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1. The context: Nonlinear elasticity theory for rubber
When we examine the development of the theory of rubberlike elasticity through the ages, we
may identify a divide from protohistory to history by singling out the 1940 landmark paper by
Mooney [11]. And so, when in 1972, the Ogden model [12] appeared on the scene, more than 30
years had already passed in attempting to construct a strain-energy function capable of being
both descriptive and predictive of the observed experimental behaviour of rubberlike solids. In
the opinion of Ray Ogden, ‘[in these attempts] it was convenient and practical to use certain
stretch or strain invariants as independent variables in preference to the principal stretches’. That
was the approach pioneered and championed by Rivlin. To understand how the Ogden model
came about, we first propose a brief survey of these various attempts.

As recalled in Treloar’s book [18], Kelvin Kuhn (in 1936) and Eugene Guth (in 1939) used a
kinetic theory, based on the Gaussian statistics for macromolecular chains and network theory,
to model the response of rubber. This resulted in the neo-Hookean model for W , the strain energy
density function,

W =
µ

2
(I1 − 3), (1.1)

where µ is the shear modulus and I1 = trC is the first principal strain invariant (here C =F TF

and F is the gradient of the deformation). These authors used the principal stretches λ1, λ2, λ3 of
the deformation via the affine deformation assumption to relate the macroscopic deformation to the
individual chains composing the network.

In 1940, Mooney’s [11] starting point was based on three basic assumptions: (i) the material is
isotropic, (ii) the deformation is isochoric and (iii) the traction in simple shear in any isotropic
plane is proportional to the amount of shear. Working in terms of the principal stretches, he
derived the following strain energy density,

W (λ1, λ2, λ3) =C1(λ
2
1 + λ22 + λ23 − 3) + C2(λ

−2
1 + λ−2

2 + λ−2
3 − 3), (1.2)

where C1 and C2 are two constants. Clearly (1.2) may be recast in the form

W (I1, I2) =C1(I1 − 3) + C2(I2 − 3), (1.3)

where I2 = [I21 − trC2]/2 is the second principal strain invariant. It is worth noting that Mooney
never mentioned the term ’invariants’.

In fact, it was Rivlin who used the principal invariants in a systematic and consistent way, with
a series of papers published in the Philosophical Transactions of the Royal Society beginning in
1948, see [4] for an historical overview of these works. The strain energy density function (1.3) is
now referred to as the Mooney-Rivlin model. Starting with Rivlin, the use of the full methodological
apparatus of linear algebra became fundamental to the development of the modern theory
of nonlinear continuum mechanics, as is attested, for example, by the ubiquitous role of the
Hamilton-Cayley theorem in constitutive modelling.

In 1944, Treloar performed a series of experiments on rubber [17], which to this day are still
used as a benchmark set of data. Comparing the predictions of (1.1) with his data, he noted on
page 99 of his book [18],

‘The conclusion to be drawn from the experimental observations [. . . ] is that the formulae of
the statistical theory, involving a single physical constant, correctly describe the properties
of a real rubber to a first approximation. [. . . ] However, [. . . ] it is not surprising that some
deviations from the ideal theoretical behaviour are to be found.’

Although it was erroneous to conclude that the neo-Hookean model is good in a certain range
of deformation (as explained in [3], for instance), that statement indicated that modelling the
deviation using statistical theory is challenging and, as a result, stimulated much transformative
research in rubberlike mechanics.
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In 1951, Rivlin and Saunders [16] proposed an extension of (1.3) to address this issue.
Specifically, they proposed an energy function of the form

W (I1, I2) =C1(I1 − 3) + f(I2 − 3), (1.4)

where f is an unknown function to be determined from experiments. Although Rivlin often
restricted attention to a linear function f , as in (1.3), he nonetheless accelerated the search of a
specific form of such a function. An overview of the different forms of f proposed during this
period is given by Hart-Smith [7], see also the notable paper by Gent and Thomas [6].

