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An atlas of the heterogeneous viscoelastic brain with
local power-law attenuation synthesised using

Prony-series

Oisín Morrison ID , Michel Destrade ID and Bharat B. Tripathi ID *

School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway,
Ireland.

Abstract
This review addresses the acute need to acknowledge the mechanical heterogeneity of brain

matter and to accurately calibrate its local viscoelastic material properties accordingly. Specifi-
cally, it is important to compile the existing and disparate literature on attenuation power laws and
dispersion to make progress in wave physics of brain matter, a field of research that has the poten-
tial to explain the mechanisms at play in diffuse axonal injury and mild traumatic brain injury in
general. Currently, viscous effects in the brain are modelled using Prony-series, i.e., a sum of de-
caying exponentials at different relaxation times. Here we collect and synthesise the Prony-series
coefficients appearing in the literature for twelve regions: brainstem, basal ganglia, cerebellum,
corona radiata, corpus callosum, cortex, dentate gyrus, hippocampus, thalamus, grey matter, white
matter, homogeneous brain, and for eight different mammals: pig, rat, human, mouse, cow, sheep,
monkey and dog. Using this data, we compute the fractional-exponent attenuation power laws for
different tissues of the brain, the corresponding dispersion laws resulting from causality, and the
averaged Prony-series coefficients.

keywords— Brain matter, Heterogeneity, Brain viscoelasticity, Brain wave physics, Finite element
head models, Relaxation mechanisms, Power-law attenuation, Dispersion relations, Prony-series.

Glossary
We adopt the following conventions in this paper:

• We reserve the following meanings for line markers:

human
pig

cow
sheep

monkey
dog

rat
mouse

FE

Figure 1: Legends used for different animals. FE refers to data from finite element models.

• Owing to space limitations, it was not always possible to have legends given on all subplots. In
such cases, the legends on any of the subplots apply for all of the other subplots in the figure.

• When error regions are shown in figures, they correspond to the region spanned by the one
standard deviation errors of the parameters.
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1 Introduction
According to the World Health Organisation, neurological disorders are one of the greatest threats

to public health, with traumatic brain injury (TBI) being the leading cause of death and disability in
children and young adults around the world [1]. The problem is growing, and it is expensive as well
as life-threatening. In the Republic of Ireland alone, a small country of five million inhabitants, about
350 million euros were spent on TBIs in 2010, out of nearly 6 billion euros spent in total on brain
disorders [2]. It is thus of critical importance that a better understanding of TBI is achieved to help
combat this issue.

Most clinical indicators used for predicting TBI, typically linear and/or rotational accelerations,
are global and not appropriate to evaluate regional brain strains and strain rates. But these local
deformations and motions play an important role in the development of mild TBI events, such as
concussion in contact sports or repetitive impacts over a lifetime [3]. Hence there is a pressing need
for accurate material parameters that can be used in detailed finite element (FE) computer simulations
[4, 5], see Figure 2 for two recent models.

However, there is an enormous amount of variation in the viscoelastic parameters used by existing
FE models, due to dated experimental sources, differing testing protocols, temperature, type of tissue,
type of animal, post-mortem times, tissue preservation modes, and many other factors. The brain
is also often considered as a homogeneous tissue from the point of view of viscoelastic properties,
while it has been experimentally observed to be heterogeneous in that respect [6]. The disparity in
experimental data and the assumption of homogeneity are problematic when it comes to studying
mild TBI, because they lead to very different predictions when the same event is simulated, as shown
by Zhao et al. [7], see Figure 3.

(a) (b)

Figure 2: Two recent Finite Element (FE) head models, incorporating differing elastic properties for
different areas of the brain, but the same (homogeneous) viscoelastic data everywhere. (a): The finite
element mesh of the high fidelity 3D model from Imperial College London [8]. Colour coding is:
skin (red), skull (light blue), cerebrospinal fluid (green), grey matter (yellow), white matter (brown)
and ventricles (dark blue). (b): The UCD Head Trauma model, originally designed by Horgan and
Gilchrist [9] (picture taken from Cinelli et al. [10]). Note that its most recent version does include
viscous heterogeneity [11].

Recently shear shock waves were generated and observed experimentally in the brain, and pro-
posed as a possible explanation for diffuse axonal injury [12, 13], a major type of TBI. Furthermore,
in direct impact injuries, it has been observed that injuries can occur far from the point of impact
[14]. The reason for this distant effect has not yet been established, but the formation of shear shock
waves has been hypothesised to be a possible mechanism. Theoretically, cubic non-linearity must be
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invoked to model these nonlinear shear waves [15]; it follows that they generate mostly odd harmon-
ics [16], and very high local accelerations [17]. Importantly, these high local accelerations are not
generated instantantly instead are a result of cumulative nonlinear effect. The maximum acceleration
is reached after a few centimetres of propagation in brain, before dissipating. Recent studies in 2D
head phantoms have furthermore shown that this mechanism can predict peak accelerations far from
the point of impact [17, 18]. This is thus a promising and important hypothesis to test because it
could have major repercussions for the prediction and understanding of TBIs, the design of helmets
and other protective headgear, and the suitability of existing finite element (FE) models for modelling
TBI. Importantly, a biofidelic modelling of the wave physics involved in shear shock wave formation
and propagation requires accurate experimental data for the heterogeneous material properties of the
brain – specifically, attenuation power laws and dispersion relations.

Figure 3: When the same FE model is used to simulate the same high-velocity impact, but with
different material parameters from the experimental literature, it yields very different predictions of
the cumulative maximum principal strains generated [7]. Here the experimental data is taken (left to
right) from Refs. [19, 20, 21, 22, 23, 24]

To the best of our knowledge, there exists only one map detailing the viscoelastic properties of
the heterogeneous brain, namely the recent paper by Hiscox et al. [25]. In that work, the authors
collect storage and loss moduli data using a shear wave at the given frequency of 50 Hz and magnetic
resonance elastography (MRE) imaging. They give this data for subcortical grey matter structures,
white matter tracts, and regions of the cerebral cortex.

In this paper, we go a step further by providing viscoelastic data, used in FE models and recent
experimental data, valid for multiple frequency ranges and for twelve key regions of the brain: brain-
stem, basal ganglia, cerebellum, corona radiata, corpus callosum, cortex, dentate gyrus, hippocampus,
thalamus, grey matter and white matter, and homogeneous brain. We also provide viscoelastic data
also for eight different animals: pig, rat, human, mouse, cow, sheep, monkey and dog. We con-
glomerate multiple Prony-series data, the most common implementation of viscoelastic effects used
in current state-of-the-art FE models. From this data, we synthesise average attenuation power laws,
dispersion relations and also Prony-series.

2 Theoretical background
Soft solids like tissues are often modelled using hyperelastic models capable of describing large

strain nonlinear deformations. At the same time, tissues are often highly attenuating and dispersing,
i.e, the excitation amplitude decays with time and distance, and different frequencies travel at dif-
ferent speeds. Conventionally these effects are modelled using the linear [26] and quasi-linear [27]
viscoelastic theories.

2.1 Linear viscoelasticity
In linear viscoelasticity, the stress response to a constant strain decreases with time, a feature

which is referred to as the stress relaxation of the material. This is modelled using the fading memory
or hereditary integral:

σ(t) =
∫ t

−∞

m(t − τ)ε(τ)dτ := m(t)∗ ε(t), (1)
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where σ(t) is the stress (in Pa), ε(t) is the strain (dimensionless), and m(t − τ) is the instantaneous
stress-response function to an impulse in strain ε(τ) imposed at time τ for the time interval t − τ .
This is the so-called convolution operation, denoted by “∗”. In the frequency space, this hereditary
integral can be written as

σ(ω) = M(ω)ε(ω), (2)

where M(ω) is the dynamic modulus, corresponding to the impulse response of the material.
However, in solid mechanics, the step-response is often more relevant than the instantaneous

response. The memory integral can be rewritten as:

σ(t) =
∫ t

−∞

g(t − τ)
∂ε(τ)

∂τ
dτ = g(t)∗ ∂ε(t)

∂ t
=

∂g(t)
∂ t

∗ ε(t), (3)

where g(t) is the stress response to unit-step strain, often called the relaxation function. The last
equality in the above equation is due to the commutative property of the convolution integral. Also,
equation (1) and equation (3) give the connection

m(t) =
∂g(t)

∂ t
, (4)

or in frequency space
M(ω) = iωG(ω), (5)

leading to
σ(ω) = M(ω)ε(ω) = iωG(ω)ε(ω), (6)

where G(ω) is the complex relaxation modulus.
Conventionally, the relaxation functions presented in the TBI literature are approximated using a

Prony-series of decreasing exponentials,

g(t) = M∞ +
N

∑
j=1

M j exp(−t/τ j), (7)

where τ j =η j/M j ( j = 1, . . . ,N) corresponds to the jth Maxwell element, which is a Hookean element
with elastic modulus M j placed in series with a Newtonian element with coefficient of viscosity η j.

