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Abstract.

Using shear wave elastography, we measure the changes in the wave speed with the

stress produced by a striated muscle during isometric voluntary contraction. To isolate

the behaviour of an individual muscle from complementary or antagonistic actions of

adjacent muscles, we select the flexor digiti minimi muscle, whose sole function is to

extend the little finger. To link the wave speed to the stiffness, we develop an acousto-

elastic theory for shear waves in homogeneous, transversely isotropic, incompressible

solids subject to an uniaxial stress. We then provide measurements of the apparent

shear elastic modulus along, and transversely to, the fibre axis for six healthy human

volunteers of different age and sex. The results display a great variety across the six

subjects. We find that the slope of the apparent shear elastic modulus along the fibre

direction changes inversely to the maximum voluntary contraction (MVC) produced by

the volunteer. We propose an interpretation of our results by introducing the S (slow)

or F (fast) nature of the fibres, which harden the muscle differently and accordingly,

produce different MVCs. This work opens the way to measuring the elastic stiffness of

muscles in patients with musculoskeletal disorders or neurodegenerative diseases.

Keywords: Acousto-elasticity, Shear Wave Elastography, Transversely Isotropic soft

solid, Third order elastic constants, Musculoskeletal disorders, Maximum Voluntary

Contraction.
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1. Introduction

Affecting around 25% of people worldwide, musculoskeletal disorders have a high

prevalence in the adult population, coupled to enormous and increasing health

and societal impacts [Adams and Marano, 1995, Woolf and Åkesson, 2001, WHO

ScientificGroup, 2003, Badley et al., 1994]. Although mainly non-lethal, these

pathologies cause significant morbidity with decreased function in daily life activities

and lower quality of life [Vos et al., 2012, Reginster and Khaltaev, 2002, Storheim and

Zwart, 2014]. They also generate significant economic costs [Jacobson et al., 1996, WHO

ScientificGroup, 2003].

The pathophysiology of many of these disorders is still not completely understood

and the development of new diagnostic strategies and bio-markers specific to

musculoskeletal tissues is crucial to medical progress [Storheim and Zwart, 2014]. Also,

skeletal, voluntary-controlled, muscles play a big role in motorizing joints, maintaining

posture, and regulating peripheral blood flow. Hence, innovative assessments of muscle

mechanical properties and dynamics linked to its very specific structural fibrillary

organization can improve our understanding of normal and pathological muscle tissue

behaviour and strength [Gijsbertse et al., 2017, Storheim and Zwart, 2014].

Over the past twenty years, ultrasound imaging techniques have gained sufficient

temporal resolution to become ultra-fast (>1000 frames/s) and investigate the

kinematics of muscle. Hence, they have been used to assess the dynamical behaviour

and structural changes of normal and pathological contractile tissues [Deffieux et al.,

2008a, Downs et al., 2018, Eranki et al., 2013, Lopata et al., 2010, Loram et al., 2006,

Dh́ooge et al., 2000, Yeung et al., 1998, Miyatake et al., 1995, Nagueh et al., 1998].

Nonetheless, the biomechanical characteristics of skeletal muscle remain difficult to

clarify fully because of its complex structural organization and its contractile properties

[Gennisson et al., 2010]. Indeed, as can be seen to the naked eye, skeletal muscle tissue

is composed of families of parallel muscular fibres. Muscle contraction is carried out

by the shortening of these fibres, which results from the active sliding of the thick

myosin filaments between the fine actin filaments found within the fibres. Therefore,

the main biomechanical characteristics of muscle tissue associated with contraction are

shortening and hardening [Ford et al., 1981]. Thus, techniques that provide quantitative

data on tissue deformation and elastic properties could be of great help in understanding

dynamic muscle behaviour. One such technique is quantitative Shear Wave Elastography

(SWE), proposed by Sarvazyan et al. [1998], and then refined and used to quantitatively

characterize the mechanical parameters of normal skeletal muscle tissues [Gennisson

et al., 2010, Bouillard et al., 2011, Koo et al., 2014, Nordez et al., 2008, Nordez and

Hug, 2010, Tran et al., 2016]. Some attempts have also been made to indirectly evaluate

muscle forces based on muscle elasticity using SWE [Bouillard et al., 2011, Kim et al.,

2018, Hug et al., 2015].

Interestingly, muscle stiffness increases differently with tension during sustained

contraction, depending on the type of motor units activated, according to Petit et al.
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[1990], who performed measurements in the peroneus longus muscle of anesthetized cats.

These authors found that the stiffness/tension slope is greater when (slow) S-type motor

units are activated, compared to (fast fatigue-resistant) FR-type and (fast fatiguable)

FF-type motor units. Their result suggests that S-type motor units contribute more

to muscle hardness during contraction than F-type ones, and that the stiffness/tension

relationship must consequently change according to the S/F ratio.

During voluntary contraction, an axial stress is induced inside the muscle tissue

by the shortening of the fibres which modifies its mechanical properties. The goal

of this paper is to measure experimentally the changes in shear wave speed during

voluntary contraction on healthy volunteers and to model these changes with the

acousto-elasticity theory. This theory couples nonlinear elasticity modelling of materials

and elastic wave propagation, and links the wave speed to uni-axial stress using high-

order elastic constants. Due to the presence of fibres, muscles are considered as

anisotropic, specifically transversely isotropic (TI). It follows that shear waves propagate

at different speeds depending on the orientation of the propagation and polarization

directions with respect to the fibre axis [Gennisson et al., 2003]. We show in the next

section how acousto-elasticity theory can be adapted to study shear wave propagation

in an homogeneous TI incompressible solid, subject to a uniaxial stress, extending the

available theory for isotropic solids [Gennisson et al., 2007, Destrade et al., 2010b].

Acousto-elasticity theory links the shear wave speed to the uniaxial stress [Gennisson

et al., 2007] or, equivalently, to the uni-axial elongation [Destrade et al., 2010b]. Both

formulations have been used for in vivo experiments when the stress is applied directly

by pressing the ultrasound probe onto the tissue [Latorre-Ossa et al., 2012, Jiang et al.,

2015, Bernal et al., 2015, Otesteanu et al., 2019, Bayat et al., 2019]. This approach was

also developed for TI media [Bied et al., 2020]. Here we measured the stress directly

with a force sensor [Bouillard et al., 2014] applied on the flexor digitimi minimi muscle.

