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On the thermodynamic consistency of Quasi-Linear Viscoelastic models for soft solids

Harold Berjamina,∗, Michel Destradea, William J. Parnellb

aSchool of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Republic of Ireland
bDepartment of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Abstract

Originating in the field of biomechanics, Fung’s model of quasi-linear viscoelasticity (QLV) is one of the most popular constitutive
theories employed to compute the time-dependent relationship between stress and deformation in soft solids. It is one of the simplest
models of nonlinear viscoelasticity, based on a time-domain integral formulation. In the present study, we consider the QLV model
incorporating a single scalar relaxation function. We provide natural internal variables of state, as well as a consistent expression
of the free energy to illustrate the thermodynamic consistency of this version of the QLV model. The thermodynamic formulation
highlights striking similarities between QLV and the internal-variable models introduced by Holzapfel and Simo. Finally, the
dissipative features of compressible QLV materials are illustrated in simple tension.
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1. Introduction

Nonlinear viscoelastic behaviour is observed in many soft
solids, such as elastomers, gels, and biological materials. More
specifically, the nonlinear mechanical response of viscous soft
solids exhibits relaxation and creep phenomena in large defor-
mation quasi-static tests. In dynamic tests, the response of such
materials is sensitive to strain rates. Moreover, marked hystere-
sis loops in loading-unloading experiments are evident in such
media [1, 2].

Historically, the mechanical modelling of nonlinear vis-
coelastic solids has been approached in many different
ways. Fundamentally, however, modelling viscoelastic effects
amounts to a specification of the constitutive law to provide
an accurate functional relationship between the instantaneous
stress and the entire strain history [3, 4]. In the monograph by
Truesdell and Noll [5], this definition corresponds to the con-
cept of simple materials (Sec. 29 therein), see also Sec. 6.7 of
the book by Malvern [6].

If the stress depends only on a very short interval of the re-
cent history of the deformation, then it can be expressed as a
function of the time derivatives of the deformation gradient up
to a finite order (cf. Truesdell and Noll [5] Sec. 35). Often, time
derivatives of the strain up to first order are considered (i.e., the
stress is expressed in terms of strain and strain rates), which
leads to Newtonian-type viscosity models [7, 8]. Similarly to
the linear Kelvin–Voigt model, nonlinear strain-rate differen-
tial models fail to describe stress relaxation phenomena [9, 10].

Differential models involving time derivatives of stress as
well as strain provide a natural bridge to models involving
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Figure 1: Number of QLV records by year in the Web of Science (WoS)
database for the very specific query: AB=(visco* AND quasi* AND (Fung
OR QLV*)).

longer durations of time history. Indeed, the stress can then
be expressed via an integral representation or via models with
memory variables. These models can be seen as more or less
equivalent, with memory variables manifesting themselves as
terms within a stress relaxation function that arises in integral
models. There is a vast literature for both integral and memory
variable approaches. Reviews of viscoelastic constitutive mod-
elling contrast these different approaches [1, 3, 4], or introduce
them in a disconnected way [2, 11].

A popular and simple model of the integral type is Fung’s
quasi-linear viscoelasticity (QLV) [12, 13], see Fig 1, which
is based on a Boltzmann superposition principle. The instan-
taneous stress is expressed as a convolution product between a
relaxation tensor and the elastic stress response. Originating in
biomechanics, Fung’s QLV has been successfully employed in
related applications, with the development of associated exper-
imental techniques [14–16] and dedicated computational meth-
ods [17, 18]. It has also been employed to model polymers and
rubbers [19, 20].

The computation of the instantaneous QLV stress by means
of the convolution product requires the storage of the whole
strain history, since the constitutive law is non-local in time. In
computational applications, this can be avoided by expanding
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the relaxation tensor as a Prony series, leading to the natural
definition of memory variables [17, 18]. Suitable memory vari-
ables account for the deformation history in a time-local fashion
[21], allowing efficient evaluation of the mechanical response.

As described extensively by Maugin [22, 23], constitutive
models with memory variables rely on thermodynamics with
internal variables of state to ensure that the addition of new
variables entails a dissipative contribution. Various viscoelastic
constitutive models of the literature satisfy these principles by
design [1]. In particular, viscous strain variables may be consis-
tently introduced within a multiplicative decomposition of the
deformation gradient tensor, in combination with Maxwell-type
rheologies [24, 25].