In the Introduction to his 1972 paper, Ogden [12] writes

’However, such choices of independent variable in general needlessly complicate the
associated mathematical analysis. [. . . ] Principal axes techniques [. . . ] obviate the need for
any special choice of invariants and, moreover, by use of such techniques, the basic elegance
and simplicity of isotropic elasticity is underlined.’

Ogden considered a strain energy density function in the form W =W (λi, λj , λk), where i ̸=
j ̸= k. A requirement connected to this form is that for isotropic materials, W remains invariant for
any permutation of the indices i, j, k. To overcome this problem, Carmichael and Holdaway [2]
and then Valanis and Landen [20] proposed the form,

W (λ1, λ2, λ3) =φ(λ21) + φ(λ22) + φ(λ23)− 3φ(1), (1.5)

where φ is an unknown function to be determined from experiments. The choice of (1.5) is
heuristic in nature, and indeed no justification of this form was proposed other than its inherent
mathematical simplicity to satisfy the symmetry conditions imposed by isotropy. Carmichael and
Holdaway [2] developed an explicit form of φ based on the first two assumptions of Mooney and
an additional complicated assumption on the stress-strain relation in simple shear. In contrast,
Valanis and Landen [20] proposed the following simpler form,

φ(λi) = 2µλi(log λi − 1), (1.6)

a choice that was entirely empirical.
The basis of the Ogden model is more rational in many respects. Its starting point can be traced

to the paper by Hill [9], which introduces the family of Lagrangian strain measures

ei = (λαi − 1)/α, (1.7)

for α ̸= 0, and ei = log λi in the α= 0 limit. Defining a strain measure in terms of the stretches
allows to write the incremental work dW as a linear combination of the components of the
differential strain de,

dW = τde, (1.8)

where τ is the current stress. In (1.7), to each value of α corresponds a conjugate measure of stress
such that dW is invariant. For example, the Biot stress tensor and the second Piola- Kirchhoff
stress tensor are the conjugates of e when α= 1, 2, respectively [9].

Then, for α ̸= 0, Ogden introduced the first principal invariant of (1.7) as

ϕ(α) =
1

α

(
λα1 + λα2 + λα3 − 3

)
, (1.9)

and considered the functional form

W =
∑
r

µrϕ(αr) =
∑
r

µr

αr

(
λαr
1 + λαr

2 + λαr
3 − 3

)
. (1.10)

He showed that the quantity
∑

µrαr/2 gives the initial shear modulus (which must be positive),
and that αr may be allowed to be a non-integer. This

‘facilitates the correlation with experimental data and permits a very good fit to the data
with a small number of terms.’
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Figure 1. Performance of the three-term (six parameters) Ogden model (continuous curves) at modelling the mechanical

response of rubber (circles) [14]. (a)-(c): Fitting the 1944 data of Treloar [17], (a) of simple tension, (b) of pure shear

and (c) of equibiaxial tension. Comparisons with the new-Hookean and Mooney-Rivlin models (broken lines) are shown.

Image (d) illustrates the Valanis-Landen requirement [20] of data translation in biaxial experiments; the experimental data

is from Jones and Treloar [10] with λ2 fixed at 1.0, 1.502, 1.984, 2.295, 2.623. [Figures reproduced from Ogden’s book,

Non-Linear Elastic Deformations [14] with permission from Dover Publishing.]

A notable advantage of the model (1.10) is that the number of fitting constants can be increased
as desired to improve the correlation with experimental data, see Figure 1. Notably, the Rivlin
expansion of W ,

W (I1, I2) =

∞∑
m,n=0

Cmn(I1 − 3)m(I2 − 3)n, (1.11)

also has a similar advantage, but differs in one important point when compared to the Ogden
model. Indeed, any analytic strain energy density function W (I1, I2) has a Taylor expansion in the
form (1.11), but Taylor series are an accurate approximation only locally, i.e. around the unstrained
reference configuration. In contrast, the Ogden model (1.10) is not a Taylor expansion.

