1 ´ λ2111
˘˘‰

ě 0 (B.144)

The results are found in Table 5.11 on page 120.
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➤ I “ f9, O “ f10, Alice’s payoff when the players share a Bell-like state:

(Bell) $A “
1

8

“

2 ` 4λ211p1 ´ λ211q
2

` 2pp ` rqp1 ´ λ211q
3

´ 2λ211p1 ´ 3λ211 ` λ411qpp̃ ` q̃q

´
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

ppp ` p̃q pq̃ ` rq

` pp ´ p̃q pq ´ r̃qqs (B.145)

The corresponding KKT conditions for Alice’s payoffs are:

1q ´ p ď 0, ´p̃ ď 0, ´1 ` p ď 0, ´1 ` p̃ ď 0 (B.146)

2q µ̃1 “
1

8
p1 ´ pq

”

2
`

1 ´ λ211
˘3

` pq ` q̃ ` r ´ r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

ı

ě 0

(B.147)

µ̃2 “
1

8
p1 ´ p̃q

“

p´q ` q̃ ` r ` r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`2λ211
`

1 ´ 3λ211 ` λ411
˘‰

ě 0 (B.148)

µ̃3 “
´1

8
p

”

2
`

1 ´ λ211
˘3

` pq ` q̃ ` r ´ r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

ı

ě 0 (B.149)

µ̃4 “
´1

8
p̃

“

p´q ` q̃ ` r ` r̃q
`

1 ´ 3λ211
`

1 ´ λ211
˘˘

`2λ211
`

1 ´ 3λ211 ` λ411
˘‰

ě 0 (B.150)

The results are found in Table 5.12 on page 128.

➤ I “ f15, O “ f7, Alice’s payoff when the players share a GHZ-like and a
Bell-like state:

(GHZ) $A “
1

8

“

4 ´ pp ´ p̃qpq ´ q̃ ` r ´ r̃q
`

1 ´ 2λ2111p1 ´ λ2111q
˘‰

(B.151)

(Bell) $A “
1

8

“

4 ´ pp ´ p̃qpq ´ q̃ ` r ´ r̃q
`

1 ´ 3λ211p1 ´ λ211q
˘‰

(B.152)

As before, the equilibrium points remain the same as in the classical case because
the entanglement is only present as a multiplying factor on the strategic terms. The
results are found in Table 5.13 on page 134.

B.2.3 Social welfare for the Nash equilibrium points using
quantum states

The next few tables contain the social welfare ($A ` $B ` $C) of the Nash equi-
librium points for all games using the GHZ- and the Bell-like state. The values
of the social welfare have been obtained by adding the payoffs of the players of all
the equilibrium points, points which are found in their respective tables in chapter
5.
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GHZ-like state with I “ f7 , O “ f15

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

t1, 1, 1, 1, 1, c̃211u 9

4
‚

t0, 0, 0, 0, 0, c̃211u

"

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

*

3

2
r1 ` λ2111 p1 ´ λ2111qs ‚

t1, 0, 0, 1, 1 ´ c̃211, c̃
2
11u

7

4
` λ2111 ´ λ4111 ‚

t0, 1, 1, 0, 1 ´ c̃211, c̃
2
11u

Tab. B.1: Social welfare for the Nash Equilibrium points in Table 5.1 for the game defined by I “ f7, O “ f15 (CHSH game) using the GHZ-like state. The colour of
the circles help to identify the payoffs plotted in Figure 5.6.