To the present authors’ knowledge, a thermodynamically-
consistent expression of the energy in terms of the memory
variables of QLV is yet to be presented. In this paper, we re-
call the equations governing the motion of QLV solids with a
single scalar relaxation function (Sec. 2). The main result is
derived in Sec. 3, namely a thermodynamically consistent ex-
pression of the free energy with appropriate internal variables
of state. This way, we establish links between Fung’s QLV and
the internal-variable models by Simo [26], and Holzapfel and
Simo [27]. Using a neo-Hookean model, the dissipative fea-
tures of compressible QLV solids are illustrated in Sec. 4. The
incompressible case is addressed in Appendix A.

2. Governing equations

2.1. Preliminaries

In what follows, we present the basic equations of La-
grangian solid dynamics [1, 28]. We consider a homogeneous
and isotropic solid continuum on which no external volume
force is applied. A particle initially at position X in the ref-
erence configuration moves to position x in the current config-
uration. The deformation gradient tensor is the second-order
tensor

F =
∂x
∂X
= I + Grad u , (1)

where u = x − X is the displacement field, I is the identity
tensor, and Grad denotes the gradient operator with respect to
the material coordinates X (Lagrangian gradient). If the Eu-
clidean space is described by an orthonormal basis {e1, e2, e3}

and a Cartesian coordinate system, then I = [δi j], where δi j is
the Kronecker delta. The volume dilatation

J = det F (2)

equals the ratio ρ0/ρ of the mass densities in the reference (un-
deformed) and deformed configurations.

One can define various strain tensors as functions of F, such
as the right Cauchy–Green deformation tensor C = F⊤F, and
the Green–Lagrange strain tensor E = 1

2 (C − I). Frequently,
principal stretches λi are introduced, whose squares λ2

i corre-
spond to the eigenvalues of C. Thus, the principal invariants Ii

of C are given by

I1 = tr C = λ2
1 + λ

2
2 + λ

2
3

I2 =
1
2
(
(tr C)2 − tr(C2)

)
= λ2

1λ
2
2 + λ

2
2λ

2
3 + λ

2
1λ

2
3

I3 = det C = λ2
1λ

2
2λ

2
3 = J2.

(3)

The dynamics of the continuum in question are governed by
conservation of momentum, which involves the divergence of
a stress tensor. Typically, in the Lagrangian description, this
equation of motion involves the first Piola–Kirchhoff stress ten-
sor P, and the Eulerian version involves the Cauchy stress ten-
sor σ = J−1 PF⊤. Specified by the constitutive law, these stress
measures are also related to the second Piola–Kirchhoff stress
tensor S = F−1 P.

2.2. Fung’s quasi-linear viscoelasticity
Fung’s quasi-linear viscoelasticity (QLV) is presented below

(see Sec. 7.13 of [12]). This model is based on the assumption
that the stress is linearly dependent on the history of the elastic
stress response, and a Boltzmann superposition principle be-
tween both quantities is assumed. The second Piola–Kirchhoff
stress is given by

S = G ∗ Ṡe =

∫
R

G(t − s) : Ṡe(s) ds = Ġ ∗ Se , (4)

where the elastic response [13]

Se = ∂W/∂E = 2 ∂W/∂C

= 2 (W1 + I1W2) I − 2W2C + 2I3W3C−1

= 2W1I + 2 (I2W2 + I3W3) C−1 − 2I3W2C−2

(5)

is derived from a strain energy density function W(I1, I2, I3),
and G is a fourth-order relaxation tensor. Here the colon de-
notes the double contraction G : Ṡe = [Gi jkℓṠe

kℓ] where Einstein
notation is used and the dot denotes the material time derivative.
The notation Wi is shorthand for the derivative ∂W/∂Ii.