Another fundamental property of the model (1.10) is highlighted in the book by Ogden [14].
When we consider the experimental data of a biaxial deformation of a rectangular sheet, the
Cauchy principal stresses are given by

ti = λi
∂W

∂λi
− p, i= 1, 2, 3, (1.12)

where p is the Lagrangian multiplier associated with the incompressibility constraint. Depicting
t1 − t2 against λ1 at constant λ2, we find that the data possess a shape-invariant property.
Specifically, the data curves for different values of λ2 may be superposed by a vertical translation.
That property is captured by any W of the form (1.5) and thus, by the Ogden model, see Figure
1(d).

Over the years, many works have referred to the Ogden model, including patents, Finite
Element software codes, and more than 3,600 journal articles citing the original 1972 paper [12]
and 6,000 citing the related textbook [14]. Here we highlight the results of three papers.

The first, by Ogden [13], shows that for incompressible solids, each principal component of
the distortional part of the stress can be expressed as a function of the corresponding principal
component of strain only, up to the fourth order in the strain. This result may be used to justify
the separability hypothesis (1.5), up to a certain order at least.
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The paper by Twizell and Ogden [19] presents a systematic optimisation procedure to
investigate the correlation between theory and experiments. The numerical procedure proposed
improves upon existing methods that were used to determine the material constants (µr , αr)
as best-fit parameters. The authors also found that the correlation between the data and the
model is casual or in some sense, spurious. This is explained by the fact that the Ogden model is
purely phenomenological and does not connect the material constants to mesoscopic quantities
or mechanical features.

As shown later by Ogden et al. [15], the curve-fitting procedure of (1.10) is a non-linear
optimisation problem and its solution is not unique for n≥ 2. Hence, several combinations of
material parameters exist which provide the same level of optimal fitting, but with the predictions
of the corresponding models being quantitatively different, sometimes widely. This problem is a
widely acknowledged limitation of the Ogden model.

2. An interview with Ray Ogden FRS
What was the status of solid mechanics in the UK in the
1970s?
The solid mechanics community was actually quite strong
in the 70s. I can think of at least 40 names of people
working in solid mechanics, with groups in East Anglia,
Nottingham, Oxford, Cambridge, Manchester, Sheffield,
etc. It was a relatively large community, but nowhere near
as large as the fluid mechanics community.

Did you develop relationships with Rivlin, Truesdell,
Knowles, Ericksen, etc., in the USA? And were there
people in Europe connected to you?

I never met Truesdell, but I used his volume in the Handbuch der Physik as my bible when I
was a PhD student. I met Rivlin, Knowles, Ericksen, Sternberg, Wineman, etc. As far as I know,
they didn’t have big groups. In continental Europe there was very little activity in nonlinear
elasticity then.

Do you remember the starting point of your model? How did it fit within the developments in
nonlinear elasticity at the time?

I started working on it towards the end of my PhD when Rodney Hill suggested using stretches
in the strain energy function. This hadn’t been used a great deal except possibly for the Valanis-
Landen model. People were mostly using invariants at that point.

Was there a connection between you and Treloar?
I visited him in Manchester and he gave me a lot of data from his experiments. That data was

the basis for fitting the model originally.

It must have been hard to perform the curve-fitting at that time. You didn’t use a computer?
Right! I had to do it by hand, basically. I tried to fit the lower part of the curve with one term,

and I took a second term to fit the upper part. I adjusted the numbers so that they fit both parts of
the curve but then, it needed a third term so that the whole range of the data was fitted for simple
tension, for example.

What happened just after the model was published, do you remember the early reactions?
I’m not sure that I encountered much reaction at the time! It took off very slowly, and it took

many years to actually build up until it was widely used.
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The model has been implemented in almost all finite element codes of solid mechanics. Were
you ever approached to discuss those implementations?

No, the developers just did it on their own accord, without consulting me.