Bell-like state with I “ f7 , O “ f15

λ11 interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

0 ď λ11 ď 1

t1, 1, 1, 1, 1, c̃211u
9

4
´ 3λ411 p1 ´ λ211q

t0, 0, 0, 0, 0, c̃211u
9

4
´ 3λ211 p1 ´ λ211q

2
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0 ď λ11 ď 1
!uB1

2
,
uB1

2
,
uB1

2
,
uB1

2
,
uB1

2
,
uB1

2

) 3 p2 ´ 5λ211 ` λ411 ` 12λ611 ´ 16λ811 ` 12λ1011 ´ 4λ1211q

4 ´ 12λ211 ` 12λ411

λ11 “ 0, 1 ; λ11 “ 1?
2

t1, 0, 0, 1, 1 ´ c̃211, c̃
2
11u 7

4
t0, 1, 1, 0, 1 ´ c̃211, c̃

2
11u

0 ď λ11 ď 1?
2
, λ11 “ 1 tvB1, 0, vB1, 0, 0, 1u

7 ´ 19λ211 ` λ411 ` 76λ611 ´ 134λ811 ` 108λ1011 ´ 32λ1211
4 ´ 12λ211 ` 12λ411

0 ď λ11 ď 1?
2
, λ11 “ 1 t0, uB1, 0, uB1, uB1, 0u

7 ´ 23λ211 ` 31λ411 ´ 16λ611 ` 4λ811 ` 12λ1011 ´ 8λ1211
4 ´ 12λ211 ` 12λ411

λ11 “ 0, 1?
2

ď λ11 ď 1 t2tB1, 1, 2tB1, 1, 1, 0qu
7 ´ 23λ211 ` 25λ411 ` 20λ611 ´ 74λ811 ` 84λ1011 ´ 32λ1211

4 ´ 12λ211 ` 12λ411

λ11 “ 0, 1?
2

ď λ11 ď 1 t1, tB1, 1, tB1, tB1, 1u
7 ´ 19λ211 ` 7λ411 ` 40λ611 ´ 56λ811 ` 36λ1011 ´ 8λ1211

4 ´ 12λ211 ` 12λ411

Tab. B.2: Social welfare for the Nash Equilibrium points in Table 5.2 for the game defined by I “ f7, O “ f15 (CHSH game) using the Bell-like state. The colour of
the squares help to identify the payoffs plotted in Figure 5.13 and Figure 5.14. The non-marked payoff, which is constant, is marked as a point in the same figure.
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GHZ-like state with I “ f15 , O “ f15

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

t1, 0, 1, 0, 1, 0u
3 ´ 3λ2111 ` 3λ4111 ‚

t0, 1, 0, 1, 0, 1u

ta211, a
2
11, b

2
11, b

2
11, c

2
11, c

2
11u

3
2

Bell-like state with I “ f15 , O “ f15

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

t1, 0, 1, 0, 1, 0u 3

2
r2 ´ 3λ211 ` 3λ411s

t0, 1, 0, 1, 0, 1u

ta211, a
2
11, b

2
11, b

2
11, c

2
11, c

2
11u

3
2

Tab. B.3: Social welfare for the Nash Equilibrium points in Table 5.3 for the game defined by I “ f15, O “ f15 using the GHZ- and Bell-like states. The colour of
the circle and square helps to identify the payoffs plotted in Figure 6.2(b).
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GHZ-like state with I “ f7 , O “ f8