Also, in a similar fashion to Taylor et al. [21], we intro-
duce the Flory decomposition of the deformation into volumet-
ric and deviatoric parts (see Holzapfel [1] Sec. 6.4). Thus,
we introduce the volume-preserving Cauchy–Green strain ten-
sor C̃ = J−2/3C and its volume-changing counterpart J2/3I. We
perform the change of variable W = W̃(Ĩ1, Ĩ2, J) in the expres-
sion of the strain energy, where

Ĩ1 = J−2/3I1 , Ĩ2 = J−4/3I2 , J =
√

I3 . (6)

The invariants Ĩi in Eq. (6) describe volume-preserving defor-
mation, while the dilatation J describes volume-changing de-
formation. The third invariant Ĩ3 of C̃ is equal to one, as de-
duced from the definitions in Eq. (3).

To compute the elastic response (5) in terms of the new vari-
ables (Ĩ1, Ĩ2, J), let us recall expressions for the tensor deriva-
tives ∂C̃/∂C = J−2/3(I − 1

3 C ⊗ C−1) and ∂J/∂C = 1
2 JC−1, where

the fourth-order unit tensor is defined as I = [δikδ jℓ]. Thus, we
introduce the decomposition

Se = Se
D + Se

H ,

Se
D = J−2/3Dev(S̃e) with S̃e = 2 ∂W̃/∂C̃ ,

Se
H = (∂W̃/∂J) JC−1,

(7)
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where Dev(•) = (•) − 1
3 (• : C)C−1 denotes the deviatoric op-

erator in the Lagrangian description [1]. The expression of S̃e

is deduced from Eq. (5) with W̃3 = 0. Converting back to the
variables (I1, I2, I3), the chain rule yields

Se
D = 2(W1 + I1W2)I − 2W2C − 2

3 (I1W1 + 2I2W2) C−1

= 2W1I + 2
3 (I2W2 − I1W1) C−1 − 2I3W2C−2,

Se
H =

2
3 (I1W1 + 2I2W2 + 3I3W3) C−1,

(8)

which are the same expressions as in De Pascalis et al. [13]
(Eqs. (3.19)-(3.20) therein). In a standard fashion [1], Taylor
et al. [21] assumes the separability of isochoric and volumetric
deformations W = W̃ iso(Ĩ1, Ĩ2) + W̃vol(J), which is a particular
case of the present expressions.

In a similar fashion to related works [3, 21], we assume
that the relaxation is the same in all directions, i.e. G = G Is

where we have defined the fourth-order symmetric identity ten-
sor Is = 1

2 [δikδ jℓ + δiℓδ jk], and G is a scalar function. Thus, the
constitutive law (4) yields

S = G ∗ Ṡe = Ġ ∗ Se. (9)

Fung [12] initially proposed an integral expression of G with
a continuous spectrum of relaxation. This expression leads to
high computational costs as it requires the storage of the whole
deformation history [9]. This drawback can be avoided by ap-
proximating G as an exponential series [17, 18]1 of the form

G (t) =
(
1 −

n∑
k=1

gk (1 − e−t/τk )
)

H(t) , (10)

with an arbitrary number n of relaxation mechanisms [15, 21].
The Heaviside step function H is included in Eq. (10) for con-
venience. Such a Prony series with magnitudes gk > 0 and
characteristic relaxation times τk > 0 can be linked to gener-
alised Maxwell-type rheologies.

3. Thermodynamics

3.1. Generalities
The consequences of the first and second principles of ther-

modynamics are summarized below. We consider deformable
solids whose associated constitutive law involves n second-
order tensorial internal variables of state α1, . . . ,αn [22, 23].

Isentropic modelling. We consider the set of variables of state
{η, E,α1, . . . ,αn}, where η denotes the entropy per unit mass.
The state is assumed local in time, i.e., only its instantaneous
value is considered. The first principle of thermodynamics is
reflected in the conservation of energy ρė = σ : D, where ė
is the material time-derivative of the internal energy e per unit
mass, and D = F−⊤ĖF−1 denotes the strain-rate tensor (i.e., the
symmetric part of the Eulerian velocity gradient ḞF−1). The
second principle of thermodynamics imposes the increase of

1The increasing exponentials in cited literature indicate a potential error.

entropy ρη̇ ≥ 0. Assuming an adiabatic process, the dissipation
per unit of reference volume reads D = ρ0T η̇ (W/m3), where
T > 0 is the absolute temperature. Thus, combining the lo-
cal equations of thermodynamics with the Gibbs identity, the
Clausius–Duhem inequality is obtained:

D = ρ0

(
T −

∂e
∂η

)
η̇ + Jσ : D −

∂U
∂E

: Ė −
n∑

k=1

∂U
∂αk

: α̇k

≥ 0 .