2. Acousto-elasticity in fibre muscle

2.1. Uniaxial stress in incompressible transversely isotropic solids

We model muscles as soft incompressible materials with one preferred direction,

associated with a family of parallel fibres.

TI compressible solids are described by five independent constants, for example

the following set [Rouze et al., 2020]: µL, EL, ET, νTT, νLT, where µL is the shear elastic

modulus relative to deformations along the fibres, EL, ET are the Young moduli along,

and transverse to, the fibres, respectively, and νTT, νLT are the Poisson ratios in

these directions. The shear elastic modulus µT relative to the transverse direction is

µT = ET

2(1+νTT)
.

For incompressible TI materials, there is no volume change. This constraint leads

to the following relations (see Rouze et al. [2020] for details),

νLT = 1
2
, νTT = 1− ET

2EL
. (1)
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Thus, only three independent constants are required to fully describe a given transversely

isotropic, linearly elastic, incompressible solid. Here we choose the three material

parameters µT, µL, and EL, as proposed by Li et al. [2016]. Note that other, equivalent

choices can be made [Chadwick, 1993, Rouze et al., 2013, Papazoglou et al., 2006].

We call x1 the axis along the fibres and σ11 the uniaxial stress applied by the

volunteers in that direction during the voluntary contractions. The resulting extension

in that direction is e (e > 0: elongation, e < 0: contraction). Then a simple analysis

[Chadwick, 1993] shows that σ11 = ELe, as expected.

2.2. Third-order expansion of the strain energy in a TI incompressible solid

Acousto-elasticity calls for a third-order expansion of the elastic strain energy W in the

powers ofE, the Green-Lagrange strain tensor. For transversely isotropic incompressible

solids, the expansion can be written as [Destrade et al., 2010a],

W = µTI2 + α1I
2
4 + α2I5 +

A

3
I3 + α3I2I4 + α4I

3
4 + α5I4I5, (2)

where the second-order elastic constants α1, α2 are given by

α1 =
1
2
(EL + µT − 4µL) , α2 = 2 (µL − µT) , (3)

and A, α3, α4 and α5 are third-order elastic constants. The strain invariants used in

(S8) are

I2 = tr(E2), I3 = tr(E3), I4 = A ·EA, I5 = A ·E2A, (4)

where A is the unit vector in the fibres direction when the solid is unloaded and at rest.

Note that Li and Cao [2020] call α1 the CqSV parameter, because it quantifies the spatial

dependence of the speed vqSV for the quasi shear vertical mode wave in an undeformed

TI solid. Li and Cao [2020] show that α1 can be negative or positive (with 2α1 > −4µL,

because EL + µT > 0).

For isotropic third-order elasticity, Gennisson et al. [2007] measured the parameter

A for soft phantom gels and found that it can be positive or negative even for solids

which have a similar second-order shear modulus µ. Hence they found µ = 8.5 kPa,

A = −21.5 kPa for a Gelatin-Agar phantom gel, and µ = 8.1 kPa, A = +10.7 kPa for

a PVA phantom gel. Thus there is a important difference from the nonlinear point of

view between these two kinds of material even if their linear shear modulus are quite

similar. As we will see, this remark carries over to TI muscle, where the hardening effect

with effort proves to be much more important than the stiffness at rest.

2.3. Elastic waves in incompressible TI solids under uni-axial stress

We now study the propagation of small-amplitude plane body waves in a deformed,

TI incompressible soft tissue. Destrade et al. [2010a] or Ogden and Singh [2011] show

that it is equivalent to solving a 2 × 2 eigenproblem for the acoustical (symmetric)

tensor. Its eigenvectors are orthogonal and give the two possible directions of transverse

polarization; its eigenvalues are real and give the corresponding wave speeds.
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Figure 1: (P ) is the (A,n)-plane where A is a unit vector in the fibers direction when the

solid is unloaded and at rest, and n is a unit vector in the direction of propagation. The solid

is subject to a uni-axial tensile stress σ11 applied along the fibres. Two purely transverse waves

propagate in an incompressible transversely isotropic solid: the shear-vertical (SV) mode with

polarization a in the (A,n)−plane, and the shear-horizontal (SH) mode with polarization b

in the (A × n,n)−plane. Here θ is the angle between n and A. In our experiments, the

radiation force F is applied along the x3 axis, and we measure the speed of waves travelling

along the fibres (θ = 0◦) and transverse to the fibres (θ = 90◦). Ultrasound tracking measures

the x3 component of the shear wave displacement and is sensitive only to the (SH) propagation

mode.

One eigenvector is b = A × n, orthogonal to both the fibres and the direction of

propagation n (see Figure 1). It corresponds to the shear-horizontal (SH) wave mode.

The second one is a = b×n which lies in the shear-vertical (SV) plane. Calculations of

their wave speed v as a function of the uni-axial stress σ11, the propagation angle θ and

the second and third order elastic moduli are detailed in the supplementary file. In our

experiments, the radiation force F used to induce the transient shear wave is applied

along the x3 axis. Ultrasound tracking measures the x3 component of the shear wave

displacement and is sensitive only to the (SH) propagation mode.

We may introduce the non-dimensional coefficients of nonlinearity β∥ and β⊥ as

β∥ = 1 +
1

EL

(
µL − µT +

A

4
+ α3 +

α5

2

)
, (5)
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β⊥ =
1

EL

(
3µT +

A

2
− α3

)
, (6)

to write the acousto-elasticity equation of the (SH) mode as follows

ρ0v
2 =

(
µL − β∥σ11

)
cos2 θ + (µT + β⊥σ11) sin

2 θ. (7)

Note that this equation correspond to (3) and (9) proposed with a different approach

by Bied et al. [2020] for special cases θ = 0° (propagation along the fibres) and θ = 90°
(propagation transversely to the fibres). Here ρ0 is the mass density, which remains

constant throughout the deformation because of incompressibility. In this paper, we

take ρ0 = 1000 kg/m3, because most human soft tissues are assumed to have the same

density as water. Notice that neither speed depends on the third-order constant α4,

and that the speed of waves travelling transversely to the fibres does not depend on

µL and α5 either. However, the longitudinal Young modulus EL does appear in that

speed’s expression, showing the interplay of axial and transverse linear parameters in

the acousto-elastic effect.