Note that g(0) = M∞ +∑
N
j=1 M j =: M0, which defines the latter quantity. Then a dimensionless

Prony-series ĝ(t) with ĝ(0) = 1 can be defined as

ĝ(t) = M̂∞ +
N

∑
j=1

M̂ j exp(−t/τ j), (8)

where M̂ j = M j/M0.
In frequency space, the corresponding dynamic modulus, M(ω), or relaxation modulus, G(ω),

can be written as

M(ω) = iωG(ω) = M∞ +
N

∑
j=1

M j
iωτ j

1+ iωτ j
. (9)

Using this complex modulus, the attenuation attenuation in soft solids can be quantified using the
quality factor Q(ω) defined as [28]

Q(ω) =
Re{M(ω)}
Im{M(ω)} =

M′(ω)

M′′(ω)
, (10)
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where M′(ω) = Re{M(ω)} and M′′(ω) = Im{M(ω)} are the storage modulus and the loss modulus,
respectively, given explicitly by

M′(ω) = Re{M(ω)} = M∞ +
N

∑
j=1

M j
ω2τ2

j

1+ω2τ2
j
, (11)

M′′(ω) = Im{M(ω)} =
N

∑
j=1

M j
ωτ j

1+ω2τ2
j
. (12)

Note that whilst these equations can be evaluated for any value of ω , it is not physically meaningful
to evaluate them over all frequencies as the Prony-series are fitted over a finite time interval. Specif-
ically, it is valid to evaluate these functions at the (angular) frequencies ω = β j, j = 1, . . . ,N, where
β j = 1/τ j. A suitable frequency range can thus be computed from the Prony-series coefficients as
[min j β j,max j β j]. In the case of a one-term Prony-series, this would give a single point and thus then
the extended frequency range [0.1β1,10β1] is used, see Nicolle et al. [20, 29]. This is also consistent
with conventions of the commercial finite element solver Abaqus [30].

The other physical behaviour associated with the attenuation is dispersion due to causality [31].
Consider the linear shear wave equation in an elastic media,

∂ 2u
∂ t2 =

1
ρ

∂σ

∂x
=

µ

ρ

∂ 2u
∂x2 = c2 ∂ 2u

∂x2 , (13)

where ρ is the mass density, µ is the shear modulus, and c =
√

µ/ρ is the shear wave speed. On
substituting the harmonic solution

u = exp[i(ωt − kx)], (14)

where u is the particle displacement, ω is the angular frequency, and k is the wavenumber, we find
the following connection for the phase velocity c,

c = ω/k. (15)

Now consider the viscoelastic case as in [32], where

σ = m(t)∗ ε = m(t)∗ ∂u
∂x

, (16)

so that the wave equation reads

ρ
∂ 2u
∂ t2 = m(t)∗ ∂ 2u

∂x2 . (17)

Taking the Fourier transform F with respect to time of the above equation gives

(iω)2F{u}= M(ω)

ρ

∂ 2

∂x2 F{u}. (18)

To calculate the right hand side of the above equation, let us rewrite equation (14) as

u(x, t) = exp(iωt)exp(−iK(ω)x), (19)

where K(ω) is the complex wavenumber in the viscoelastic media. Then equation (18) gives

K(ω)

ω
=

√
ρ

M(ω)
. (20)
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Equation (14) can be rewritten using K(ω) = K′(ω)+ iK′′(ω) as

u = exp{K′′(ω)x}exp{i(ωt −K′(ω)x)}, (21)

showing that the (real) phase velocity c is given by

1
c(ω)

=
K′(ω)

ω
= Re

{√
ρ

M(ω)

}
. (22)

Note c(ω) is not a Fourier transform, it is just a function in frequency space. Equation (22) further-
more yields two solutions but only the principal solution is valid (the other yields c(ω) < 0), which
is unphysical).

The two quantities Q(ω) and c(ω) are then used to compute the attenuation α(ω) via the relation
[33, 32]:

Q(ω) =
1
2

[
ω

c(ω)α(ω)
− c(ω)α(ω)

ω

]
. (23)

On solving this quadratic equation in α(ω) we get

α(ω) =
−Q+

√
Q2 +1

c(ω)/ω
, (24)

while ignoring the non-physical solution where α(ω)< 0.
Alternatively, the attenuation of transient waves like ultrasound/shear wave in soft solids is com-

monly characterized using a fractional-exponent power law,

α(ω) = aω
b = α0 f b, (25)

where a, b and α0 are constants. Alternatively, in log-log space, lnα follows an empirical linear law:
lnα = lna+b lnω .

2.2 Quasi-Linear Viscoelasticity
For large amplitude deformations, assuming a linear behaviour is no longer valid as the stress

and strain exhibit a nonlinear relationship of relaxation. Fung [27] proposed the concept of quasi-
linear viscoelasticity (QLV), with the assumption of multiplicative decomposition of the stress into
a dimensionless relaxation function of time ĝ(t) with ĝ(0) = 1 and the instantaneous elastic stress
dσe(t)/dt. On applying the superposition principle, we get

σ(t) =
∫ t

0
ĝ(t − τ)

dσe(τ)

dτ
dτ =

∫ t

0

dĝ(t − τ)

dτ
σe(τ)dτ =

∫ t

0
m̂(t − τ)σe(τ)dτ. (26)

The QLV formulation therefore ends up using the entire mathematical formulation of linear viscoelas-
tic theory as described in the previous section. We can then relate g(t) and ĝ(t), as:

g(t) = M0ĝ(t) = M∞ +
N

∑
j=1

M je−t/τ j , (27)

where M0 is the instantaneous shear modulus of the hyperelastic strain energy density. Table 1 gives
the expressions for M0 of some commonly used hyperelastic models.

These two viscous modelling approaches are the two most common approaches used for describ-
ing viscoelastic effects. Another approach is the fractional viscoelastic model [34], which is still not
fully adopted due to its mathematical complexities.
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Hyperelastic Model W M0

Neo-Hookean 1
2 µ (I1 −3) µ

Mooney-Rivlin C1 (I1 −3)+C2 (I2 −3) 2(C1 +C2)

2-term Polynomiala C10 (I1 −3) + C01 (I2 −3) +
C20 (I1 −3)2 +C02 (I2 −3)2

2(C10 +C01)

Ogden ∑
N
n=1

µn
αn

(
λ

αn
1 +λ

αn
2 +λ

αn
3 −3

) 1
2 ∑

N
n=1 µnαn

Gasser-Ogden-Holzapfelb 1
2 µ (I1 −3)+ k1

2k2

[
ek2(I1−3)2 −1

]
µ

a
Without cross term C11 (I1 −3)(I2 −3)

b
In the isotropic case

Table 1: Instantaneous shear moduli of common hyperelastic strain-energy densities.

2.3 Calculating Prony-series from attenuation power laws
It is possible to compute averaged attenuation power laws from the data, but many current models

are heavily reliant on the use of Prony-series. As a result, it is important to provide a means of
determining averaged Prony-series from an attenuation power law α(ω) = aωb, valid over an angular
frequency range [ω1,ω2].

Firstly, the dispersion can be calculated for ω ∈ [ω1,ω2] via the Kramers-Kronig relation [31]:

1
c(ω)

− 1
c(ω0)

=

 a tan
(bπ

2

)
(ωb−1 −ω

b−1
0 ); when b ∈ (0,2)\{1}

− 2
π

aωb
0 (lnω − lnω0); b = 1

. (28)

Note that this calculation requires a reference value c(ω0). Furthermore, we note that the case b = 1
will not occur for our fitted parameters.

Ergo, using equation (28) and equation (23), one can directly compute the inverse quality fac-
tor. Recall that the inverse of the quality factor is also directly obtainable from a Prony-series via
equation (10), and note that the value of M0 does not influence the quality factor. This means that
a dimensionless Prony-series with parameters M̂ j =

M j
M0

can also be used. It is thus possible to write
directly:

Q(ω) =
1
2

[
ω

aωbc(ω0)

(
ac(ω0) tan

(
bπ

2

)
(ωb−1 −ω

b−1
0 )+1

)
−aωbc(ω0)

ω

(
ac(ω0) tan

(
bπ

2

)
(ωb−1 −ω

b−1
0 )+1

)−1
]

(29)

=
M̂∞ +∑

N
j=1 M̂ j

ω2τ2
j

1+ω2τ2
j

∑
N
j=1 M̂ j

ωτ j

1+ω2τ2
j

.

Thus, together with the additional constraint that M̂∞+∑
N
j=1 M̂ j = 1, it is possible to directly curve fit

the N-term Prony-series once given N. As per Abaqus recommendations, the order of the Prony-series
should not be larger than the number of logarithmic decades spanned by the test data [30]. Thus, this
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furthermore sets N as

N =
⌊

log10

(
ω2

ω1

)⌋
. (30)

Lastly, it remains to compute the value of M0, which is done via the formula [33]

M0 = ρc(ω0)
2 |M̂(ω0)|+Re{M̂(ω0)}

2|M̂(ω0)|2
, (31)

where M̂(ω) refers to the dynamic modulus derived using the dimensionless Prony-series.

3 Methods
3.1 Overview of the literature review

We collected a total of 181 differing Prony-series from 48 different experimental papers, spanning
twelve regions of interest and eight different animal types, see in the supplementary materials. The
cortex was the most commonly measured region in the dataset, with 43 Prony-series. The other
tissues had fewer data: brainstem (23), corona radiata (19), homogeneous brain (19), cerebellum
(18), hippocampus (18), corpus callosum (17), thalamus (11), dentate gyrus (7) and basal ganglia (6).
We also made a point of collecting data on the species used in the experiments, to investigate the
effects of surrogate tissues. The most commonly used animal surrogate was porcine tissue, with 56
Prony-series. A total of eight different types of animals were used in our collected experimental data
- namely, rat (52), human (45), mouse (13), cow (12), sheep (1), monkey (1), and dog (1).