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

λ111 “ 0 , #̃211 “ 0 t0, ã211, 0, 0, 0, 0u

3

4
r1 ` 2λ2111 p2 ´ λ2111qs ‚0 ă λ111 ď

b

?
3´1
2

« 0.605 , 0 ď #̃211 ď 4tG t0, 0, 0, b̃211, 0, 0u

b

?
3´1
2

ă λ111 ď 1 , 0 ď #̃211 ď 1 t0, 0, 0, 0, 0, c̃211u

0 ď λ111 ď

b

3´
?
3

2
« 0.796 , 0 ď #̃211 ď 1 t1, ã211, 1, 1, 1, 1u

3

4
r3 ´ 2λ4111s ‚

b

3´
?
3

2
ă λ111 ă 1 , ´1 ` 2uG ď #̃211 ď 1 t1, 1, 1, b̃211, 1, 1u

λ111 “ 1 , #̃211 “ 1 t1, 1, 1, 1, 1, c̃211u

0 ď λ111 ď 1 ttG, tG, tG, tG, tG, tGu
3

8

„

1 ` 6λ2111 ´ 6λ4111 `
1

1 ´ 2λ2111 p1 ´ λ2111q

ȷ

‚

λ111 “ 1?
2

t1, 0, 0, 1, 1 ´ c̃211, c̃
2
11u 7

4
t0, 1, 1, 0, 1 ´ c̃211, c̃

2
11u

0 ď λ111 ď 1?
2

t0, 2tG, 0, 2tG, 2tG, 0u
1

4

„

2 ` 10λ2111 ´ 8λ4111 `
1

1 ´ 2λ2111 p1 ´ λ2111q

ȷ

‚

1?
2

ď λ111 ď 1 t1, uG, 1, uG, uG, 1u
1

4

„

4 ` 6λ2111 ´ 8λ4111 `
1

1 ´ 2λ2111 p1 ´ λ2111q

ȷ

‚
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b

?
3´1
2

« 0.605 ď λ111 ď 1?
2

t1 ` 2uG, 0, 1 ` 2uG, 0, 0, 1u
´1

2
`

3

2
λ2111 ´ 2λ4111 `

1

1 ´ 2λ2111p1 ´ λ2111q
‚

1?
2

ď λ111 ď

b

3´
?
3

2
« 0.796 t2uG, 1, 2uG, 1, 1, 0u ´1 `

5

2
λ2111 ´ 2λ4111 `

1

1 ´ 2λ2111p1 ´ λ2111q
‚

Tab. B.4: Social welfare for the Nash Equilibrium points in Table 5.4 for the game defined by I “ f7, O “ f8 using the GHZ-like state. The colour of the circles help
to identify the payoffs plotted in Figure 5.20. The non-marked payoff, which is constant, is marked as a point in the same figure.

Bell-like state with I “ f7 , O “ f8

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

λ11 “ 0 or λ11 “
?
5´1
2

« 0.618, #̃211 “ 0 t0, ã211, 0, 0, 0, 0u

3

4
r1 ` 2λ211 p1 ` λ211 ´ λ411qs

?
5´1
2

ă λ11 ď 0.6695 , 0 ď #̃211 ď 4tB2 t0, 0, 0, b̃211, 0, 0u

0.6695 ă λ11 ď 1 , 0 ď #̃211 ď 1 t0, 0, 0, 0, 0, c̃211u

0 ď λ111 ď 0.743 , 0 ď #̃211 ď 1 t1, ã211, 1, 1, 1, 1u

3

4
r3 ´ 2λ411p2 ´ λ211qs0.743 ă λ111 ă

b

?
5´1
2

, ´2 ` vB2 ď #̃211 ď 1 t1, 1, 1, b̃211, 1, 1u
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λ11 “ 1 or λ11 “

b

?
5´1
2

« 0.786 , #̃211 “ 1 t1, 1, 1, 1, 1, c̃211u

?
5´1
2

ď λ11 ď

b

?
5´1
2

ttB2, tB2, tB2, tB2, tB2, tB2u
3

4
r1 ` 2λ211 p1 ` λ211 ´ λ411qs ´

3λ411 p1 ´ 3λ211 ` λ411q
2

2 r1 ´ 3λ211p1 ´ λ211qs

λ11 “ 1?
2

t1, 0, 0, 1, 1 ´ c̃211, c̃
2
11u

13

8
t0, 1, 1, 0, 1 ´ c̃211, c̃

2
11u

?
5´1
2

ď λ11 ď 1?
2

t0, 2tB2, 0, 2tB2, 2tB2, 0u
3 ´ 3λ211 ´ 7λ411 ` 18λ611 ´ 8λ811 ` 6λ1011 ´ 4λ1211

4 ´ 12λ211 ` 12λ411

1?
2

ď λ11 ď

b

?
5´1
2

t1, uB2, 1, uB2, uB2, 1u
5 ´ 11λ211 ´ λ411 ` 34λ611 ´ 38λ811 ` 18λ1011 ´ 4λ1211

4 ´ 12λ211 ` 12λ411

0.6695 ď λ11 ď 1?
2

tvB2, 0, vB2, 0, 0, 1u
2 ´ 5λ211 ` 14λ411 ` 4λ611 ´ 53λ811 ` 54λ1011 ´ 16λ1211

4 ´ 12λ211 ` 12λ411

1?
2

ď λ11 ď 0.743 t´1 ` vB2, 1,´1 ` vB2, 1, 1, 0u
λ211 p3 ` 8λ211 ´ 12λ411 ´ 23λ611 ` 42λ811 ´ 16λ1011q