3. Materials and methods

3.1. Study purpose

Our goal is to measure the changes in the muscle stiffness, as measured by ρv2 for

the (SH) waves, as a function of the stress σ11 produced by a striated muscle during

isometric contraction.

For this purpose, we use the Shear Wave Elastography (SWE) method, as provided

by the Supersonic Shear Imaging technique included into the Aixplorer Imaging System

(Supersonic Imagine, Aix en Provence, France, version V12.3). In principle, shear

viscosity, which is frequency-dependent, is expected to modify the shear wave speed

measured by the SWE technique. However, if the shear viscosity is small compared

to the shear elastic modulus, the dispersion effect is limited and the muscle can be

considered as a purely elastic medium. Moreover, as shown by Bercoff et al. [2004], the

effect of soft tissue viscosity on the shear wave speed is small provided the attenuation

length is much larger than the wavelength.

We call µ = ρ0v
2 the “apparent shear modulus”. In our in vivo study, we measure

the changes in µ∥ = µ∥(σ11) along the fibre direction and the changes in µ⊥ = µ⊥(σ11)

transversely to the fibre direction, with the axial stress σ11 produced by the muscle.

Then we use inverse analysis to link these experimental results to the acoustic-elasticity

theory developed in Section 2. We carry an in vivo feasibility study on six healthy

volunteers with different age and sex.

3.2. Muscle and imaging plane

The structure of muscles is complicated by inhomogeneities in fibre orientation and

interfaces between fibre bundles. To isolate the behaviour of an individual muscle,
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Figure 2: (a) SLH20-6 musculoskeletal probe placed above the right hand flexor digiti minimi

muscle in the fibre direction. (b) Bmode image (26.7 × 14.7 mm) in the probe plane showing

the fibres. The muscle studied is at a depth between 0.5 and 1 cm.

Figure 3: (a) Probe placed above the right hand flexor digiti minimi muscle perpendicularly

to the fibre direction. (b) Corresponding Bmode image (26.7 × 14.7 mm), showing that the

muscle is almost circular, see center of the image.

unaffected by the complementary or antagonistic actions of other muscles, we select the

flexor digiti minimi muscle, which extends the hand’s little finger.

This muscle is the only one involved in the little finger’s extension, it has

homogeneous fibre orientation (TI symmetry), and it is close to the epidermis, which

matters for the relatively high frequency probe (SLH20-6 SSI probe, 12 MHz center

frequency) used for the SWE measurements. Furthermore, as shown in Figures 2-3, this

muscle is convenient for probing, as it is situated on the side at the top of the forearm

and spans over a distance longer than the 26.7 mm imaging width of the SLH20-6 probe.

The quality of the ultrasound imaging system is important for the probe positioning

and the localisation of the muscle, which has a diameter of about 0.6 cm. One way to

precisely localize the muscle on the image is to move slowly the little finger and look

at the lateral tissue displacement in real time, with the probe positioned in the fibre

direction. As shown on Figures 2(a) and 3(a), the probe is held axially and transversely

to the fibre direction by a free arm stand, which can be locked in the desired position.

We took particular care not to apply pressure with the probe on the skin surface. Bmode

images of the right hand flexor digiti minimi are shown on Figures 2(b) and 3(b), for
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(a) The subject is seated with their right

elbow flexed at 135◦ (180◦ corresponds to the

full extension of the elbow) and positioned

vertically at approximately 70◦ to the body.

(b) The little finger’s first phalanx is placed

vertically and in contact with a cylindrical

rigid interface. The finger is aligned with the

force sensor.

Figure 4: Experimental setup including the custom-made force measurement system and the

US Aixplorer imaging system running the SonicLab V12 research software to upload the Shear

Wave Elastography (SWE) sequence.

a representative subject at rest. The image dimension is 14.7 mm depth by 26.7 mm

width, giving an idea of the small size of the muscle. The white boxes delimit the region

of interest, where SWE data are acquired.

3.3. Protocol and participants

Figure 4 shows the experimental setup including the custom-made force measurement

system and the ultrasound imaging system.

Two women and four men, all right-handed, took part in this feasibility trial. They

were informed of the possible risk and discomfort associated with the experimental

procedures prior to giving their written consent to participate. Neither pregnant women

nor persons under guardianship were included. The experimental design of this study

was approved by the local Ethical Committee (Number ID RCB: 2020-A01601-38) and

was carried out in accordance with the Declaration of Helsinki.

The subjects are seated with their right elbow flexed to 135◦ (180◦ corresponds to

the full extension of the elbow) and positioned vertically at approximately 70◦ to the

body. The first phalanx of the little finger is placed vertically and in contact with a

cylindrical rigid interface (Figure 4b), so that it is aligned with the calibrated force sensor

(micro load cell CZL635-20) and at rest. A lever arm, approximately 3 cm long, is placed

between the force measuring point and the axis of rotation of the finger. That short

distance might lead to a small difference between the magnitude of the force created
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inside the extensor muscle and the force measured by the sensor. At any rate, we assume

that this effect is reflected by a small proportionality factor, which we neglect in our

analysis. First, we asked the subjects to perform three maximum isometric voluntary

contractions (MVC) lasting at least 3 seconds and separated by 30 seconds of recovery.

The largest of the three forces was considered as the maximum voluntary force and was

used to normalize subsequent submaximal contractions.

Table 1 details the age, genre, handedness, maximum voluntary force developed

with the little finger, diameter of the muscle and finally, the maximum axial stress σ11Max

calculated by dividing the MVC force by the current muscle cross-surface area (obtained

using the Bmode image in the direction transverse to the fibre direction). Interestingly,

in spite of their great age difference (40 years), Subject#2 and Subject#3 (both male)

develop the same maximum force magnitude (the maximum lifted load difference is only

26 g) but Subject#2 has twice the muscle cross-surface area as Subject#3. Thus the

maximum voluntary stress σ11Max induced by Subject#2 is half that of Subject#3. On

the other hand, the axial stress σ11Max obtained by Subject#5 is one of the smallest in

the cohort, while its maximum lifted load is the largest. We also note that the maximum

voluntary force range is large, from a low of 5.25 N for Subject#4 to a high of 9.06 N

for Subject#5.