Was it unusual for someone in a Mathematics department to be interested in fitting
experimental data?

I think it probably was. In fluid dynamics it wasn’t quite so unusual because some
mathematicians were actually doing experiments. But nowadays, more people in mathematics
departments are doing experiments in solid mechanics like for example, experiments on moving
microorganisms.

What’s your take on your model today?
I’m very gratified that it became a highly cited model, widely used, and this is partly because

it’s been implemented in various commercial software codes. But the model is only an isotropic
model. Nowadays, there’s much more emphasis on anisotropic materials in the context mainly of
biological tissues, . . . , but that’s another story!

3. Contents of the Theme Issue
With this volume, we show that the ideas underlying the Ogden model are alive and well and
that the model is essential for the ongoing developments of non-linear elasticity. Its application
has had a transformative impact on the use of the nonlinear theory of elasticity in the design
of new components and devices, has generated a wealth of new information, and has improved
and deepened our understanding of the large deformation behaviour of soft matter. The papers
presented here provide the reader with an, albeit partial, overview on the broad use of the
celebrated Ogden material model, published exactly 50 years ago in Proceedings of the Royal Society.

Anssari-Benam, Destrade and Saccomandi discuss constitutive models that characterise the
hyperelastic response of brain tissue subject to mechanical stimuli. They find that single- or
multiple-term Ogden models can result in unsatisfactory numerical results when modelling the
extremely soft and heterogeneous brain tissue. They propose strain energy functions (generalised
neo-Hookean models, modified Ogden model) yielding more accurate numerical results.

Ciambella, Lancioni and Stortini exploit the polyconvexity of the Ogden model to derive
a model for the progressive reduction of material stiffness resulting in cohesive failure of
elastomeric materials at large strain. They define a degradation function to quantify the elastic
energy reduction due to damage. Their model is applicable to fracture coalescence and damage
propagation in a wide range of materials.

Ehret and Stracuzzi use the molecular statistical theory of rubber elasticity to present the Ogden
model in terms of the non-affine three-chain theory of non-Gaussian chains. They recover well-
known hyperelastic models and obtain new nonlinear elastic energy functions able to describe
the behaviour of rubber-like materials.

Guo, Wang and Fu study the bulging of a rubber tube with fixed ends when it is inflated
by internal pressure. Deriving the bifurcation condition for localised bulging is an involved
mathematical feat. It is a highly nonlinear process, with strong dependence on the model chosen
for the material. Here the authors show that the Ogden model predicts a different bulging
behaviour than the Gent and Gent-Gent [15] models. They also perform experiments on tubes
made of natural latex rubber.

Horgan and Murphy discuss the use of one-term Ogden models to predict the responses of both
incompressible elastomers and soft tissues. They argue that model parameters may be found
to give excellent agreements with some aspects of the mechanical response, but may not be
physically realistic in other situations. Hence, the predictions of models with either negative or
large positive exponents do not seem physically realistic in simple shear.

Kaliske, Storm, Kanan and Klausler take the Ogden law as the starting point to derive a rate-
dependent model for quasi-incompressible electroactive materials. They use the principle of
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virtual power to derive a mixed finite element formulation of an electromechanical phase-field
fracture model. They perform finite strain experiments on the dielectric material VHB 4905TM to
identify the material parameters of their modified Ogden model.

Lohr, Sugerman, Kakaletsis, Lejeune and Rausch discuss the relevance of Ogden’s model to
characterise the mechanical properties of soft tissues. They use pure shear data of brain tissue
and blood clots for the model parameter identification of a one-term Ogden form. They make a
connection with the polymer chain and network theory reported by Ehret and Stracuzzi.

In 1979, Haughton and Ogden [8] derived the bifurcation conditions for a circular cylindrical
tube of an elastic material subject to combined axial load and internal pressure. Melnikov, Merodio,
Bustamante and Dorfmann expand the theory to account for residual-stress and a radial electric
field. Here, axisymmetric incremental deformations combined with increments in the electric
displacement are superimposed on a known finitely deformed configuration. The governing
equations and boundary conditions are first obtained in general form and then specialised for
the neo-Hookean and Ogden electroelastic models.