4 ´ 12λ211 ` 12λ411

Tab. B.5: Social welfare for the Nash Equilibrium points in Table 5.5 for the game defined by I “ f7, O “ f8 using the Bell-like state. The colour of the squares help
to identify the payoffs plotted in Figure 5.26. The non-marked payoff, which is constant, is marked as a point in the same figure.
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GHZ-like state with I “ f7 , O “ f10

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

t1, 1, 0, 0, c211, c
2
11u

5

4
´ λ2111 ` λ4111 ‚

t0, 0, 1, 1, c211, c
2
11u

t1, 0, 1, 0, c211, 0u
3

2
r1 ´ λ2111 ` λ4111s ‚

t0, 1, 0, 1, c211, 1u

"

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

*

3

8
r3 ´ 2λ2111 p1 ´ λ2111qs ‚

Tab. B.6: Social welfare for the Nash Equilibrium points in Table 5.6 for the game defined by I “ f7, O “ f10 using the GHZ-like state. The colour of the circles
identify the payoffs plotted in Figure 5.29.

(1/2) Bell-like state with I “ f7 , O “ f10

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

0 ď λ11 ď 1?
2

tuB1, 0, uB1, 0, uB1, 0u
3

4

„

2 p1 ´ λ211 ` λ411q ´
λ2
11p1´3λ2

11`2λ4
11qp1´4λ2

11`6λ4
11´2λ6

11q
1´3λ2

11p1´λ2
11q

ȷ

1?
2

ď λ11 ď 1 ttB1, 1, tB1, 1, tB1, 1u
3

4

„

2 p1 ´ 2λ411 ` 2λ611q ´
λ2
11p1´3λ2

11`2λ4
11qp1´4λ2

11`6λ4
11´2λ6

11q
1´3λ2

11p1´λ2
11q

ȷ
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0 ď λ11 ď 1 t
uB1

2
, uB1

2
, uB1

2
, uB1

2
, uB1

2
, uB1

2
u

3

4

„

2 p1 ´ λ211 ` λ411q ´
p1´2λ2

11`2λ6
11qp1´4λ2

11`6λ4
11´2λ6

11q

2r1´3λ2
11p1´λ2

11qs

ȷ

λ11 “ 0, 1, 1?
2
, c̃211 “ 1

t0, 0, 0, 0, 1, c̃211u
1

4
r5 ´ 2λ211 ` 2λ611s

0 ă λ11 ă 1?
2
, vB1 ď c̃211 ď 1

λ11 “ 0, 1, 1?
2
, c̃211 “ 0

t1, 1, 1, 1, 0, c̃211u
1

4
r5 ´ 4λ211 ` 6λ411 ´ 2λ611s

0 ă λ11 ă 1?
2
, 0 ď c̃211 ď 2uB1

0 ď λ11 ď 1?
2

tuB1, uB1, uB1, uB1, 0, 0u
5 ´ 19λ211 ` 35λ411 ´ 44λ611 ` 50λ811 ´ 30λ1011 ` 8λ1211

4 ´ 12λ211 ` 12λ411

1?
2

ď λ11 ď 1 ttB1, tB1, tB1, tB1, 1, 1u
5 ´ 17λ211 ` 23λ411 ´ 16λ611 ` 20λ811 ´ 18λ1011 ` 8λ1211