(11)

Here, U = ρ0e is the internal energy per unit reference volume.
Since the inequality (11) must be satisfied for all states and all
evolutions, the coefficient T − ∂e/∂η must equal zero. Using
the identity Jσ : D = S : Ė, see e.g. Ref. [29], the Clausius–
Duhem inequality (11) is rewritten as

D =

(
S −

∂U
∂E

)
: Ė −

n∑
k=1

∂U
∂αk

: α̇k ≥ 0 . (12)

We call this framework isentropic because the partial deriva-
tives ∂/∂E, ∂/∂αk are evaluated at constant entropy [1].

Isothermal modelling. This approach involves the variables of
state {T, E,α1, . . . ,αn}. It is linked to the above expressions by
introducing the partial Legendre transform ψ = e − Tη of e,
which is Helmholtz’ free energy per unit mass. We have

η = −
∂ψ

∂T
,

∂U
∂E
=
∂Ψ

∂E
,

∂U
∂αk
=
∂Ψ

∂αk
, (13)

where Ψ = ρ0ψ is the Helmholtz free energy per unit of ref-
erence volume. The Clausius–Duhem inequality (12) is re-
expressed as

D =

(
S −

∂Ψ

∂E

)
: Ė −

n∑
k=1

∂Ψ

∂αk
: α̇k ≥ 0 . (14)

We observe that thermodynamic restrictions have the same
form in the isentropic and in the isothermal frameworks. In the
isothermal framework described here, proving thermodynamic
consistency of Fung’s QLV (9) amounts to finding Ψ, αk such
that the Clausius–Duhem inequality (14) is always satisfied.

3.2. Fung’s quasi-linear viscoelasticity
Memory variables. Using the expression of the relaxation
function (10), the constitutive law (9) is rewritten as [21]

S = Se −

n∑
k=1

Sv
k (15)

where the viscous stress

Sv
k = gk

∫ t

0

(
1 − e−(t−s)/τk

)
Ṡe(s) ds (16)

can thus be interpreted as a memory variable. Computing its
material time-derivative, one shows that Sv

k satisfies the linear
evolution equation [21]

τkṠv
k = gkSe − Sv

k . (17)
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Thus, the convolution product (9) is replaced by a sum of n
memory variables, which satisfy a linear differential equation.

By construction, Fung’s QLV model reduces to hyperelastic-
ity for particular relaxation functions involving certain limits of
relaxation times:

• Relaxed elastic solid. The relaxed elastic limit corre-
sponds to infinite durations, i.e. to short relaxation times
τk → 0. Hence, the evolution equation (17) produces
Sv

k = gkSe. If the motion is causal, the convolution prod-
uct (9) reduces to S = (1 −

∑
k gk) Se where the coefficient

1 −
∑

k gk defines the relaxed elastic modulus.

• Unrelaxed elastic solid. The unrelaxed elastic limit cor-
responds to infinitesimal durations, i.e. to long relaxation
times τk → +∞. Hence, the evolution equation (17) gives
Sv

k = 0 for causal signal. The convolution product (9) re-
duces to S = Se. With respect to the relaxed elastic solid,
the effective elastic moduli differ by a scalar coefficient.

These elastic limits correspond to zero dissipation [30].

Dissipation. Consider a (presumably convex) strain energy
function W from which the elastic response Se is obtained by
differentiation. We define the free energy in such a way that
S = ∂Ψ/∂E is satisfied:

Ψ = W(E) −
n∑

k=1

(
Sv

k : E − Φk(Sv
k)
)
. (18)

The arbitrary functions Φk are (presumably convex) potentials
whose dependency on the variables Sv

k of Eq. (16) needs to be
specified. If the viscous stresses Sv

k governed by Eq. (17) are
internal variables of state αk, then the dissipation (14) reads

D = −
n∑

k=1

∂Ψ

∂Sv
k

: Ṡv
k

=

n∑
k=1

1
τk

(
E −

∂Φk

∂Sv
k

)
:
(
gkSe − Sv

k

)
.