We only collected recent experimental data (from the past 25 years), from a variety of experimen-
tal protocols, including indentation tests, shear tests, tensile tests and compression tests. All of these
protocols were testing ex-vivo brain tissue.

In-vivo testing is possible by magnetic resonance elastography (MRE), but there are some limi-
tations and assumptions associated with current MRE methods [35, 36, 37]. Indeed, large discrep-
ancies between various MRE measurements exist, sometimes by an order of magnitude [35]. There
are also discrepancies between the results of mechanical tests and elastography results, such as for
uniaxial compression [38]. Budday et al. [39] noted this discrepancy for experiments looking into
age-dependence for brain tissue. There are also issues with reconstruction methodologies for MRE
[40, 41]. Consequently, we did not collect MRE experimental results here, to remove this source of
additional variation.

The data was averaged irrespective of experimental protocols, species, sex, temperature, or other
factors. Ordinarily this approach might be problematic, because it is well known that factors such as
age [37, 42], sex [43, 44], animal [45, 46], experimental protocol [47, 48], temperature [49, 50, 51],
preservation [52], humidity [53] and post-mortem time [54, 55] do influence experimental results for
brain. As a result, comparison between different experimental results is difficult and studies often
only compare with experiments using similar techniques [56, 6]. Nonetheless, current FE models are
using data from a range of experiments using different protocols. Therefore, for better understanding
the data, a comparison of experimental data must be undertaken regardless of experimental protocols
and other factors. Furthermore, such is the degree of variation in parameters reported in the literature,
that these influences can be largely neglected in comparison. For example, Chatelin et al. [47] found
in their review that the disparity in results was independent of experimental protocol.

In relation to Prony-series used in FE models, we found a total of 31 unique Prony-series. A total
of 23 different FE models were considered in this work. In alphabetical order, they are the following:
ADAPT [57], ANISO KTH v1 [58], ANISO KTH v2 [59], ATLAS [60], Cai et al. (CAI) [61], Chen
et al. (CHEN) [62], ICM [8], Khanuja & Unni (KHANUJA) [63], KTH v2 [64], SIMON v0 [65],
SIMON v1 [66], Subramaniam et al. (SUBRAM) [67], Tse et al. (TSE) [68], UCD v1 [9], UCD v2
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[11], WSUBIM [69], Yang et al. (YANG) [70], ULP v0 [71], ULP v1 [72, 73], WHIM 1 [74], WHIM
2 [75, 76], Yang et al. (YANG) [70] and YEAHM [77, 78] models. The most commonly modelled
tissue is the homogeneous brain, with 12 different Prony-series. Most data consist of only one-term
Prony-series. The same problems with variations due to differing experimental protocols also apply to
these datasets. Furthermore, there are also multiple instances of differing Prony-series being derived
from the same experimental sources. This discrepancy is due to differences in fitting methods. In
some cases, even the order of the Prony-series can change between studies - for example, from the
data of Shuck and Advani [79], the WHIM v2 model obtains a 2-term Prony-series [75, 76], whilst
the models of Yang et al. [70], Tse et al. [68], Chen et al. [62] and ULP v0 [71] have a one-term
Prony-series.

We also note that FE models are not always using experimental results directly. There are a
number of models which have opted to use optimisation schemes based on running many simulations
and picking parameters which best reproduce experimentally determined histories, such as from the
data of Hardy et al. [80]. This approach is problematic because the parameter optimisation results
now depend upon intrinsic properties of the model such as the geometry. This means that even while
using the exact same validations, different models can yield substantially different predictions [81].

Another common practice in FE models (and also in various experimental papers) is that the hy-
perelastic and viscoelastic response are separately modelled. These effects can be either additively
decomposed using the theory of linear viscoelasticity (section 2.1) or multiplicatively decomposed
using the theory of quasi-linear viscoelasticity (section 2.2). Some groups tend to merge different
experimental data: they source viscoelastic properties and hyperelastic properties from different ex-
periments and combine them together. However, one can obtain different fits for each hyperelastic
model; this can be seen in the work of MacManus et al. [82] and Eskandari et al. [83]. Furthermore,
using different hyperelastic models essentially amounts to altering the value of M0. This is frequently
done in FE models e.g. the KTH model [84] simply scales the data by a factor of 2, and the ULP
v1 [73] model scales the data from the results of the 1977 paper of Khalil et al. [85]. However, this
scaling affects both the attenuation and dispersion and thus changes the mechanical behaviour of the
tissue compared to the original model from the original experimental paper.

We performed a thorough literature review of experimental papers and of computational simula-
tion papers, with a total of more than 100 research articles. Most of the finite element method (FEM)
based numerical solvers use viscoelastic material properties from the thirteen papers presented in Ta-
ble 2. Many of the FEM solvers currently assume that brain is a homogeneous material, and only
implement a single-term Prony-series, mostly with the assumption of linear viscoelasticity. Some
recent FEM implementations use the QLV implementation.

We gathered the viscoelastic properties, specifically, the Prony-series parameters implemented
in the FEM solvers as well as those recorded in the experimental papers for different tissue types,
namely: 1) homogeneous brain, 2) brainstem, 3) basal ganglia, 4) cerebellum, 5) corona radiata, 6)
corpus callosum, 7) cortex, 8) dentate gyrus, 9) hippocampus, 10) thalamus, 11) grey matter and 12)
white matter. These regions are depicted in Figure 4. A total of 8 different animals were considered:
namely, pig, rat, human, mouse, cow, sheep, monkey and dog. In the main article, we provide a
detailed analysis of the viscoelastic behaviour of the homogeneous brain as used in FEM solvers, and
relegate the viscoelastic properties of other tissue types to the supplementary material.

Some models include anisotropy [96, 97, 58, 59, 75, 76] or porosity [98, 53] in addition to linear
or quasi-linear viscoelasticity, but we did not report these effects (in general, fibre reinforcement
does not contribute significantly to the mechanical response in the parallel or perpendicular shearing
directions [96]). Similarly, we ignored compressibility because brain matter is mostly incompressible
[99].

Furthermore, experimental papers oftentimes provided multiple Prony-series fits for the same re-
gion, but with differing strain rates [100, 101, 102], strains [103, 104, 105], indentation depths [106],
loading rates [48], impact angle [107], velocity [107], loading modes (e.g. tension, compression,
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Thalamus

Corpus Callosum

Cortex

Corona Radiata

Basal Ganglia
Dentate Gyrus

Brainstem

Hippocampus

Cerebellum

Grey Matter

Homogeneous Brain White Matter
 α(f) = 0.70f0.91  α(f) = 1.12f0.84

 α(f) = 1.15f0.87

 α(f) = 1.07f0.79

 α(f) = 1.30f0.93

 α(f) = 1.05f0.89

 α(f) = 0.92f0.89

 α(f) = 0.95f0.97

 α(f) = 1.30f0.89

 α(f) = 0.93f0.88

 α(f) = 1.08f0.89

 α(f) = 0.81f0.86

Figure 4: Schematic of brain sections coronal (left) and saggital (right) with twelve different attenua-
tion power laws with nine different regions (basal ganglia, brainstem, corona radiata, corpus callosum,
cortex, dentate gyrus, hippocampus, and thalamus) and the remaining three summarising the white
matter, grey matter and the homogeneous brain.

shear etc.) [24], direction relative to fibres [97, 108], loading cycle [109], boundary condition [110],
preconditioning or no preconditioning [24, 48, 106], injured or uninjured tissue [106], plane of exper-
iment [86, 108, 111], and animal age [112, 113, 114, 115, 86]. Having many Prony-series come from
a given study was not desirable because that study would disproportionally affect the final, averaged,
results and because it is well known from previous literature reviews that viscoelastic parameters may
vary immensely from one study to another [39, 56, 47]. As a result, we decided to take fits from
mature and uninjured tissue only. When choice was available, we took fits for the highest strain rate,
strain, indentation depth and velocity. When available, we took data for all modes, the first loading
cycles, and no slip boundary conditions. Fits in directions orthogonal fibres were also preferred, to
neglect anisotropic effects. Data from the axial plane was preferred because slices are more homoge-
neous along this plane; if that data was unavailable, then the sagittal plane was taken instead. Finally,
if neither of these were available, the coronal plane was taken. Impact angles of 0 degrees were also
preferred. Lastly, preconditioned fits were taken when available, as they were observed to be closer
to the other data, and also some unconditioned fits were found to have M∞ = 0 [106], which it un-
physical as is corresponds to a fluid. Cases where different Prony-series were provided for different
locations within the same region were kept, and highest order Prony-series were taken in all cases.
When differing fits were provided for different animals [86, 116, 90], these were also kept and the
animal type was recorded.

For Prony-series fits used in FE models, we found that only a single FE model provided specific
viscoelastic parameters for the corpus callosum [61]. This fit was thus considered as white matter
owing to a lack of other data. Similarly, only one FE model provided viscoelastic properties for the
cerebrum [68], so this was included within the homogeneous brain data for FE models.

Following the literature review, we focused on a total of six key quantities: the relaxation function
g(t), storage modulus M′(ω), loss modulus M′′(ω), inverse quality factor Q−1(ω), dispersion c(ω)
and attenuation α(ω).