4 ´ 12λ211 ` 12λ411

0 ď λ11 ď 1?
2

tvB1, 0, vB1, 0, 1, 0u
6 ´ 27λ211 ` 64λ411 ´ 102λ611 ` 115λ811 ´ 66λ1011 ` 16λ1211

4 ´ 12λ211 ` 12λ411
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1?
2

ď λ11 ď 1 t2tB1, 1, 2tB1, 1, 0, 1u
6 ´ 21λ211 ` 28λ411 ´ 18λ611 ` 25λ811 ´ 30λ1011 ` 16λ1211

4 ´ 12λ211 ` 12λ411

Tab. B.7: Social welfare for the Nash Equilibrium points in Table 5.7 – except the ones marked with a star – for the game defined by I “ f7, O “ f10 using the
Bell-like state. The colour of the squares help to identify the payoffs plotted in Figure 5.33. The non-marked payoffs are the same as the marked with a purple and
magenta diamond in the next table, Table B.8.

(2/2) Bell-like state with I “ f7 , O “ f10

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

λ11 “ 0, 1

t1, 1, 0, 0, c211, c
2
11u ‹

5
4

λ11 “ 1?
2

17
16

0 ă λ11 ă 1?
2

t1, 1, 0, 0, 0, 0u ‹
1

4
r5 ´ 2λ211 ` 2λ611s ♦

1?
2

ă λ11 ă 1 t1, 1, 0, 0, 1, 1u ‹
1

4
r5 ´ 4λ211 ` 6λ411 ´ 2λ611s ♦

λ11 “ 0, 1

t0, 0, 1, 1, c211, c
2
11u ‹

5
4
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λ11 “ 1?
2

17
16

0 ă λ11 ă 1?
2

t0, 0, 1, 1, 0, 0u ‹
1

4
r5 ´ 2λ211 ` 2λ611s

1?
2

ă λ11 ă 1 t0, 0, 1, 1, 1, 1u ‹
1

4
r5 ´ 4λ211 ` 6λ411 ´ 2λ611s

λ11 “ 0, 1

t1, 0, 1, 0, c211, 0u ‹

3
2

λ11 “ 1?
2

9
8

0 ă λ11 ă 1?
2

t1, 0, 1, 0, 0, 0u ‹
1

4
r6 ´ 7λ211 ` 9λ411 ´ 2λ611s ♦

1?
2

ă λ11 ă 1 t1, 0, 1, 0, 1, 0u ‹
3

4
r2 ´ 3λ211 ` 5λ411 ´ 2λ611s ♦

λ11 “ 0, 1

t0, 1, 0, 1, c211, 1u ‹

3
2

λ11 “ 1?
2

9
8

0 ă λ11 ă 1?
2

t0, 1, 0, 1, 0, 1u ‹
3

4
p1 ` λ211q p2 ´ 3λ211 ` 2λ411q ♦
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1?
2

ă λ11 ă 1 t0, 1, 0, 1, 1, 1u ‹
1

4
r6 ´ 5λ211 ` 3λ411 ` 2λ611s ♦

Tab. B.8: Social welfare for the Nash equilibrium points in Table 5.8 for the game defined by I “ f7, O “ f10 using the Bell-like state. The colour of the diamonds
help to identify the payoffs plotted in Figure 5.33, shown there as fainter lines. The non-marked constant payoffs are marked as points in the same figure; while the
non-marked that are not constant are the same as the marked with a purple and magenta diamond.

GHZ-like state with I “ f9 , O “ f7

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

λ111 “ 0
t0, 0, 0, 0, 0, 0u 9

4t0, 0, 0, 0, 1, 1u

λ111 “ 1?
2

t1, 1, 1, 0, 0, 0u 3

2t1, 1, 0, 0, 0, 1u

λ111 “ 1
t1, 1, 1, 1, 0, 0u 9

4t1, 1, 1, 1, 1, 1u

0 ď λ111 ď 1?
2

t0, 1, 1, 0, 0, 0u
1

2
r5 ´ 7λ2111 ´ 6λ4111s ‚
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1?
2