(19)

Let us introduce the Legendre transform Wk(Ev
k) = Sv

k : Ev
k −

Φk(Sv
k) of Φk such that Ev

k = ∂Φk/∂Sv
k is the conjugate variable

of Sv
k = ∂Wk/∂Ev

k . The free energy (18) and the dissipation (19)
become

Ψ = W(E) −
n∑

k=1

(
Wk(Ev

k) +
∂Wk

∂Ev
k

: (E − Ev
k)
)
,

D =
n∑

k=1

1
τk

(
E − Ev

k

)
:
(
gk
∂W
∂E
−
∂Wk

∂Ev
k

)
.

(20)

To ensure the positivity of the dissipation, a compatible choice
of potentials is Wk(·) = gkW(·) pointwise. Consequently,
the scaling property of the Legendre transformation imposes
Φk(·) = gkΦ(·/gk) pointwise, where the potential Φ known as
complementary energy density defines the Legendre transform

Se : E − W(E) of W, with E = ∂Φ/∂Se [28, 31]. Finally, we
have

Ψ = W(E) −
n∑

k=1

gk

(
W(Ev

k) +
∂W(Ev

k)
∂Ev

k
: (E − Ev

k)
)
,

D =
n∑

k=1

gk

τk

(
E − Ev

k

)
:
(
∂W(E)
∂E

−
∂W(Ev

k)
∂Ev

k

)
.

(21)

By virtue of the convexity inequality [28], the dissipation D
is non-negative for any convex strain energy density function
W of E. Therefore, the present compressible QLV model is
thermodynamically admissible.

Connections with other models. The derivation of the model
introduced by Simo [26] is very similar. In fact, this model is
based on the free energy

Ψ = W(E) −
n∑

k=1

(
Sv

k : Ẽ − Φk(Sv
k)
)
, (22)

where the separability of isochoric and volumetric deformations
W = W̃ iso(Ĩ1, Ĩ2) + W̃vol(J) is assumed. Similarly to Eq. (17),
a consistent linear evolution equation for the viscous stresses
is proposed. Thus, the main difference between Eqs. (22) and
(18) lies in the presence of the volume-preserving version Ẽ =
1
2 (C̃ − I) of E. Note that the “Simo” model described in the
MSC Nastran Implicit Nonlinear user guide is actually a QLV
model (Ref. [32], Chap. 10, Eq. (10-88)). Nevertheless, that
implementation assumes “that the viscoelastic behavior . . . acts
only on the deviatoric behavior”. While it remains unclear how
this is done, the implementation may therefore be consistent
with the original Simo model [26].

The free energy (18) of Fung’s QLV can be rewritten as Ψ =
Ψ∞ +

∑
k Υk with

Ψ∞ =

(
1 −

n∑
k=1

gk

)
W(E) ,

Υk = gkW(E) −
(
Sv

k : E − Φk(Sv
k)
)
.

(23)

The symbol Ψ∞ denotes the free energy of the relaxed elas-
tic solid, such that S∞ = ∂Ψ∞/∂E is the corresponding Piola–
Kirchhoff stress. Introducing the variable

Qk = ∂Υk/∂E = gkSe − Sv
k

= gk

∫ t

0
e−(t−s)/τk Ṡe(s) ds

(24)

yields the constitutive law S = S∞ +
∑

k Qk and the rate equa-
tion Q̇k = gkṠe − Qk/τk. These expressions are very similar to
Sec. 6.10 of the monograph by Holzapfel [1]. Indeed, the latter
follow from the works of Simo [26] and Holzapfel and Simo
[27], as well as Govindjee and Simo [33]. Thus, the above
nonlinear viscoelasticity theories are strongly related to QLV.
Moreover, they are equivalent in the incompressible limit (see
Appendix A), as observed in previous work [20, 34].

The expression of the free energy may also be rewritten as a
hereditary integral. Miller and Chinzei [35] and related studies
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[11, 21] introduce the convolution product Ψ∗ = G ∗ Ẇ from
which the stress S = G ∗ Ṡe is derived. While the final ex-
pression of the stress can easily be related to the present study
(Eq. (9)), it is not as straightforward to explain the form of the
free energyΨ∗. This may be a consequence of a daring differen-
tiation of the free energy with respect to the instantaneous strain
inside the convolution integral (see Ref. [21] Eq. (8)). Note that
in the infinitesimal strain limit, the consistent potential energy
reads as a double convolution of the relaxation function with the
strain rates (see e.g. Carcione [10] Chap. 2). This remark fur-
ther questions the expression Ψ∗ of the free energy as a single
convolution product.