We adopted a workflow consisting of five key steps to analyse the different viscoelastic parameters
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Reference Year Species FE Model(s)
MacManus et al. [86] 2017 Rat UCD v2 [11]
Miller et al. [60]b 2016 - ATLAS [60]
Rashid et al. [87] 2012 Pig Khanuja-Unni [63], YEAHM [77, 78]
Kleiven [84] (using data
from Nicolle et al. [29])

2005 Pig ADAPT [57], ICM [8], KTH v2 [64]

Cloots et al. [88] (using
data from Nicolle et al.
[29])

2005 Pig ANISO-KTH v1 [58], ANISO-KTH v2 [59],
WHIM v1 [74]

Zhang et al. [89]a 2004 - Chen & Ostoja-Starzewski [62]
Willinger & Baumgartner
[72]a

2003 - ULP v1 [72, 73]

Takhounts et al. [90] 2003 Human Cai et al. [61], SIMon v1 [66]
Zhang et al. [69]b 2001 - Tse et al. [68], UCD v2 [11], WSUBIM [69],

Yang et al. [70]
Willinger et al. [71] (using
data from Shuck & Advani
[79])

1972 Human Tse et al. [68], ULP v0 [71], Yang et al. [70]

Zhang et al. [91] (using data
from Shuck & Advani [79])

1972 Human Tse et al. [68], Yang et al. [70]

Zhao & Ji [76] (using data
from Shuck & Advani [79])

1972 Human WHIM v2 [75, 76]

Mendis et al. [92] (using
data from Estes & McEl-
haney [93])

1970 Human Subramaniam et al. [67], UCD v1 [9]

a No experimental viscoelastic source was found
b These papers use optimised parameters selected to match experiment results and thus thus do not
come directly from experimental viscoelastic data. For example, Zhang et al. [91] used datasets such as
pressure data by Troseille et al. [94] and Nahum et al. [95] for optimisation.

Table 2: Sources of experimental viscoelastic data (in chronological order) used by 19 current
state-of-the-art FE models for the obtention of dimensionless Prony-series ĝ(t)

extracted from the literature, see summary in Figure 5. The steps are as follows.

3.2 Forward calculation
• The coefficients of the Prony-series, M j and β j = 1/τ j, j = 1, . . . ,N, are recorded for each

study during the literature review. These values together can be used to create the relaxation
function g(t) using equation (7), or alternatively to calculate the dimensionless parameters M̂ j
along with the instantaneous shear modulus M0 via equation (8).

• The Prony-series data is then used to calculate the storage modulus M′(ω) via equation (11)
and the loss modulus M′′(ω) via equation (12).

• With the help of the loss and storage moduli, the inverse quality factor Q−1(ω) is calculated
using equation (10) along with the dispersion relation c(ω) via equation (22). A mass density
ρ = 1,000 kg/m3 was used for all tissues.

• Using the quality factor and the dispersion, the attenuation power law α(ω) is calculated from
equation (23).
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Figure 5: The workflow process consists of five steps: (a) forward calculation, (b) average power law
calculation, (c) backward calculation, (d) averaged Prony-series fitting and (e) re-calculation.

3.3 Average power law calculation
Now attenuations are calculated for each of the Prony-series. It is then possible to synthesise an

averaged attenuation power law from these calculated curves. Specifically, we conduct a linear fit in
the log-log space using the α(ω) laws evaluated only at the frequencies corresponding to their Prony-
series decay coefficients ω = β j, j = 1, . . . ,N. The valid frequency range of a fit was then taken to be
[min j β j,max j β j]. Fits were only undertaken if there were at least three datapoints.

3.4 Backward calculation
Following the average power law calculation, we obtain an averaged power law α(ω) = aωb.

Using a reference value of c = 2.1 m/s at a frequency of 75 Hz derived from experiments on homoge-
neous brain tissue [12, 17], it is possible to calculate the dispersion from the Kramers-Kronig relation
as defined in equation (28). The quality factor can then subsequently be calculated using the derived
attenuation and dispersion laws via equation (23).

3.5 Averaged Prony-series fitting
The backward calculation yields quality factors valid over a range of angular frequencies [ω1,ω2].

From this data, it is then possible to directly perform a curve fitting exercise for the dimensionless
Prony-series parameters as per equation (29). The order of the Prony-series is set by equation (30).
Here, we evaluated the inverse quality at 1,000 equally spaced points on log-scale, which we call
logarithmically spaced points in the valid interval [ω1,ω2]. Curve fitting with scipy’s curve_fit func-
tion [117] is then undertaken with the parameters M j constrained on [0,1] and the parameters β j
constrained on [ω1,ω2]. Because it was known that all parameters must be positive to be physically
meaningful [118], a softplus transform was also used to ensure this requirement. Once the dimension-
less parameters were fitted, we calculated the instantaneous shear modulus M0 using equation (31).
Again, we used the references values ρ = 1,000 kg/m3 and c = 2.1 m/s at 75 Hz . Then the fitted
Prony-series is entirely defined. Lastly, we also provide the attenuation power laws used, so that users
can conduct their own Prony-series fits if desired.
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4 Results and discussion
4.1 Anomalies in Prony-series

In some cases, Prony-series predictions were found not in line with the general data. Specifically,
a number of Prony-series were found to predict an inverse quality factor greater than 1. This has
problematic physical implications - a dissipation factor greater than 1 would correspond to the case
where more energy is dissipated than the total energy of the wave [118]. As a result, corrections to
these series were required in order to make them comparable to the general data. To this end, the
dimensionless series was truncated by entirely removing the highest frequency term in the series. All
other terms in the series were left unchanged. With this, the quality was then found to be strictly below
1 for the range of valid frequencies as desired. However, conducting such a truncation will necessarily
alter either the value of M0, or of M∞. A choice thus must be made on which quantity to keep constant.
In this work, M0 was kept constant since this is a more robust experimental quantity than M∞. That is,
it is physically impossible to measure M∞ since this would require waiting for an infinite amount of
time. Thus, instead in experiments a large time is used instead to find the value at t → ∞. However,
since this cut-off time is arbitrary, this means that values of M∞ can vary. Furthermore, we found that
the keeping M0 constant yielded results more in line with our general findings.

Figure 6 shows the original Prony-series (in grey color) and the truncated series (in color). These
Prony-series are primarily derived from Nicolle’s work [20] and has been used by the ANISO KTH
models and its variants, Imperial College, and Worchester models. As clearly evident from the right-
subplot, the unphysical case of Q−1 ≥ 1 is present for high frequencies. On the other hand, the
truncated Prony-series indeed produce Q−1 < 1, however, this truncation does over estimate g(t) with
respect to the original series. Nevertheless, the truncated Prony-series produce results consistent with
the average results.
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Figure 6: Anomalous Prony-series predictions (grey) and their corrected versions (coloured) for (a)
the relaxation function and (b) inverse quality factor.
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4.2 Attenuation power laws in homogeneous brain
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Figure 7: Derivation of attenuation and dispersion laws from each of the Prony-series used in FE
models. Shown are the predictions for (a) the relaxation function, (b) storage modulus, (c) loss
modulus, (d) inverse quality factor, (e) dispersion and finally (f) attenuation.

Most of the computational models still use the homogeneous assumption while describing the
viscoelastic properties of the brain matter. In this section, we consider the different Prony-series used
in the common FE models describing the homogeneous brain deformation.

The Prony-series collected were fitted using equation (7) which gives a continuous function as
shown in Figure 7a. Most of the relaxation functions are close to each other except the one from Tse
et al. [68] and ULP v0 [71] (light-blue), which uses the experimental data from Shuck and Advani
[79].

We observed that most of the Prony-series are one-term, which greatly limits the frequency range
they can capture. From the collected data, only models using data from Nicolle et al. [29] are able to
capture frequencies greater than 100 Hz. This limits the scope of possible applications. For example,
road traffic and low-velocity missile impacts are associated with higher frequencies, on the order of
0.1-10 kHz [20].
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There is also a significant variation in the Prony-series data. Even FE models using the same
experimental source can have different Prony-series fits. The variation is unsurprising given the ex-
perimental sources summarised in Table 2, many of which are 50 years old. This reliance on dated
experimental data is problematic because experimental protocols have changed greatly over the past
50 years thanks to new experimental data and approaches [56]. Studies indicating temperature and
post-mortem time effects have lead to newer experimental approaches with better controls. For ex-
ample, the data from the work of Shuck and Advani in 1972 [79] is an outlier, overestimating both
the storage and loss moduli as compared to other studies [47, 56]. This data was obtained hours after
autopsy, which itself may have been hours or days post-mortem. This issue is particularly problematic
as it is well known that brain tissue stiffness increases quickly with post-mortem time. Weickenmeier
et al. [54] found that within 16 hours post-mortem, the loss and storage moduli were twice as stiff.

Notwithstanding these extra considerations, there are large variations in the experimental proto-
col used in experiments in general [56], which makes it difficult to get consistency between results.
However, as seen in Table 2, these older papers are some of the few experimental studies on human
brain that are being used in FE models. The experimental data used by the UCD v2 [11] model from
MacManus et al. [86] are obtained from experiments on rats, which is not ideal because the structure
of the rodent brain is considerably different to that of a human [114]. Dai et al. [46] recommend
instead the use of experimental data from large animals (e.g. pig, rabbit, sheep, etc.) above rodents
when data from human brains are not available, and Nicolle et al. [20] report no significant difference
in viscoelastic behaviour between porcine and human brain matter.