ď λ111 ď 1 t1, 0, 0, 1, 1, 1u 2 ´
5

2
λ2111 ` 3λ4111 ‚

0 ď λ111 ď 1 ttG, tG, tG, tG, tG, tGu
3

8
r7 ´ 6λ2111 p1 ´ λ2111qs ´

3

8 r1 ´ 2λ2111p1 ´ λ2111qs
‚

0 ď λ111 ď 1?
2

t2tG, 0, 0, 2tG, 1, 1u
1

2
r5 ´ 5λ2111 ` 6λ4111s ´

1

4 r1 ´ 2λ2111p1 ´ λ2111qs
‚

1?
2

ď λ111 ď 1 tuG, 1, 1, uG, 0, 0u
1

2
r6 ´ 7λ2111 ` 6λ4111s ´

1

4 r1 ´ 2λ2111p1 ´ λ2111qs
‚

Tab. B.9: Social welfare for the Nash Equilibrium points in Table 5.9 for the game defined by I “ f9, O “ f7 using the GHZ-like state. The colour of the circles
helps to identify the payoffs plotted in Figure 5.35. The non-marked payoffs, which are constant, are marked as points in the same figure.

Bell-like state with I “ f9 , O “ f7

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u payoffs

λ11 “ 1?
2

t1, 1, 1, 0, 0, 0u
3

2
t1, 1, 0, 0, 0, 1u

0 ď λ11 ď
?
5´1
2

t0, 0, 0, 0, 0, 0u
3

4
r3 ´ 2λ211 p1 ` λ211 ´ λ411qs
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b

?
5´1
2

ď λ11 ď 1 t1, 1, 1, 1, 1, 1u
3

4
r1 ` 4λ411 ´ 2λ611s

?
5´1
2

ď λ11 ď

b

?
5´1
2

ttB2, tB2, tB2, tB2, tB2, tB2u
3

4
r1 ` 4λ411 ´ 2λ611s `

3 p1 ´ 2λ211 ` λ611q
2

2 r1 ´ 3λ211p1 ´ λ211qs

0 ď λ11 ď 1?
2

t0, 1, 1, 0, 0, 0u
1

4
r10 ´ 13λ211 ` 9λ411 ` 2λ611s

1?
2

ď λ11 ď 1 t1, 0, 0, 1, 1, 1u
1

4
r8 ´ 11λ211 ` 15λ411 ´ 2λ611s

0 ď λ11 ď
?
5´1
2

t0,´2tB2,´2tB2, 0, 0, 0u
9 ´ 33λ211 ` 35λ411 ` 30λ611 ´ 80λ811 ` 42λ1011 ´ 4λ1211

4 ´ 12λ211 ` 12λ411

?
5´1
2

ď λ11 ď 1?
2

t2tB2, 0, 0, 2tB2, 1, 1u
9 ´ 37λ211 ` 67λ411 ´ 70λ611 ` 56λ811 ´ 18λ1011 ` 4λ1211

4 ´ 12λ211 ` 12λ411

1?
2

ď λ11 ď

b

?
5´1
2

tuB2, 1, 1, uB2, 0, 0u
11 ´ 45λ211 ` 73λ411 ´ 54λ611 ` 26λ811 ´ 6λ1011 ` 4λ1211

4 ´ 12λ211 ` 12λ411
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b

?
5´1
2

ď λ11 ď 1 t1, vB3, vB3, 1, 1, 1u
´1 ` 7λ211 ` 5λ411 ´ 50λ611 ` 70λ811 ´ 18λ1011 ´ 4λ1211

4 ´ 12λ211 ` 12λ411

Tab. B.10: Social welfare for the Nash Equilibrium points in Table 5.10 for the game defined by I “ f9, O “ f7 using the Bell-like state. The colour of the squares
help to identify the payoffs plotted in Figure 5.37. The non-marked payoff, which is constant, is marked as a point in the same figure.