4. Illustrations

The theoretical analysis of Sec. 3 is now illustrated by
means of simple deformations. We consider compressible neo-
Hookean QLV solids described by the strain energy [28]

W = 1
2µ (I1 − 3 − 2 ln J) + 1

2µ
′ (J − 1)2 , (25)

where the Lamé parameters µ′, µ are positive. The corre-
sponding bulk modulus reads µ′ + 2

3µ. The elastic response
Se = ∂W/∂E deduced from Eqs. (7)-(8) reads

Se = µ (I − C−1) + µ′J(J − 1) C−1. (26)

Due to consistency with linear elasticity in the infinitesimal
strain limit, this constitutive law is at least locally invertible.
Thus, we introduce the complementary energy density Φ(Se)
such that E = ∂Φ/∂Se.

The components of F and C for uniform extension along the
X-direction are of the form [28]

F =


λ 0 0
0
√

J/λ 0
0 0

√
J/λ

 , C =

λ
2 0 0

0 J/λ 0
0 0 J/λ

 , (27)

where λ > 0 is the tensile stretch. In simple tension, the trac-
tions transverse to the X-direction vanish, so that

J = 1
2

(
1 − ϑ/λ +

√
(1 − ϑ/λ)2 + 4ϑ

)
(28)

with ϑ = µ/µ′. The elastic response of Eq. (26) becomes

Se = se e1⊗ e1 with se = µ
(
1 − J/λ3) . (29)

Fig. 2a shows the evolution of se with respect to the stretch λ,
as well as the evolution of the Cauchy stress component λ2se/J.
Here, we have chosen ϑ = 1

3 × 10−3, which is a typical value
for nearly-incompressible rubber-like soft solids. One observes
that the stress-stretch relationship is one-to-one over the range
displayed in the figure. Within this range, we can deduce the
stretch λ > 0 from se using Eqs. (28)-(29), e.g. by means of a
root-finding algorithm. Thus, we can retrieve the deformation
in Eq. (27) from the stress.

The viscoelastic stress S is given by the convolution product
in Eq. (9). This constitutive law is rewritten as S = Se−

∑
k Sv

k in
terms of the memory variables Sv

k , which depend on the whole

(a)

0 1 2 3

0

5

λ

Te
ns

ile
st

re
ss

(k
Pa

)

Piola–Kirchhoff
Cauchy

(b)

Figure 2: (a) Tensile stress of neo-Hookean elastic material with moduli µ =
1.0 kPa and µ′ = 3 000 µ. (b) Dissipation term of Eq. (31). The black line
marks the locus λ = λv

k of the relaxed elastic solid limit.

history t 7→ Se(t) of the elastic stress. Here, the viscous stresses
are of the form Sv

k = sv
k e1⊗ e1 for all times, where

sv
k = gk

∫ t

0

(
1 − e−(t−s)/τk

)
ṡe(s) ds (30)

is obtained by componentwise integration of Eq. (16).
The viscous strains Ev

k are deduced from the viscous stresses,
as specified in Sec. 3. Thus, these memory variables are also
functions of the entire stress history. In fact, one shows that
Ev

k = ∂Φ(Sv
k/gk)/∂(Sv

k/gk) by using the definition of Φk with
respect to Φ. In other words, the mappings E 7→ Se and
Ev

k 7→ Sv
k/gk based on the strain energy W are the same, and

they admit the same inverse based on the complementary en-
ergy Φ. In the present one-dimensional case, it suffices to re-
place se, λ by sv

k/gk, λv
k in Eqs. (28)-(29) to retrieve the stretches

λv
k from the viscous stresses sv

k . This way, the corresponding de-
formations Ev

k are obtained. Note in passing that besides being
quite involved, the computation of Ev

k is not needed in most
practical applications.