Furthermore, the assumption that the brain is homogeneous with respect to viscoelastic properties
is weak, as results can vary greatly depending on what region of the brain is being considered [86].
It is thus important that the data for the homogeneous brain be taken from a representative region.
However, the data of Nicolle et al. [29] and of Shuck & Advani [79] are in fact obtained from the
corona radiata region. This is a white matter region which is mechanically quite different from the
mixed white-grey matter region studied by Rashid et al. [119].

Predicted quantities from the collected Prony-series for the homogeneous brain as used in FE
models are shown in Figure 7. In general, most Prony-series are only one-term series and span low
frequency ranges, with the major exceptions of ADAPT [57], ANISO KTH v1 [58], ANISO KTH
v2 [59], WHIM v1 [74], ICM [8] and KTH v2 [64], which use the data of Nicolle et al. [29]. It is
worth mentioning that the data from the YEAHM model [77, 78] and Khanuja & Unni model [63] is
a two-term Prony-series, coming from the fit of Rashid et al. [87]. However, the decay coefficients
β1 = 38.895 Hz and β2 = 38.911 Hz for this series are so close that an extended frequency range
was also used to match a one-term Prony-series. Ignoring the extended range of the fit from Nicolle
et al. [29], the data lies in the region of t ∈ [10−3,100]. Looking at Figure 7a, the data used by the
Tse et al. and ULP v0 models [68, 71] and the models of Cai et al. and SIMon v1 [61, 66] are the
outliers. The data is found to span many logarithmic decades, and in fact shows a greater degree of
variation in comparison to the review of Chatelin et al. [47] which found data varying within almost
two decades (g(t) ∈ [20,8000]). Furthermore, the data from FE models is substantially stiffer than
that of experimental papers, including both those of the review of Chatelin et al. , and also from this
work (see supplementary materials). In contrast, the experimental data found in this work compares
well to that in the review of Chatelin et al. , showing that is indeed an issue associated specifically
with FE model data.

The outlier datasets of Figure 7a are worth further discussion. First, the major outlier is the series
of Tse et al. [68] and ULP v0 models [71] (light blue), which comes from the study of Shuck &
Advani [79]. As already discussed, this data is substantially stiffer than the rest of the literature.
Furthermore, there is a second outlier: the relaxation modulus data of Takhounts et al. [90] used in
the Cai et al. and SIMon v1 [61, 66] models (purple) is lower than that in the rest of the literature.
In that experiment, the tissue was stored by freezing and experimented on between 3 and 24 hours
post-mortem. Other experimental sources used in FE models differ in this regard. For example, the
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experiment of Nicolle et al. [29] (used in ADAPT [57], KTHv2 [64], ANISO KTH v1 [58], ANISO
KTH v2 [59], WHIM v1 [74] and ICM [8]) was conducted 24 hours post-mortem and that of Rashid
et al. [87] (used in the Khanuja-Unni [63] and YEAHM [77, 78] models) was conducted within 8
hours post-mortem. This may explain why the data of Cai et al. [61] and SIMon v1 [66] is less stiff
than the series of Nicolle et al. [29]. The storage temperature is consistent with that of the other series
of Rashid et al. [87] and Nicolle et al. [29], which range from 4 to 6 C◦. This is important to note,
because storage temperature can have a very large impact on the stiffness of brain tissue, with lower
storage temperatures leading to stiffer behaviour [52]. The temperature an experiment is conducted
at is also important, with experiments conducted at room temperature showing a stiffer response than
those measured at body temperature [56]. Thus, it is worth noting that whilst the experiments of
Rashid et al. [87] and Takhounts et al. [90] were conducted at room temperature, the work of Nicolle
et al. [29] was conducted at body temperature. Lastly, the specific region of the brain tested by
Takhounts et al. [90] is not listed, but we note that the study of Nicolle et al. [29] was conducted
on the corona radiata (white matter region) whilst that of Rashid et al. [87] was conducted on mixed
white and grey matter samples. This may in part explain why the data of Takhounts et al. [90] appears
to be an outlier.

The general disparity in the literature propagates through to the predictions of the storage and loss
moduli where the same datasets are still outliers (Figure 7b and Figure 7c). In general, the storage
modulus is observed to increase with frequency, as is the loss modulus. A characteristic n-shape is
observed for the one-term Prony-series data predictions of the loss moduli, but this is simply due
to the low order of the Prony-series and the use of an extended frequency range. For higher-term
Prony-series such as that from Nicolle et al. [29], this behaviour is not observed.

Importantly, a further conglomeration of the data is observed upon computation of the inverse
quality (Figure 7d). This is a particularly important quantity to check as it is the ratio of the storage and
loss moduli and is thus independent of the value of the instantaneous shear modulus M0. The previous
outlier datasets are found to lie within the rest of the data in terms of the inverse quality, which shows
that the previous differences were largely due to their values for M0. Oscillations in the inverse
quality are also observed, which occurs due to a limited number of relaxation mechanisms in the
Prony-series [120, 121]. Approximately constant qualities are also anticipated due to the commonly
used assumption of constant quality that is often made for determining regions of interest, as long as
the dispersion is small [122].

Similarly, certain Prony-series predict very high wave speeds c(ω) of over 10 m/s (Figure 7e).
Experiments have not observed speeds this high [123, 17]. Instead, these predictions are caused by
the high frequency behaviour of the Prony-series in the case of series derived from the data of Nicolle
et al. [29], whilst for the data of Tse et al. and ULP v0 models [68, 71] it is caused by a very high
instantaneous shear modulus. Despite all of this variation, the derived attenuation laws in Figure 7f
are indeed generally observed to follow the expected power-law attenuation behaviour.

4.3 Attenuation power laws in heterogeneous brain
We computed averaged attenuation power laws for twelve different regions in the brain, for Prony-

series from FE models and from recent experimental papers, following the same process shown for the
homogeneous brain data of FE models. This yields averaged attenuation power laws and frequency
intervals over which the fit is valid. Both FE model data and experimental paper data were not always
available for the all regions, but it was nonetheless possible to compare a number of key regions,
as depicted in Figure 8. Detailed calculations for each region are provided in the supplementary
materials. Also, note that the the frequency axis is not the same for the tissue types as it is dependent
on the experimental data.

Figure 8a shows the average attenuation law in the homogeneous brain tissue in FE models and
the experiments together with a “reference” power law for homogeneous brain tissue we have used in
our nonlinear (shock) shear wave modelling [17]. The “reference” was obtained using the ultrasound
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Figure 8: Averaged attenuation power laws at low frequencies (< 100 Hz) for twelve different regions
of the brain. Dashed lines refer to fits obtained from data used in FE models. Fits are only plotted over
their respective valid frequency ranges. Shaded regions show one standard deviation ±1σ . Plotted
are (a) the homogeneous brain, (b) cerebellum, (c) brainstem, (d) white matter, (e) grey matter and (f)
thalamus and hippocampus regions.

shear wave imaging experiments performed on ex vivo porcine brain tissues [12]. The homogeneous
brain tissue assumption is the most commonly used in FE modelling and so we get most of the data for
the FE implementations from this region (12 unique Prony-series). For experimental data, 18 unique
Prony-series were sourced for the homogeneous brain and this was not the most common tissue. As
evident the “brain-FE” law is significantly lower than the “brain” synthesised from the experimental
data only. In fact, a relative error calculation between the power-law attenuation of experimental

data and FE models, calculated as

(
aExpωbExp −aFEωbFE

)
aExpωbExp

× 100, gives a range of errors of 43-52%

between 10 and 100 Hz, respectively. This suggests the need to revisit the viscoelastic modelling of
brain matter in FE models to accurately capture the recent experimental data. The underestimate of
attenuation in the FE implementation in contrast to experimental data is consistent in all the tissue
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types and the animal types. The lower attenuation in FE models tends to predict higher stiffness in
contrast to the experimental data.

Surprisingly, the experimental power law closely aligns with the power-law attenuation we have
used in our simulation studies [17]. This could possibly be due to increased emphasis on high strain
rate experiment in recent publications.

Furthermore, there is also a greater degree of variation for FE model data, indicated by the larger
ranges of uncertainty. The largest degree of uncertainty was found for the cerebellum region (Fig-
ure 8b). This is not unexpected due to the lack of viscoelastic data in the FE model literature for the
cerebellum region (only 4 unique Prony-series).

For all regions except the brainstem and homogeneous brain (Figure 8c), we observed that the fits
from the experimental data lie within the error interval for the associated FE data. There are a number
of possible reasons that may explain this. For one, as summarised in Table 2, the data used in FE
models for the homogeneous brain largely comes from older viscoelastic sources, which give stiffer
material properties as compared to recent experimental sources. Thus, for the homogeneous brain,
it is unsurprising that FE models have significantly less attenuating power laws compared to recent
experimental data. The question therefore becomes why we do not observe significant differences for
the other regions. The reasons for this may be that the data for FE models is newer for these regions
since heterogeneity is only implemented in recent FE models. Furthermore, there is not much data
for these regions, which leads to larger error intervals and thus less significant results – specifically,
from FE models there are only 6 unique Prony-series for white matter, 5 unique Prony-series for grey
matter and 4 unique Prony-series for the cerebellum. By contrast, for the homogeneous brain, there
are 12 unique Prony-series.