GHZ-like state with I “ f9 , O “ f10

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

λ111 “ 0
t1, 0, 1, 0, 1, 0u

3

2

t1, 0, 1, 0, 0, 1u

λ111 “ 1
t0, 1, 0, 1, 0, 1u

t0, 1, 0, 1, 1, 0u

λ111 “ 1?
2

t0, 0, 0, 1, 1, 0u
9

8
t1, 1, 1, 0, 0, 1u

0 ď λ111 ď 1 tvG, tG, vG, tG, vG, tGu
3 p1 ´ 3λ2111 ` 4λ4111 ´ 2λ6111 ` λ8111q

2 ´ 4λ2111 ` 4λ4111
‚
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0 ď λ111 ď 1?
2

t0, 0, 1, 1, 1, 0u
1

4
r7 ´ 8λ2111 ` 6λ4111s ‚

1?
2

ď λ111 ď 1 t1, 1, 0, 0, 0, 1u
1

4
r5 ´ 4λ2111 ` 6λ4111s ‚

0 ď λ111 ď 1?
2

t1, 2tG,´uG, 0, 0, 1u
1

4

„

7 ´ 4λ2111 ` 6λ4111 ´
1

1 ´ 2λ2111 p1 ´ λ2111q

ȷ

‚

1?
2

ď λ111 ď 1 t0, uG, 2vG, 1, 1, 0u
1

4

„

9 ´ 8λ2111 ` 6λ4111 ´
1

1 ´ 2λ2111 p1 ´ λ2111q

ȷ

‚

Tab. B.11: Social welfare for the Nash Equilibrium points in Table 5.11 for the game defined by I “ f9, O “ f10 using the GHZ-like state. The colour of the circles
help to identify the payoffs plotted in Figure 5.39. The non-marked payoffs, which are constant, are marked as points in the same figure.

Bell-like state with I “ f9 , O “ f10

Interval s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

λ11 “ 0
t1, 0, 1, 0, 1, 0u

3

2

t1, 0, 1, 0, 0, 1u
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λ11 “ 1
t0, 1, 0, 1, 0, 1u

t0, 1, 0, 1, 1, 0u

λ11 “ 1?
2

t0, 0, 0, 1, 1, 0u
9

8
t1, 1, 1, 0, 0, 1u

λ11 “
?
5´1
2

"

1 `
?
5

4
, 0,

1 `
?
5

4
, 0,

1 `
?
5

4
, 0

*

3

16

“

35 ´ 13
?
5
‰

« 1.112

λ11 “

b

?
5´1
2

"

3 ´
?
5

4
, 1,

3 ´
?
5

4
, 1,

3 ´
?
5

4
, 1

*

0 ď λ11 ď
?
5´1
2

tvB4, 0, vB4, 0, vB4, 0u
3 p2 ´ 7λ211 ` 8λ411 ´ 3λ811 ` λ1211q

4 ´ 12λ211 ` 12λ411

?
5´1
2

ď λ11 ď

b

?
5´1
2

tvB4, tB2, vB4, tB2, vB4, tB2u
3 p2 ´ 7λ211 ` 9λ411 ´ 6λ611 ` 8λ811 ´ 6λ1011 ` 2λ1211q

4 ´ 12λ211 ` 12λ411

b

?
5´1
2

ď λ11 ď 1 tvB4, 1, vB4, 1, vB4, 1u
3

”