Table 1: Age, Gender, R/L Handedness, Maximum Lifted Load, Maximum Volontary Force,

flexor digiti minimi muscle surface and maximum axial stress σ11Max for the six healthy

volunteers involved in the feasibility trial.

Subject Age Genre Handedness Maximum Maximum Muscle σ11Max

Load Lifted Volontary Force Surface

(years) (M/F) R/L (g) (N) (cm2) (kPa)

#1 22 M R 630 6.30 0.28 225

#2 62 M R 725 7.25 0.27 268

#3 22 F R 699 6.99 0.14 499

#4 25 F R 525 5.25 0.2 262

#5 40 M R 906 9.06 0.5 181

#6 32 M R 902 9.02 0.55 164

Then the participants were asked to perform five voluntary contractions at levels

corresponding to 4, 8, 12, 16, 20% of MVC. They had to stay 4 seconds at each stage

before moving to the next level. This period provided sufficient time to save the SWE

image on the Aixplorer (and to allow for some viscous dissipation). To control the

force steps, the participants followed a visual feedback displayed on a monitor placed in

front of them, see Figure 4a. It turned out to be difficult for some subjects to maintain

precisely a constant force, especially at the 16% and 20% levels of the maximal voluntary

contraction. For this reason we conducted our inverse analysis for measurements up to

12% only, see results in Section 4.
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3.4. Shear Wave Elastography measurements

We used the Shear Wave Elastography method to measure how shear elasticity changed

with the force applied by the volunteers during the isometric contraction protocol.

The SWE experiment is based on two steps: the generation of the shear waves and

the ultrafast imaging of their propagation. In our experiments, the central frequency of

the fast imaging scheme is 7.5 MHz and the image repetition frequency is set to 14 kHz,

adapted to muscle stiffness.

Figure 5: Shear wave (SH mode) propagation along the flexor digiti minimi muscle fibres for

Subject#5 at rest. The wave propagates in the fibres direction x1 and is polarized vertically

along the x3 axis. The color gives the tissue particle velocity at each location, see scale on the

right (which adapts for better visualization).

There are 48 frames in the temporal dimension, with a spatial resolution of 71.4 µs.

Hence, we record the SW propagation for 3.4 ms, which is sufficient to follow the wave

propagating along the width of the probe. The time t = 0 ms in Figure 5 correspond

to the beginning of the SWE data acquisition which is situated after the beginning of

the push sequence. There are 44 sampling points along the vertical axis, between the
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depths of 2.3 mm and 11.2 mm, with an axial resolution corresponding to one ultrasonic

wavelength at 7.5 MHz, i.e 205 µm. There are 110 sampling points along the x1 axis,

between (x1)0 = 1.5 mm and (x1)Max = 16.8 mm, with the lateral resolution of SLH20-6

probe pitch being 140 µm.

An SWE acquisition consists of five pushing lines positioned at -0.23, 3.77, 7.77,

11.77, 15.77 mm, with two focal points at 6.7 mm and 9.7 mm.

4. Results

4.1. Propagation along the fibres

Figure 5 shows the shear wave propagation induced in the muscle by the ultrasonic

transient radiation force for Subject#5 at rest. The radiation force is applied vertically

along the positive x3 axis. The wave propagates in the fibre direction along the x1 axis

and is polarized along the x3 axis. The propagation is presented at four different times:

t = 0, 0.21, 0.43, 0.64 ms, with a color scheme for the speed value, superimposed onto

the Bmode image. The color scale is adapted for each image to take into account wave

attenuation and enhance visualization. Note that here the Bmode image is obtained

from the shear wave tracking sequence and has a lower quality than the Bmode image

shown in Figure 2. For this figure, we selected the third push zone situated at the lateral

position 7.77 mm.

At time t = 0.64 ms, we can clearly see that the lower part of the shear wave front

is ahead of the other parts of the wave front, indicating that the wave propagates faster

in the muscle. Thus, we select the region of interest (ROI) in that part of the picture,

from x3 = 6.2 to x3 = 7.7 mm (6 points), where the speed v is assumed homogeneous

to average the lateral propagation and improve the signal-to-noise ratio.

We assume that the phase speed dispersion is small at that the SWE measurement

gives the speed of all shear waves with different frequencies in the wave packet. Further,

we assume that viscosity might attenuate the amplitude of the wave, but does not

modify its speed noticeably [Bercoff et al., 2004].

Figures 6 show the measurements given by the SWE diagnostic mode of the

Aixplorer, obtained for Subject#5 at four levels of voluntary contraction: 0, 4, 8, 12

% of MVC, corresponding to σ11 equal to 0, 7.2, 14.5, and 21.7 kPa, respectively. The

machine gives a “stiffness” value, obtained by multiplying ρ0v
2 by 3 to yield the apparent

isotropic Young modulus. However here the material is anisotropic and we cannot use

that formula. Instead we simply divide back the machine mean value over the selected

ROI (say 67.5± 8.2 kPa at rest, Figure 6(a)) by 3 (to obtain ρ0v
2 = 22.5± 2.7 kPa at

rest, for example).

We collected the measurements on Figure 7(a) for the six volunteers. We notice a

linear variation of µ∥ (σ11) with σ11 in the fibres direction, similar to the behaviour

obtained experimentally by Bouillard et al. [2011] on the abductor digitimi minimi

muscle. This variation is also in line with our theoretical analysis, according to which
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µ∥ (σ11) = ρ0v
2 is given by (S28) with θ = 0 as

µ∥ (σ11) = µL − β∥σ11, (8)

where the non-dimensional coefficient of nonlinearity β∥ is given by (5).

For all six subjects, µ∥ (σ11) increases with σ11, so that β∥ < 0 in the cohort.

For the curve-fitting exercise determining the quantities µL and β∥, we use the

Matlab robustfit algorithm which allocates lower weight to points that do not fit well. It

also outputs the coefficient of determination R2 and the root mean squared error RMSe.

4.2. Propagation across the fibres

In the direction transverse to the muscle fibres, the shear wave is highly scattered

by heterogeneities, which induces a poor signal-to-noise ratio for frequency analysis

[Deffieux et al., 2008b].