For the white matter, in particular, we point out that the power laws in Figure 8d for the corona
radiata and corpus callosum are distinct (do not lie within the error regions of one another), but both
of them lie within the error region for the white matter as used in FE models. This underlines the
importance of considering heterogeneity in FE models, instead of just white matter as a whole. For
comparison purposes, the corpus callosum data and corona radiata data were also pooled to create a
single white matter region from experimental data, and this was found to also agree with the white
matter data used in FE models.

Similarly for grey matter in Figure 8e, we found that the subregions of the basal ganglia, dentate
gyrus and cortex all agreed with the grey matter data used in FE models. Moreover, the pooled data
of the basal ganglia, dentate gyrus and cortex was used to generate a single grey matter region from
experimental data and this was also found to agree with the data used for grey matter in FE models.

For two regions, namely the thalamus and the hippocampus (Figure 8f), no reasonable comparison
was possible with other FE model data since, to the best of our knowledge, these regions have not
been modelled as viscoelastic materials in the FE models considered in this work. However, it is
apparent that the thalamus is found to be the most attenuating region here and thus is mechanically
different from other regions. This suggests that the thalamus is in fact an important region to include
in FE models, and should not be neglected.

4.3.1 Homogenisation of attenuation in brain

It is also important to test the validity of homogeneous brain measurements, because the brain is
a highly heterogeneous tissue [6, 39, 112, 124, 113, 114, 115, 86, 82]. In fact, one the key challenges
identified in current FE modelling is the obtention of accurate heterogeneous data for models [5, 4].
To this end, we pooled (referred as “all”) the experimental data for all regions except the homogeneous
brain to reconstruct the power law for the homogeneous brain from heterogeneous brain data. This
was used to quantify the the variation in the power law resulting with the assumption of homogeneous
brain and the one constructed using the heterogeneous data. The results of these processes are shown
in Figure 9.

As expected, different tissue types in brain have different power laws and the homogeneous brain
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Figure 9: Attenuation power laws at low frequencies (< 100 Hz) for experimental data. The “all"
fit is generated from merging the data for all regions bar the homogeneous brain (i.e. hippocampus,
thalamus, brainstem, cerebellum, grey matter and white matter). Shaded regions show one standard
deviation ±1σ . Depicted are: (a) the power-law attenuation fits from experimental data for all of
the gathered regions and (b) the power-law attenuation fits for the homogeneous brain (both FE and
experimental), and the “all” region (solely experimental). The reference law of Tripathi et al. [17] is
also shown for comparison in (b).

power law (black curve) lies in between the different laws as seen in Figure 9a. Note these laws are
generated using the experimental data (and has no contribution from data collected from FE mod-
els). Also interesting to note is that the power law description for white and grey matter are almost
overlapping as evident from Figure 9a (see Table 4 for exact expressions). However, the Prony-series
representation (for example: [25], [125]) of these two regions are not as similar as their power laws.
The reason for this overlap could be due to our averaging procedure over different experimental pro-
cedures, tissue types, temperature, animals, etc. are used in studies on white matter versus those on
grey matter. Nevertheless, such an averaging is required in order to compare and leverage different
experiments and to have some starting point for modelling nonlinear shear waves in brain. On the
other hand, there have been discussions around the variations in elastic and anisotropic properties of
white and grey matter. Many studies report conflicting results on the anisotropy of white matter (fur-
ther discussion can be found in Budday et al. [39]) and on which tissue is stiffer (discussed in Zhang
et al. [126]).

Furthermore, we found that the “all” data (light blue) does not match the homogeneous brain data
(solid black) as shown in Figure 9b as good as the “reference” (light red), however, they are all still
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within each others’ ±σ . This difference could be due to the sampled regions for the homogeneous
brain fits versus those of the rest of the experimental data. For example, the most common region
found in our literature review is the cortex (43 unique Prony-series). However, since the locations
for the homogeneous brain data are not explicitly given, it was not possible to determine whether
the homogeneous brain data is dominated by the cortex data. However, this result nonetheless high-
lights a current discrepancy in the literature. It furthermore emphasises the need for considering the
heterogeneity of the brain as opposed to attempting to construct a suitable averaged region, which
can be highly subjective due to different averaging techniques. However, these three curves: “ref-
erence”, “all”, or the homogeneous “brain” fit from experimental data are not within the error re-
gion of the the attenuation power law from FE models (dashed black). Moreover, a relative error of(

aExpωbExp −aFEωbFE
)

aExpωbExp
×100 of 43-52% between the power-law attenuation of experimental data and

FE models from 10 to 100 Hz. Similarly, a relative error

(
aHomωbHom −aAllω

bAll
)

aHomωbHom
×100 of 29-39%

between the homogeneous brain and the “all” region from 10 to 100 Hz also indicates a discrepancy
between the heterogeneous and homogeneous treatments of brain tissue. As before, it highlights the
need to revisit the viscoelastic modelling of brain matter in FE models to accurately capture the recent
experimental data.

For completeness, the data for the fits for the experimental data and from FE model data are given
for each region, and are shown in Table 4 and Table 3, respectively. We have provided further details
such as the raw data, full calculations and merged fits for each region in the supplementary materials.

Remark. Different Prony-series G(t) are possible depending on the curve fitting procedure used. As
a result we recommend users undertake their own curve fitting, but nonetheless we do provide our
results in Table 4, Table 3 and in the supplementary materials.

Region
(#Prony-
series)

Angular
Frequency
Range [Hz]

Power Law
lnα = lna + b lnω

[Np/m]

Averaged Prony-series ĝ(t) M0(ω0)
[Pa]

Brain
(12)

[6.7, 1e+05] −2.32 ± 0.13 +
0.85±0.02lnω

0.32 + 0.165e−13t +
0.163e−156t +0.172e−2.01e+03t +
0.18e−3.39e+04t

6769

Brain-
stem (4)

[3.4, 1e+05] −2.03 ± 0.20 +
0.83±0.04lnω

0.227 + 0.164e−7.59t +
0.184e−96.4t +
0.207e−1.38e+03t +
0.217e−2.72e+04t

7300

Cere-
bellum
(4)

[3.3, 80] −1.82 ± 0.82 +
0.77±0.47lnω

0.475+0.525e−15.2t 4411

Grey (5) [3.3, 7e+02] −1.94 ± 0.21 +
0.90±0.07lnω

0.253 + 0.241e−13.4t +
0.506e−338t

4999

White (6) [13, 7e+02] −1.80 ± 0.33 +
0.85±0.11lnω

0.443+0.557e−111t 4488

Table 3: Derived averaged attenuation power laws and corresponding Prony-series from
averaged FE model data. #Prony-series refers to the number of unique Prony-series.
M0(ω0) is the instantaneous shear modulus obtained from a reference frequency of 75
Hz i.e. ω0 = 150π Hz.
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Region
(#Prony-
series)

Angular
Frequency
Range [Hz]

Power Law
lnα = lna + b lnω

[Np/m]

Averaged Prony-series ĝ(t) M0(ω0)
[Pa]

Basal
ganglia
(6)

[2e-05,
6.1e+02]

−1.80 ± 0.21 +
0.86±0.04lnω

0.0118 + 0.0129e−5.56e−05t +
0.0225e−0.000726t +
0.0418e−0.00917t +
0.0765e−0.118t + 0.136e−1.56t +
0.233e−21.6t +0.465e−350t

4997

Brain
(18)

[0.01,
7.3e+02]

−2.03 ± 0.09 +
0.91±0.03lnω

0.0872 + 0.0722e−0.0385t +
0.122e−0.844t + 0.22e−17.6t +
0.498e−396t

5167

Brain-
stem (23)

[0.0048,
2.1e+02]

−1.83 ± 0.11 +
0.97±0.04lnω

0.0752 + 0.0495e−0.0204t +
0.0868e−0.479t + 0.173e−9.31t +
0.616e−195t

4642

Cere-
bellum
(18)

[0.0061,
1.1e+02]

−1.36 ± 0.06 +
0.89±0.02ln(ω)

0.0408 + 0.0462e−0.0207t +
0.0898e−0.339t + 0.192e−5.19t +
0.632e−92.9t

4464

Dentate
gyrus (7)

[0.079, 83] −1.55 ± 0.06 +
0.89±0.03lnω

0.107 + 0.111e−0.248t +
0.205e−3.76t +0.577e−63.6t

4435

Cortex
(43)

[2e-05,
5.8e+02]

−1.71 ± 0.05 +
0.89±0.02lnω

0.0121 + 0.0114e−5.75e−05t +
0.019e−0.00082t +
0.0346e−0.0111t +
0.063e−0.151t + 0.115e−2.03t +
0.212e−27.3t +0.532e−427t

5290

Corpus
callosum
(17)

[0.00099,
6.6e+02]

−1.38 ± 0.10 +
0.79±0.03lnω

0.0103 + 0.0217e−0.00345t +
0.0541e−0.0476t +
0.131e−0.676t + 0.275e−10.7t +
0.508e−221t

4682

Corona
radiata
(19)

[0.0016,
1e+05]