Menzel and Witt aim to provide an improved understanding of the electromechanical coupling
phenomenon and extremal states in large deformation electroelasticity. Specifically, they analyse
the change in stress resulting from changes in the electric field. This connection is governed by
third-order electro-elastic tensorial moduli, which are not constant but depend on deformation
and electric field. The authors also propose visualisation tools for third-order tensors.

Mihai, Mistry, Raistrick, Gleeson and Goriely focus on the nonlinear response of nematic liquid
crystal elastomers. They note that in uniaxial tensile tests, the material sample does not contract in
the direction perpendicular to the applied load, but expands for sufficiently large tensile strains,
while its volume remains unchanged. Motivated by this response, they propose an Ogden-type
strain-energy function and use experimental data to calibrate the material parameters. They find
that Ogden strain-energy functions are particularly suitable for modelling nematic elastomers
because of their mathematical simplicity.

Nikolov, Srivastava, Abeid, Scheven, Arruda, Garikipati and Estrada propose a novel identification
method for the Ogden material parameters. In this method, the fully three-dimensional
displacement field of the mapping function between a reference and deformed configuration
as well as the corresponding loads are measured concurrently. The authors provide a method
that leverages the weak-form of the boundary value problem to effectively use full-field,
heterogeneous deformation data extracted from the experiments.

Saccomandi, Vergori and Zanetti show that using the fourth-order weakly nonlinear theory of
elasticity results in an improved estimate of the material stiffness of healthy and diseases tissues
compared to the fully nonlinear theory. The authors discuss in detail some of the shortcomings
encountered by some sophisticated models developed within the latter theory when describing
the responses of real materials.

Selvadurai analyses the mechanics of deformation of incompressible planar hyperelastic
membranes, rigidly fixed at their boundaries and subject to uniform pressure. He focuses on
the neo-Hookean, Mooney-Rivlin and Ogden strain energy forms, and solves the governing
equations numerically using the finite element method. Of particular interest is the wrinkling
instability observed in membranes of plane circular and elliptical forms.

Finally, Yao, Chen and Huang devise a method to derive the volumetric part of the strain energy
function, so long as the incompressible strain energy term is given. The method is used to obtain
a generalised Ogden model for compressible rubberlike materials.

4. Concluding remarks
A famous aphorism by George Box [1] says that ‘essentially, all models are wrong, but some are
useful’. We now know that in the theory of nonlinear elasticity, the quest for “the” strain-energy
function has been a chimera and we recognise that the approximate nature of the Ogden model
must always be kept in mind.
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The Ogden model has been fundamental to the advancement of nonlinear elasticity theory in
several principal directions, including, but not limited to, the following,

• The Ogden model, together with the earlier Mooney-Rivlin model, provides clear
evidence that an approach based on a rigorous mathematical foundation is superior to
an empirical approach, the latter qualified by Ericksen as the ’somewhat mystical process
whereby we detect definite forms of constitutive equations’ [5];

• With the Ogden model, it became apparent that no set of invariants is intrinsically
superior to another in modelling data;

• The Ogden model shows that data of rubber can be fit to a desired accuracy in a
systematic way;

• The Ogden model is able to describe reasonably the experimental data of various soft
materials, a robustness which is needed for efficient implementation into any computer
simulation model;

• The Ogden’s model has been a catalyst to extend nonlinear mechanics to other
frameworks beyond pure nonlinear elasticity and include coupled fields theories.

Last but not least, the model has acknowledged limitations, but addressing them has proved
fundamental to sustain the development of the theory of nonlinear elasticity and its applications.
Again in the words of George Box, ‘Since all models are wrong the scientist must be alert to what is
importantly wrong. It is inappropriate to be concerned about mice when there are tigers abroad.’
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