Figures 8 show the shear wave propagation perpendicularly to the fibres axis for

Subject #5, at four different times: t = 0, 0.29, 0.58, 0.87 ms. Superimposed onto the

Bmode image, we show the propagation inside the muscle only, which has a quasi-

circular shape with a diameter of approximately 8 mm (see Figure 3 for a more precise

localisation of the muscle with a better Bmode image quality).

Figure 6: SWE analysis for Subject#5 at four levels of voluntary contraction along the flexor

digiti minimi muscle fibres. (a): at rest, (b): 4% MVC, (c): 8% MVC, (d): 12% MVC. From

the Aixplorer measure we deduce the average wave speed in the ROI (disc inside white circle)

and compute the apparent axial shear modulus µ∥(σ11) = ρ0v
2. For this subject, it increases

with the applied stress.
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Figures 9 show the values of the apparent shear modulus µ⊥(σ11) = ρ0v
2 in the

transverse direction, for Subject#5. Again, we present measurements up to 12% of

MVC.

Figure 7: Apparent shear elastic modulus ρ0v
2 (σ11) changes with the axial stress σ11,

measured in vivo by SWE on the flexor digiti minimi muscle (a) along the fibres axis µ∥ (σ11)

and (b) across the fibres axis µ⊥ (σ11) for the six subjects of our feasibility study.
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According to our theoretical analysis, µ⊥ (σ11) is equal to ρ0v
2 given by (S28) with

θ = 90° as

µ⊥ (σ11) = µT + β⊥σ11, (9)

where the non-dimensional coefficient of nonlinearity β⊥ is given by (6).

Again, we use the formula from acoustic-elasticity theory to produce a linear fit to

the data. In contrast to the case of propagation along the fibres, we find that µ⊥ (σ11)

does not increase with the axial stress σ11, but decreases slightly for Subject#5. Other

subjects lead to different behaviours, as can be checked on Figure 7(b), but β⊥ is always

negative in the cohort. We summarise the results in Table 2.

Figure 8: Shear wave (SH mode) propagation transversely to the flexor digiti minimi muscle

fibres for Subject#5 at rest. The wave propagates along the x2 axis and is polarized vertically

along the x3 axis. The color gives the tissue particle velocity at each location, see scale on the

right (which adapts for better visualization)
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Figure 9: SWE analysis for Subject#5 at four levels of voluntary contraction transversely to

the flexor digiti minimi muscle fibres. (a): at rest, (b): 4% MVC, (c): 8% MVC, (d): 12%

MVC. From the Aixplorer measure we deduce the average wave speed in the ROI (disc inside

white circle) and compute the apparent transverse shear modulus µ⊥(σ11) = ρ0v
2. For this

subject, µ⊥ is almost unchanged as σ11 increases.

Table 2: Axial shear elastic modulus at rest µL, axial nonlinearity coefficient β∥, transverse

shear elastic modulus at rest µT, transverse nonlinearity parameter β⊥, 12% of maximum axial

stress σ11Max for the flexor digiti minimi muscle of the six healthy volunteers involved in the

study.

Subject µL β∥ R2 µT β⊥ R2 0.12σ11Max

(kPa) (kPa) (kPa)

#1 18.1 ± 8.9 -2.14 ± 0.53 0.89 5.0 ± 0.4 -0.05 ± 0.02 0.72 27.0

#2 29.0 ± 1.3 -0.51 ± 0.07 0.97 14.9 ± 1.0 -0.29 ± 0.05 0.94 32.2

#3 6.9 ± 3.0 -0.77 ± 0.08 0.98 4.8 ± 1.5 -0.02 ± 0.04 0.09 59.9

#4 12.6 ± 2.1 -1.12 ± 0.10 0.98 9.7 ± 1.0 -0.19 ± 0.05 0.87 31.4

#5 25.7 ± 3.9 -2.30 ± 0.30 0.96 7.3 ± 0.7 -0.02 ± 0.05 0.09 21.7

#6 11.5 ± 1.2 -2.50 ± 0.09 0.99 7.9 ± 0.6 -0.17 ± 0.05 0.85 19.7

5. Discussion

Using acousto-elasticity theory, we obtained analytical expressions for the dependence of

the SH shear wave speed as a function of the applied uniaxial stress in muscle, assuming

that it behaves as a transversely isotropic, incompressible soft solid, and that the wave

travels either along or transverse to the fibres.
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For our experiments, we oriented the acoustic radiation force along the vertical axis

and propagated the wave along or transverse to the flexor digiti minimi muscle to avoid

coupling of the shear horizontal (SH) mode with the shear vertical (SV) mode [Rouze

et al., 2020]. We determined theoretically and experimentally the apparent shear elastic

modulus µ (σ11) = ρ0v
2, and found it varies linearly with σ11.

We obtained analytical expressions for µ∥ (σ11) = µL − β∥σ11 in the fibre direction

and for µ⊥ (σ11) = µT + β⊥σ11 transversely to the fibre direction. The coefficient β∥ is

a linear combination of the second-order elastic parameters µL, µT, EL, and the third-

order moduli A, α3, α5; the coefficient β⊥ is written in terms of only two second-order

parameters µT, EL and two third-order moduli A, α3. Neither coefficient involves the

other third-order parameter α4.

Our in vivo analysis of the six-volunteer cohort focused on the variation of the

apparent shear elastic moduli with σ11. The results show that these variations are very

different across the cohort.

For the analysis of µ⊥ (σ11), we distinguish three subgroups.

For Subjects #2,4,6 (first group), we find β⊥ = −0.29,−0.19,−0.17 (±0.05) ,

respectively, all negative, indicating that µ⊥ decreases with σ11. Here the connective

tissue surrounding the muscle fibres softened under axial stress σ11.

For Subjects #1,3,5, we find β⊥ = −0.05 ± 0.02,−0.02 ± 0.04,−0.02 ± 0.05,

respectively, all small values, indicating that µ⊥ is almost unchanged as σ11 increases.

For these three subjects, the infinitesimal shear elastic moduli µT are almost the same:

µT = 5.0 ± 0.4, 4.8 ± 1.5, 7.3 ± 0.7 kPa, respectively. However, Subject#3 has a

much greater value of 12% of maximum axial stress (12%σ11Max = 59.9 kPa) than

Subjects#1,5, who have approximately the same value (27.0, 21.7 kPa, respectively).