1 ´ 3λ211 ` λ411

´

5 ´ λ211 p2 ´ λ211q
3
¯ı

4 ´ 12λ211 ` 12λ411

0 ď λ11 ď 1?
2

t0, 0, 1, 1, 1, 0u
1

4
r7 ´ 8λ211 ` 6λ411s
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1?
2

ď λ11 ď 1 t1, 1, 0, 0, 0, 1u
1

4
r5 ´ 4λ211 ` 6λ411s

0 ď λ11 ď 1?
3

tuB3, 0, 1, 0, uB3, 0u
6 ´ 21λ211 ` 24λ411 ´ 9λ811 ` 4λ1211

4 ´ 12λ211 ` 12λ411

1?
3

ď λ11 ď
a

3 ´
?
7 twB1 ` 3, 0, 0, uB3, 1, 0u

p´1 ` λ211q p´6 ` 17λ211 ´ 19λ411 ` 5λ611 ´ 8λ811 ` 4λ1011q

4 ´ 12λ211 ` 12λ411

a

3 ´
?
7 ď λ11 ď

b

3´
?
3

3

tvB4, 0, 0, 2 ` wB1 ` vB4, 6 ´ 23λ211 ` 40λ411 ´ 48λ611 ` 53λ811 ´ 24λ1011 ` 5λ1211
4 ´ 12λ211 ` 12λ4111, wB1 ´ vB4 ` 3u

b

3´
?
3

3
ď λ11 ď 1?

2
t1, 2pvB4 ´ uB3q,´wB1 ´ 1, 0, 0, 1qu

6 ´ 23λ211 ` 36λ411 ´ 24λ611 ` 5λ811 ` 12λ1011 ´ 4λ1211
4 ´ 12λ211 ` 12λ411

1?
2

ď λ11 ď 1??
3

t0,´uB3,´wB1, 1, 1, 0u
8 ´ 33λ211 ` 54λ411 ´ 36λ611 ` 5λ811 ` 12λ1011 ´ 4λ1211

4 ´ 12λ211 ` 12λ411

1??
3

ď λ11 ď
a?

7 ´ 2 tvB4, 1, 1, wB1 ` vB4, 0, wB1 ´ vB4 ` 1u
9 ´ 35λ211 ` 49λ411 ´ 24λ611 ` 8λ811 ´ 6λ1011 ` 5λ1211

4 ´ 12λ211 ` 12λ411
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a?
7 ´ 2 ď λ11 ď

b

2
3

twB1, 1, 1, 2vB4, 0, 1u
λ211 p7 ´ 18λ211 ` 12λ411 ` 13λ611 ´ 12λ811 ` 4λ1011q

4 ´ 12λ211 ` 12λ411

b

2
3

ď λ11 ď 1 t2vB4, 1, 0, 1, 2vB4, 1u
4 ´ 15λ211 ` 30λ411 ´ 44λ611 ` 51λ811 ´ 24λ1011 ` 4λ1211

4 ´ 12λ211 ` 12λ411

Tab. B.12: Social welfare for the Nash Equilibrium points in Table 5.12 for the game defined by I “ f9, O “ f10 using the Bell-like state. The colour of the squares
help to identify the payoffs plotted in Figure 5.43. The non-marked payoffs, which are constant, are marked as points in the same figure.
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GHZ-like state with I “ f15 , O “ f7

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

t1, 0, 0, 1, c211, c̃
2
11u

1

4
r7 ´ 2λ2111 ` 2λ4111s ‚

t0, 1, 1, 0, c211, c̃
2
11u

ta211, a
2
11, b

2
11, b

2
11, c

2
11, c

2
11u

3
2

Bell-like state with I “ f15 , O “ f7

s˚ “ ta211, ã
2
11, b

2
11, b̃

2
11, c

2
11, c̃

2
11u $A ` $B ` $C

t1, 0, 0, 1, c211, c̃
2
11u

1

4
r7 ´ 3λ211 ` 3λ411s

t0, 1, 1, 0, c211, c̃
2
11u

ta211, a
2
11, b

2
11, b

2
11, c

2
11, c

2
11u

3
2

Tab. B.13: Social welfare for the Nash equilibrium points in Table 5.13 for the game defined by I “ f15, O “ f7 using the GHZ-and Bell-like states. The colour of
the circle and square helps to identify the payoffs plotted in Figure 6.2g.
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I created this drawing about this research for the Intercultural Project at the 10th Heidelberg Laureate Forum from 24th - 29th September 2023 in Heidelberg,
Germany. The two types of sandwiches represent the bi-partite and tri-partite entanglement.
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