−1.46 ± 0.09 +
0.87±0.02lnω

0.00459 + 0.00549e−0.00527t +
0.0106e−0.0842t +
0.0219e−1.29t +
0.0454e−19.7t + 0.0951e−297t +
0.202e−4.42e+03t +
0.615e−7.73e+04t

24390

Hippo-
campus
(18)

[0.01, 83] −1.58 ± 0.04 +
0.89±0.02lnω

0.0798 + 0.101e−0.0517t +
0.216e−1.45t +0.604e−42.9t

4421

Grey (56) [2e-05,
6.1e+02]

−1.69 ± 0.05 +
0.88±0.01lnω

0.0114 + 0.011e−5.79e−05t +
0.0186e−0.000828t +
0.034e−0.0113t +
0.0625e−0.154t + 0.115e−2.09t +
0.213e−28.2t +0.534e−445t

5349

Thalamus
(11)

[0.0047,
3.3e+02]

−1.46 ± 0.08 +
0.93±0.03lnω

0.0349 + 0.0334e−0.0231t +
0.0681e−0.609t + 0.157e−13.5t +
0.707e−333t

5052

White
(36)

[0.00099,
1e+05]

−1.43 ± 0.07 +
0.84±0.02lnω

0.00528 + 0.0068e−0.00245t +
0.0124e−0.0258t +
0.0243e−0.261t +0.0466e−2.69t +
0.0857e−28.6t + 0.149e−318t +
0.242e−3.78e+03t +
0.427e−5.46e+04t

13909

Table 4: Derived averaged attenuation power laws and corresponding Prony-series from averaged
experimental data. #Prony-series refers to the number of unique Prony-series. M0(ω0) is the instan-
taneous shear modulus obtained from a reference frequency of 75 Hz i.e. ω0 = 150π Hz. The white
region is formed from merging the corona radiata and corpus callosum regions, and the grey region is
formed from merging the cortex, dentate gyrus and basal ganglia regions.
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4.4 Variation in attenuation due to animal selection
There are multiple factors that can cause differences in experimental results, but one that is of key

importance is that of the suitability of surrogate animals. The influence of this factor is vital to check
because fresh human brain tissue is far more difficult to source than tissue from other animals such
as pigs or cows. Thus, it is necessary to ascertain if surrogate tissues can be used since this will have
major ramifications on the ease of obtention of suitable experimental data.
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Figure 10: Averaged attenuation power laws in a low frequency regime (0-50 Hz) for a number of key
regions, separated by animal type. The “all" fit is generated from merging the data for all regions bar
the homogeneous brain (i.e. hippocampus, thalamus, brainstem, cerebellum, grey matter and white
matter). Shown are the attenuation power law fits from experimental data for the different animal
types for (a) the homogeneous brain, (b) cerebellum, (c) brainstem, (d) white matter, (e) grey matter
and (f) “all” regions. Shown with a dashed line in subplot (f) are the fits from the homogeneous brain
data as shown in subplot (a).

Experiments have already investigated this question, but only on a per-experiment basis. For ex-
ample, MacManus et al. directly compared fits for human, pig, rat and mouse brains using indentation
techniques [127]. Nicolle et al. similarly compared porcine tissue to human tissue using oscillatory
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experiments [20]. Here we review across multiple experiments, specifically, we investigate the aver-
aged properties from a large experimental literature segregated by animal type and region as shown
in Figure 10.

To achieve this, we employ the same methodology as was done for the homogeneous brain char-
acterisation used in FE models. For these comparisons, the following regions were considered: ho-
mogeneous brain, cerebellum, brainstem, white matter (i.e. corpus callosum and corona radiata data
merged), grey matter (i.e. dentate gyrus, cortex and basal ganglia data merged) and “all” region cre-
ated by merging data from all regions i.e. hippocampus, thalamus, brainstem, cerebellum, grey matter
and white matter except the homogeneous brain. A total of eight different animals were found in our
literature review - namely, pig, rat, human, mouse, cow, sheep, monkey and dog. However, due to
scarcity of data from monkeys, sheep and dog, are not shown in Figure 10.

Our results found that the average power laws for each surrogate tissue do not always agree. That
is, the variation in results with respect to the use of different surrogate tissues is in fact significant.
This finding is not unexpected. For example, differences between human tissue and rodent brain
tissue are anticipated since the rodent brain is quite anatomically different from the human brain
[114]. Even for more anatomically similar tissues such as porcine and bovine tissue, differences are
still observed in this work. We do however still note that there are other sources of variation due
to different experimental techniques, post-mortem time, temperature, etc. that are also present in
our dataset. For example, the data on human tissue comes primarily from indentation experiments
[128, 127, 129, 23] whilst for bovine tissue it primarily comes from dynamic mechanical analysis
[108]. Thus, we can anticipate that differences between the bovine dataset and human dataset will
also occur due to differences in testing methods.

We also point out some general trends observed here. We can see that the experimental data from
human tissue is in fact generally less attenuating than porcine tissue, but more attenuating than bovine
tissue, as can be observed for the homogeneous brain region (Figure 10a), white matter (Figure 10d),
grey matter (Figure 10e), and the “all” region (Figure 10f). Rat and mouse tissues were found to be
close. Like in the previous section, here also we calculate the power laws for the “all” region and the
homogeneous brain region are similar for the various animal types (Figure 10f). This is a promising
finding since exact agreement is not expected - the data for the “all” region may be skewed towards
various subregions depending on the data we have sourced. For example, 27% of the data for rat
comes from the cortex region.

It is particularly interesting to note that in this study the fits for larger animals such as porcine
and bovine tissue were also found in general to be further from the fits for human tissue as compared
to the fits for smaller animals such as rats and mice. This finding seems in direct conflict with the
work of Dai et al. [46], who recommend the use of larger animals such as cows and pigs as surrogates
over small animals such as rodents. However, there exists other work such as that of MacManus et al.
[127] which suggest that mouse tissue is in fact a suitable surrogate.

Furthermore, there are a number of reasons why we may observe this in this work. For one, it is
important to keep in mind that there is relatively little data for rat and mouse brains, and the data that is
presented lies in the low frequency regime (<10 Hz). As a result, the extrapolation to 50 Hz is exactly
that: only an extrapolation. Thus, any comparisons at higher frequencies should be done carefully.
Furthermore, we also point out that the cortex region is also the most commonly experimented upon
tissue for the rat, mouse and human data, whilst this is not the case for the porcine and bovine tissues.
These differences in sampled subregions of the brain may also partly explain the trends observed in
this work. However, this still does not fully explain why the porcine tissue seems to be substantially
more attenuating than other tissue types. This phenomenon instead appears to come due to different
experimental techniques. In the collected literature, the dominant experimental technique for porcine
tissue is indentation tests [124, 86, 130, 111, 131, 132]. This is also a common experimental technique
for other surrogates such as rat also, but the experimental results for porcine tissues are substantially
different. Specifically, there is a disproportionate amount of experiments on porcine tissue in the
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literature that find low instantaneous shear moduli, which leads to high predictions for the attenuation.
For example, of all the Prony-series data collected for porcine tissue, 55% of the pig data has an
instantaneous shear modulus less than 1500 Pa. By contrast, for rat tissue it is merely 23% and
for human it is 33%. This difference does not appear amongst experiments which have conducted
experiments on both porcine and other surrogates using the same experimental procedure [127, 20].
Instead, this arises from the fact that there are experiments conducted solely on porcine tissue which
report low values for the instantaneous shear modulus [96, 111, 133, 134, 135, 48, 136]. In particular,
this finding emphasises that the use substitute data from surrogate tissues must be done with much
caution.

4.5 Limitations and shortcomings
This study does have some limitations. First, the reference values were not varied per region in

this work and we took ρ = 1000 kg/m3 and c = 2.1 m/s at 75 Hz for all regions and has been fixed
for M0 calculations. The use of a constant density is in line with the approach of FE models but is
nonetheless limiting. The reference dispersion value is obtained with the assumption of homogeneous
brain tissue. Thus, it may not be suitable for tissues that are very different from the homogeneous
brain like meninges and spine. We were unable to include these tissues as a result, although there
does exist experimental Prony-series data for them (see [103, 104, 105, 137, 138, 139, 140]).

Another key issue is the variations of the experimental datasets in the literature. Since there are
many possible sources of variation and it is not feasible to account for all of them at the present time,
particularly given that the literature does not even always agree on their effects. For example, there is
some dispute about whether or not there exists a sex-dependence of brain tissue properties [39]. It is
hoped that by averaging across many series in this work, the variations will even out to some degree.

Lastly, the reliance on Prony-series data is also limiting, particularly when considering frequency-
domain quantities. As mentioned previously, the use of a limited number of mechanisms in a Prony-
series causes oscillatory artefacts to appear in the predicted inverse quality [121, 120]. Thus, it would
be better to directly use data from the frequency domain for such quantities, but this is not what
current FE models are predominantly doing. Furthermore, during the literature it was found that more
experimental papers yielding Prony-series data were available as compared to frequency-domain data.
As a result, this was a necessary limitation to introduce to this work. Similarly, the curve fitting of
a Prony-series is also limiting but necessary in order to give results that can be used by FE models.
Nonetheless, we also provide the direct power law fit so frequency-domain data is also available in
this work. It is also important to stress that curve fitting for Q−1 is not a trivial exercise and differing
fits can be possible for the same data depending on the algorithm and initial conditions used [27].
Thus, we recommend that users conduct their own curve fits which they can tailor specifically to their
application. In this work, the power laws are provided to facilitate this.