Subject#3 also has a much lower magnitude of coefficient β∥ (= −0.77 ± 0.08) than

Subjects#1,5 who have approximately the same β∥ coefficient (= −2.14± 0.53,−2.3±
0.30). Thus, we separate Subjects#1,5 (second group) from Subject#3 (third group).

By comparing expressions (5) and (6) for the β nonlinearity coefficients, we see that

only the µL and α5 parameters can explain why β∥ is different between the second and

the third group, because they do not appear in the expression (6) for β⊥ (which is the

same for these two groups). Hence we see that a higher value of µL in (5) results in a

higher value of the coefficient β∥ for subjects who have an identical β⊥. This is indeed

what we observed experimentally, see values in Table 2.

For the analysis of the axial apparent shear modulus µ∥ (σ11), we also find three

subgroups, according to the magnitude of the nonlinearity coefficient β∥. Hence

Subjects#2,3 both present small magnitudes for β∥, Subject#4 present intermediate

value, and Subjects#1,5,6 all present high values (in that order).

For a contraction from rest to 12% MVC, Subject#6’s apparent elastic modulus

µ∥ (σ11) increases by a factor 6, from 10.5 to 59.9 kPa, demonstrating his remarkable

ability to recruit fibres to harden the muscle very quickly. On the peroneus longus muscle

of anaesthetised cats, Petit et al. [1990] found that the S motor units can produce high

values of muscle stiffness, suggesting that for Subject#6, the motor units ratio S/F might
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be very high. Subject#6 also develops the smallest 12% of maximum axial stress value

of the cohort, consistent with a high S/F ratio because slow (S) motor units develop

quite small tensions compared with fast fatigue-resistant (FR) and fast fatiguable (FF)

units Petit et al. [1990].

For Subjects#1,5,6 (third group), we note that the increase in the magnitude of β∥

is associated with a decrease of the maximal axial stress σ11Max.

For Subjects#2,3 (first group), we recorded the smallest magnitude of the

nonlinearity coefficient β∥ (−0.51±0.07,−0.77±0.08, respectively). These two subjects

develop respectively the second-highest (32.2 kPa) and the highest (59.9 kPa) maximum

axial stress 12%σ11Max in the cohort. These results are consistent with a high presence

of fast fibres (F) that do not harden rapidly the muscle, associated with a quite high

tension Petit et al. [1990].

A natural follow-up on this study is to apply the method to patients with

musculoskeletal disorders or neurodegenerative diseases. However, the method must

be adapted because we found it was difficult for some healthy subjects to maintain a

voluntary constant force during the time required to measure the wave speed, a task

which could prove even more challenging for patients. This adaptation could be achieved

with a muscle contained hardening method, based on the corresponding nerve electro-

stimulation associated with a synchronous measurement of force and elasticity. That

set up would provide a calibrated and repeatable stimulation protocol as used for EMG

measurements. A better localisation of the muscle and a better probe positioning in

relation to the fibres orientation could be achieved by linking in real time the ultrasound

Bmode image with the corresponding slice plan of a pre-acquired MRI volume image.

The effect of the distance between the force sensor and the muscle could also be

quantified precisely. Finally, the modelling can be improved, to include heterogeneity,

viscosity and dispersion.

6. Conclusion

The quantification of the elastic nonlinearity of biological tissues can prove to be a most

valuable tool for the early diagnosis of musculoskeletal disorders. Here, we developed

an acousto-elasticity theory to study the propagation of small-amplitude plane body

waves in deformed transversely isotropic incompressible solids. For the shear horizontal

(SH) mode, we obtained a linear relation between the squared wave speed ρ0v
2 and the

applied axial stress σ11 using the second- and third-order elastic constants. Then we

used this theory to analyse experimental results on skeletal striated muscle.

With a cohort of six healthy volunteers, we uncovered a great diversity for

the nonlinear behaviour of the flexor digiti minimi muscle, for the apparent shear

modulus µ∥ (σ11) along the fibres as well as for the transverse apparent shear modulus

µ⊥ (σ11). Hence µ⊥ can decrease with σ11 (Subjects#2,4,6) or remain almost constant

(Subjects#1,3,5). Meanwhile, µ∥ always increases with σ11, and the rate of increase is

highly correlated to the weakness of the maximum voluntary contraction produced by
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the volunteer.

Acknowledgments
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Supplementary File:
Analytical calculations derived for the paper

“Acousto-elasticity of Transversely Isotropic Incompressible Soft Tissues:

Characterization of Skeletal Striated Muscle”

Jean-Pierre Remeniéras1, Michel Destrade2

1 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
2 School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University
Road, Galway, Ireland.

Abstract. This supplementary file details the analytical calculations of the acousto-elasticity

method used in the paper “Acousto-elasticity of Transversely Isotropic Incompressible Soft

Tissues: Characterization of Skeletal Striated Muscle”. For generality, we treat both the shear-

horizontal (SH) and the shear-vertical (SV) propagation modes in homogeneous, transversely

isotropic, incompressible solids subject to a uniaxial stress along the fibres. In the main paper,

only the results for the (SH) mode are exploited, because our experiments are only sensitive

to this polarisation.

Acousto-elasticity requires an expansion of the strain-energy density up to at least the

third order in the strain. Here we express the speed of the shear waves as a function of the

second- and third-order elastic moduli and of the propagation angle θ between the direction

of the fibres and the direction of propagation. In the main paper, we take θ = 0◦ and θ = 90◦,

in line with the experiments, but with the expressions calculated in this supplementary file,

it is possible to perform a propagation analysis for any angle θ, by rotating the probe or by

using a 3D Shear Wave Elasticity method.

1. Uniaxial stress in incompressible transversely isotropic solids

We model muscles as soft incompressible solids with one preferred direction, associated

with a family of parallel fibres, see Figure S1 for a description of the kinematics and

physics of the model.

Transversely isotropic (TI), linearly elastic, compressible solids are described

by five independent constants, for example the following set [Rouze et al., 2020]:

µL, EL, ET, νTT, νLT, where µL is the shear elastic modulus relative to deformations

along the fibres, EL, ET are the Young moduli along, and transverse to, the fibres,

respectively, and νTT, νLT are the Poisson ratios in these directions. The shear elastic

modulus µT relative to the transverse direction is

µT =
ET

2 (1 + νTT)
. (S1)

For incompressible TI materials, there is no volume change. This constraint leads to

the following relations (see Rouze et al. [2020] for details),

νLT = 1
2
, νTT = 1− ET

2EL
. (S2)

Thus, only three independent constants are required to fully describe a given transversely

isotropic, linearly elastic, incompressible solid. Here we choose the three material
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Figure S1: In our experiments, the volunteers apply a uniaxial stress of magnitude

σ11 along the direction of the fibres (the x1 axis) during voluntary contractions. In

reaction, their muscle experiences the uniaxial Cauchy stress t11 = −σ11, and its length

is consequently changed by amount e along x1, and by amounts −e/2 along x2 and x3

(by symmetry and by incompressibility).

parameters µT, µL, and EL, as proposed by Li et al. [2016]. Other, equivalent choices

can be made [Chadwick, 1993, Rouze et al., 2013, Papazoglou et al., 2006], for instance

by using µT, µL, and
EL

ET
. By inserting νTT given by (S2) into (S1) we obtain

EL =
(
4
EL

ET

− 1
)
µT, (S3)

which makes the link between the two descriptions.

As shown in Figure S1, we call x1 the axis along the fibres and t11 the uniaxial

Cauchy stress experienced by the muscle in reaction to the stress σ11 applied by the

volunteers in that direction during the voluntary contractions. The resulting extension

in that direction is e (e > 0: elongation, e < 0: contraction). Then, following Chadwick

[1993], we have

t11 = −p+ 2
(
2
EL

ET

− 1
)
µTe, (S4)

where p is a Lagrange multiplier introduced by the constraint of incompressibility (to be

determined from initial/boundary conditions). Here the lateral stresses are t22 = t33 = 0

so that

0 = −p+ 2µT

(
−e

2

)
, (S5)

because the lateral extension is −e/2 by symmetry and incompressibility. This equation

yields p and then,

t11 =
(
4
EL

ET

− 1
)
µTE11, (S6)
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which can be simplified using (S3) into the classical expression t11 = ELe. In terms of

the uni-axial stress σ11 = −t11 applied by the volunteers on the muscle, we have

σ11 = −ELe. (S7)

This relation will be used to go from (v − e) to (v − σ11) formulations of the acoustic-

elastic equations.

2. Third-order expansion of the strain energy in TI incompressible solids

Acousto-elasticity calls for a third-order expansion of the elastic strain energy density

W in the powers of E, the Green-Lagrange strain tensor.

For transversely isotropic incompressible solids, the expansion can be written as

[Destrade et al., 2010a],

W = µTI2 + α1I
2
4 + α2I5 +

A

3
I3 + α3I2I4 + α4I

3
4 + α5I4I5, (S8)

where the second-order elastic constants α1, α2 are given by

α1 =
1
2
(EL + µT − 4µL) , α2 = 2 (µL − µT) , (S9)

and A, α3, α4 and α5 are third-order elastic constants. The strain invariants used in

(S8) are

I2 = tr(E2), I3 = tr(E3), I4 = A ·EA, I5 = A ·E2A, (S10)

where A is the unit vector in the fibres direction when the solid is unloaded.

3. Small-amplitude plane body waves in the deformed soft tissue

We now consider the propagation of small-amplitude plane body waves in a deformed

soft tissue. Destrade et al. [2010a] and Ogden and Singh [2011] show that investigating

homogeneous plane wave propagation in TI incompressible solids is equivalent to solving

the eigenproblem

Q (n)a = ρ0v
2a, (S11)

where ρ0 is the (constant) mass density, a is the unit vector along the direction of

polarisation, Q is the following symmetric tensor

Q (n) = (I − n⊗ n)Q (n) (I − n⊗ n) , (S12)

with Q(n) the (symmetric) acoustical tensor. It is defined as

[Q (n)]ij = A0piqjnpnq, (S13)

where A0 is the fourth-order tensor of instantaneous elastic moduli, with components

[Destrade et al., 2010a],

A0piqj = FpαFqβδij
∂W

∂Eαβ

+ FpαFqβFjνFiγ
∂2W

∂Eαγ∂Eβν

. (S14)
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Figure S2: We consider an incompressible transversely isotropic solid under uniaxial

stress. Here (P ) is the (A,n)-plane where A is a unit vector in the fibers direction when

the solid is unloaded and at rest, and n is a unit vector in the direction of propagation.

The uni-axial tensile stress σ11 is applied along the fibres. Two purely transverse waves

propagate: the shear-vertical (SV) mode with polarization a in the (A,n)−plane, and

the shear-horizontal (SH) mode with polarization b normal to the (P )−plane. We call θ

the angle between n and A. In our experiments, the radiation force F is applied along

the x3 axis, and we measure the speed of waves travelling along the fibres (θ = 0◦) and

transverse to the fibres (θ = 90◦). Ultrasound tracking measures the x3 component of

the shear wave displacement and is sensitive only to the (SH) propagation mode.

Here W is given by (S8) and F is the deformation gradient.

In our case, the fibres are aligned with the direction of uniaxial stress and elongation,

which is along the x1-axis in the Eulerian description. Hence, at first-order in e,

F = Diag (1 + e, 1− e/2, 1− e/2), E = Diag (e,−e/2,−e/2), I4 = e, I5 = 0.

Because Q (n) is symmetric, its eigenvectors are orthogonal. By inspection we see

that one eigenvector is n, with eigenvalue ρ0v
2 = 0 indicating that no longitudinal

wave may propagate in perfectly incompressible solids. The other two eigenvectors are

b = A × n, along x3, and a = b × n which lies in the (SV) plane. The corresponding

two shear velocities are given by

ρ0v
2
b = A0piqjnpnqbibj, ρ0v

2
a = A0piqjnpnqaiaj. (S15)
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4. Acousto-elasticity of the (SH) wave

The (SH) wave propagates along n = (cos θ, sin θ, 0) and is polarised along b = (0, 0, 1),

see Figure S2.