4.6 Recommendations for future work
The dominant method of modelling viscoelasticity for current state-of-the-art FE models is by

means of a Prony-series, though some models, such as the LiUHead model [141], have opted for
other approaches. This state of affair is unlikely to change in the immediate future, but there are a
number of improvements we can suggest to current techniques.

First, many FE models are incorporating viscoelasticity by means of a one-term Prony-series
[142], which greatly limits the frequency range that can be modelled, especially if one is interested
in modelling the transient visco-elastic behaviour. There also exists a large range of higher order
viscoelastic models in the literature which are included in this work and these laws could be leveraged
instead.

Furthermore, this work and many others [6, 25, 39] have established that the brain is heteroge-
neous, whilst it is often times treated as a homogeneous tissue. In some cases, properties for certain
tissues as used in FE models have also been derived from experiments on different tissues - for ex-
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ample, the homogeneous brain properties of the ADAPT [57], ANISO KTH v1 [58], ANISO KTH
v2 [59], WHIM v1 [74], ICM [8] and KTH v2 [64] models are taken from experiments by Nicolle
et al. [29] on corona radiata tissue. Similarly, the homogeneous brain properties derived from the
experiments of Shuck & Advani [79] are also derived from corona radiata tissue. This is could lead
to erroneous results and should be used with caution.

There are also differences between the tissues chosen for inclusion in FE models versus the tissues
that are experimented on. Experiments can provide different measurements for specific regions com-
pared to the larger regions taken by FE models. For example, the cortex region which is sometimes
included in FE models is measured in a total of six subregions by Menichetti et al. [128] - namely
the prefrontal cortex, posterior-occipital cortex, superior mid-frontal cortex, postero-lateral frontal
cortex, inferior temporal cortex and the postero-superior frontal cortex. A clear difference is also that
FE models are currently often modelling the two regions of white and grey matter whilst typically
experimental papers are not. Instead, a significant amount of experimental work measures subregions
of these - white matter is commonly measured as either the corona radiata or the corpus callosum,
and grey matter as the basal ganglia, cortex or the dentate gyrus. Furthermore, our work has found
that these subregions are mechanically different (see Figure 8). Thus, these subregions should be
considered separately in future work.

We also point out that taking viscoelastic and hyperelastic data from different experiments can be
problematic as viscoelastic fits can change depending on the hyperelastic model used, and also vary in
general between experiments. Our work also shows that experimental data and data used in FE models
agree with each other. Thus, we recommend using directly experimental measurements in future work
as opposed to modifying or scaling experimental data. In this work we provide both averaged laws
for twelve regions and eight different animals and also a total of 181 different Prony-series in order
to facilitate this.

Lastly, as was mentioned in the limitations section, the use of Prony-series is not ideal. Future
work could directly obtain averaged laws from frequency-domain data i.e. values of M′ and M′′.

5 Conclusion
To the best of our knowledge, this work presents 1) the first multi-frequency viscoelastic atlas

of the heterogeneous brain, 2) the first review focusing on viscoelastic modelling in both FE models
and in experimental works, 3) the first attempt to conglomerate the disparate existing literature on the
viscoelastic modelling of the brain. Thus, our review differs from existing work in a number of key
ways.

Our review enables a direct comparison between the experimental literature and the data used
in FE models. Existing reviews focus typically on either reviewing FE models, or reviewing exper-
imental techniques, but not both together. This review aims to help bridge the gap between these
two domains. To this end, we have gathered a total of 181 differing Prony-series from 48 different
experimental papers and 31 unique Prony-series used in FE models. This review gives the largest
collection of viscoelastic parameters for human brain tissue. This wealth of data allows us to investi-
gate differences due to animal tissue choices in the heterogeneous brain with greater granularity, for
instance, we can now compare corona radiata of a pig brain with that of the cortex of the human brain
unlike previous studies. Our work also provides a means of comparing Prony-series viscoelasticity
to storage and loss moduli data (e.g. from MRE measurements), and to attenuation laws. Previous
works have not thoroughly investigated the link between relaxation functions and storage and loss
moduli. For example, the review of Chatelin et al. [47] provides many different experimental results
for relaxation functions, and also many different distinct experimental results for storage and loss
moduli. However, their review does not investigate how the predictions of the storage and loss moduli
from the relaxation function g(t) compare with the other experimental data for the storage and loss
moduli.

Comparison of FE model data with the recent experimental data yields that FE models are gen-
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erally underestimating the attenuation than the recent experimental data. Our review uncovers that
there may be issues with existing commonly used Prony-series data. For example, the most used
dataset in FE models is the one presented by Shuck and Advani [79]. However, their data is much
stiffer than the average calculated using our approach. They have found that for a frequency range
[3,300] Hz, the storage modulus M′ ∈ [7,30] kPa and loss modulus M′′ ∈ [1,90] kPa, whilst in this
work our average Prony-series predicts lower values for both the storage modulus M′ ∈ [1,6] kPa and
loss modulus M′′ ∈ [0.3,1] kPa. It is thus clear from both this work and other previous reviews such as
Chatelin et al. [47] and Hrapko et al. [56] that the data of Shuck and Advani is an outlier with respect
to the rest of the experimental literature. In addition, another commonly used dataset, namely that of
Nicolle et al. [20] was found to predict Q−1 ≥ 1. Therefore there is a need to recalibrate and reassess
the material properties used in the computational models describing the brain trauma.

We calculate the average attenuation power law for the homogeneous brain tissue from recent
experimental data (obtained from 18 unique Prony-series) as α( f ) = 0.70 f 0.91 Np/m. The corre-
sponding average dimensionless Prony-series is ĝ(t) = 0.0872+ 0.0722e−0.0385t + 0.122e−0.844t +
0.22e−17.6t +0.498e−396t , with an instantaneous shear modulus of M0 = 5167 Pa at 75 Hz. The mean
and median instantaneous shear modulus in the experimental literature are 6230 Pa and 3750 Pa,
respectively.

Significant differences are also observed between the animal types, with relative errors(
aHumanωbHuman −aSurrogateωbSurrogate

)
aHumanωbHuman

×100 of 23-38% for bovine tissue and 78-95% for porcine tis-

sue for the attenuation power law fits between 10 and 100 Hz for the homogeneous brain region. This
emphasises the need to take caution when using surrogate tissues, since substantial differences can
exist.

In addition, this work provides a methodology for computing the predictions of a given Prony-
series on the storage and loss moduli, quality factor, dispersion relation and attenuation. Since we have
been able to calculate averaged Prony-series and power laws, it also provides a useful methodology for
investigating and comparing an experimentally obtained Prony-series to the rest of the experimental
literature. Importantly, it is also possible to verify whether or not a Prony-series predicts an inverse
quality satisfying Q−1(ω) < 1 for it to be physically viable. Thus Prony-series which do not satisfy
this may need to be recalibrated. From a numerical stand point, the methods using one- or two- term
Prony-series can limit the attenuation and dispersion modelling especially in the nonlinear regime
which results in the generation of higher harmonics such as shear shock formation in brain [17].
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A Appendix: Validation of averaged viscoelastic properties
Our procedure for determining averaged Prony-series data involves a number of nontrivial steps

and thus it is important to verify that our method proceeds as expected. Specifically, a number of
sensible checks can be conducted:

• Can our averaged Prony-series reconstruct the averaged power law from which it was derived?

• Does our averaged Prony-series lie amongst the experimental data from which it was derived?

• Does our averaged Prony-series or attenuation power law predict Q−1 < 1 as expected?

• Does our determined value of M0 from our Prony-series match that of the experimental data?

We illustrate this procedure for the experimental data on the homogeneous brain tissue. Details
for other tissue types can be found in the supplementary materials.

Following the obtention of an averaged Prony-series as shown in Figure 5d, the forward calcu-
lation step can be conducted on this new Prony-series as outlined in Figure 5e. The results of this
process are shown in Figure 11.

As evident from Figure 11a, the averaged Prony-series (dashed black) calculated using c(ω) given
the Kramers-Kronig relations underestimates the storage/loss modulus and the inverse quality (Fig-
ure 11b-e, respectively). However, it is able to reconstruct the attenuation power law (red) shown
in Figure 11f. The underestimation of the storage/loss modulus and the inverse quality is due to the
use of Kramers-Kronig relations [31] which may not be ideal for the point estimates provided for
Prony-series, moreover the use of the reference value of c = 2.1 m/s at 75 Hz further restricts the
approximation. However, it does provide a benchmark to unify the different observations obtained
using different experimental techniques.

Lastly, we can also examine the prediction for M0 from our averaged Prony-series, since this an
important experimental quantity in the literature. It is important to determine whether or not the
prediction from equation (31) is in line with the distribution of values of M0 from the literature. In
general, quite a lot of variation exists in the predictions for the instantaneous shear modulus since
this can depend upon experimental techniques and procedures. It is not possible to experimentally
measure a value for the relaxation function at t = 0, so differing values of M0 can occur depending on
what time interval (or frequency range) one investigates. In our work, we find our averaged Prony-
series for the experimental homogeneous brain tissue has a value M0 = 5167 Pa at 75 Hz. This broadly
agrees with the experimental literature, which has a mean value of 6230 Pa and a median value of
3750 Pa.
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