Using (S14) and (S15), we find that the wave speed vb is given by

ρ0v
2
b = γ13 cos

2 θ + γ23 sin
2 θ, (S16)

where

γ13 = A01313 = F 2
11

∂W

∂E11

+ F 2
11F

2
33

∂2W

∂E2
13

,

γ23 = A02323 = F 2
22

∂W

∂E22

+ F 2
22F

2
33

∂2W

∂E2
23

. (S17)

We first calculate γ13, using the strain energyW in (S8) and the derivatives formulas

of Destrade et al. [2010a]. We find, at the first order in e, that

∂I2
∂E11

= 2e,
∂ (I24 )

∂E11

= 2e,
∂I5
∂E11

= 2e,

∂I3
∂E11

= 0,
∂ (I2I4)

∂E11

= 0,
∂ (I34 )

∂E11

= 0, (S18)

so that

F 2
11

∂W

∂E11

= 2 (µT + α1 + α2) e. (S19)

The second term in the expression of γ13 involves second derivatives of W . We obtain

∂2I2
∂E2

13

= 1,
∂2 (I24 )

∂E2
13

= 0,
∂2I5
∂E2

13

=
1

2
,

∂2I3
∂E2

13

=
3

4
e,

∂2 (I2I4)

∂E2
13

= e,
∂2 (I34 )

∂E2
13

= 0,
∂2 (I4I5)

∂E2
13

=
1

2
e, (S20)

so that

F 2
11F

2
33

∂2W

∂E2
13

= µT +
α2

2
+
(
µT +

α2

2
+

A

4
+ α3 +

α5

2

)
e. (S21)

Finally, adding the two expressions, we obtain

γ13 = µT +
α2

2
+
(
3µT +

A

4
+ 2α1 +

5

2
α2 + α3 +

α5

2

)
e. (S22)

In terms of the classic linear moduli, see (S9), we have

γ13 = µL +
(
EL + µL − µT +

A

4
+ α3 +

α5

2

)
e

= µL −
[
1 +

1

EL

(
µL − µT +

A

4
+ α3 +

α5

2

)]
σ11, (S23)

where we used (S7) for the latter equality.

Now we compute γ23 = A02323. We find in turn that

∂I2
∂E22

= −e,
∂ (I24 )

∂E22

=
∂I5
∂E22

=
∂I3
∂E22

=
∂ (I2I4)

∂E22

=
∂ (I34 )

∂E22

= 0, (S24)
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and that

∂2I2
∂E2

23

= 1,
∂2 (I24 )

∂E2
23

= 0,
∂2I5
∂E2

23

= 0,
∂2I3
∂E2

23

= −3

2
e,

∂2 (I2I4)

∂E2
23

= e,
∂2 (I34 )

∂E2
23

= 0,
∂2 (I4I5)

∂E2
23

= 0. (S25)

Eventually, we obtain

γ23 = µT −
(
3µT +

A

2
− α3

)
e

= µT +
1

EL

(
3µT +

A

2
− α3

)
σ11. (S26)

We may introduce the non-dimensional coefficients of nonlinearity β∥ and β⊥ used

in the main paper, as

β∥ = 1 +
1

EL

(
µL − µT +

A

4
+ α3 +

α5

2

)
,

β⊥ =
1

EL

(
3µT +

A

2
− α3

)
,

(S27)

to write the acousto-elasticity equation of (SH) waves as follows

ρ0v
2
b =

(
µL − β∥σ11

)
cos2 θ + (µT + β⊥σ11) sin

2 θ, (S28)

Notice that α4 does not appear at all in that expression.

In the isotropic limit, we have µL = µT = µ (the second Lamé coefficient),

EL = ET = 3µ, and αi = 0, so that (S28) reduces to

ρ0v
2
b = µ+

[
−
(
1 +

A

12µ

)
cos2 θ +

(
1 +

A

6µ

)
sin2 θ

]
σ11, (S29)

in line with the known results of acousto-elasticity [Destrade et al., 2010b, Abiza et al.,

2012].

In the absence of pre-stress, σ11 = 0 and (S28) reduces to

ρ0v
2
b = µL cos

2 θ + µT sin2 θ, (S30)

as expected [Chadwick, 1993]. In vivo experiments [Gennisson et al., 2003] indeed

demonstrate the existence of slow and fast shear waves in the human biceps, as predicted

by this relation.

5. Acousto-elasticity of the (SV) wave

The (SV) mode has already been studied by Destrade et al. [2010a]. Here we write the

results in terms of our choice of moduli.

Destrade et al. [2010a] show that the acousto-elastic equation of (SV) waves is

ρ0v
2
a = α cos4 θ + 2β cos2 θ sin2 θ + γ sin4 θ, (S31)
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where the parameters α, γ and β can be written as follows. Either in terms of e, as

α = µL +
(
EL + µL − µT +

A

4
+ α3 +

α5

2

)
e,

β = −µL +
1

2
(EL + µT) +

(
5

2
EL − µL − 5µT +

A

4
+ 4α3 + 3α4 +

5

2
α5

)
e,

γ = µL +
(
µL − µT +

A

4
+ α3 +

α5

2

)
e, (S32)

or terms of σ11, as

α = µL −
[
1 +

1

EL

(
µL − µT +

A

4
+ α3 +

α5

2

)]
σ11,

β = −µL +
1

2
(EL + µT)−

1

2

[
5 +

1

EL

(
−2µL − 10µT +

A

2
+ 8α3 + 6α4 + 5α5

)]
σ11,

γ = µL −
1

EL

(
µL − µT +

A

4
+ α3 +

α5

2

)
σ11. (S33)

Notice that all the moduli present in the third-order expansion (S8) of the strain

energy W appear in the acousto-elasticity equation for (SV) waves (S31), although α4

disappears in the special cases of the principal waves at θ = 0, 90◦.

In the isotropic limit, we have µL = µT = µ, EL = ET = 3µ, αi = 0, and the

relation reduces to

ρ0v
2
a = µ+

(
3µ cos2 θ +

A

4

)
e = µ−

(
cos2 θ +

A

12µ

)
σ11, (S34)

which recovers known equations when θ = 0, 90◦ [Gennisson et al., 2007, Destrade et al.,

2010b].

In the absence of uniaxial stress, σ11 = 0, and the relation reduces to

ρ0v
2
a = µL + (EL + µT − 4µL) sin

2 θ cos2 θ, (S35)

in agreement with Li et al. [2016] and Li and Cao [2020].
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