The dissipation D of Eq. (21) involves the sum of terms of
the form

Dk =
(
E − Ev

k
)

:
(
Se − Sv

k/gk
)

= 1
2
(
λ2 − (λv

k)2)(se − sv
k/gk

) (31)

whose evaluation follows from Eqs. (28)-(29) in the present
one-dimensional case. The positivity of Dk for all deforma-
tions and all evolutions is illustrated in Fig. 2b. The black line
marks the locus E = Ev

k of the relaxed elastic solid limit where
Dk vanishes. Finally, the compressible neo-Hookean QLV solid
model is thermodynamically admissible in simple tension over
the range of stretches considered here.
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5. Conclusion

In the framework of Fung’s quasi-linear viscoelasticity
model, the reinterpretation of the natural memory variables as
internal variables of state provides an expression of the free en-
ergy. The dissipation is shown to be positive provided that the
strain energy function is convex. We note that the model equa-
tions so-obtained can be linked to other models in the literature.

We should be aware of the limitations of the QLV model,
which is known to hardly capture the discrepancy between
creep and relaxation time scales [18] and which in general does
not exhibit strain-dependent relaxation effects. Moreover, QLV
may only be valid at moderate deformations [11]. However, its
strong similarities to other models mean that its regimes of va-
lidity are more-or-less equivalent. The above results could be
extended and employed in the modelling of anisotropic materi-
als [34] and thermoelastic materials [1]. The results may also
be extended to compressible materials with distinct relaxation
functions in shear and in compression [13]. More general re-
sults could be obtained by exploiting the notion of fading mem-
ory, and the similarity between QLV and the linear viscoelas-
ticity formalism [36, 37].
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Appendix A. Incompressible case

In the case of incompressible materials, the volume dilatation
J ≡ 1 is prescribed at all times, and the mass density ρ = ρ0 is
constant. The deformation E is equal to its volume-preserving
counterpart Ẽ = 1

2 (C̃ − I). Moreover, the third invariant I3 ≡ 1
is prescribed too, so that the strain energy can be reduced to a
function W(I1, I2). The constitutive law (9) becomes

S = −pC−1+ G ∗ Ṡe = −pC−1+ Ġ ∗ Se, (A.1)

where Se = ∂W/∂E is deduced from Eq. (8) with W3 = 0, and p
is an indeterminate Lagrange multiplier due to the incompress-
ibility constraint.

In a similar fashion to the compressible case (15), the consti-
tutive law (A.1) is expressed as

S = −pC−1+ Se −

n∑
k=1

Sv
k , (A.2)

where the viscous stresses Sv
k are governed by the linear evolu-

tion equation (17). We define the free energy Ψ using the same
expression as in Eq. (18). This way, the Piola–Kirchhoff stress
of Eq. (A.1) satisfies S = −pC−1 + ∂Ψ/∂E. The incompress-
ibility constraint is included in the Clausius–Duhem inequality
(14) by introducing the Lagrange multiplier p as follows:

D =

(
S −

∂Ψ

∂E
+ pC−1

)
: Ė −

n∑
k=1

∂Ψ

∂Sv
k

: Ṡv
k ≥ 0 , (A.3)

see Holzapfel [1] Sec. 6.3. The next steps of the derivation are
analogous to the compressible case, and finally, we obtain the
same expression of the dissipation as in Eq. (21). Therefore,
the positivity of the dissipation is guaranteed for convex strain
energy functions W.

Remark. In Eq. (A.1), the elastic stress Se may include hydro-
static stress contributions — in other words, we have Se : C . 0.
Assuming the elastic stress Se purely deviatoric is rather restric-
tive. Indeed, the corresponding Lagrange–Charpit equations
yield W = f (I1/

√
I2) where f is an arbitrary function. Some-

times, incompressible QLV is formulated as follows [13]

S = −pC−1+ G ∗ Ṡe
D = −pC−1+ Ġ ∗ Se

D , (A.4)

where Se
D = Dev(Se) is purely deviatoric. To proceed as above,

one may replace the strain energy W by the strain energy

W⋆ = W(I1, I2) − 1
6 (Se : C)(I3 − 1) (A.5)

in Eq. (18), which is defined in such a way that Se
D = ∂W⋆/∂E

under the incompressibility constraint. Alternatively, one may
extend W̃(Ĩ1, Ĩ2) to non-unimodular deformation gradients, such
that Se

D = ∂W̃/∂E is satisfied when incompressibility is as-
sumed [38]. Thus, the analysis of the dissipation’s sign for
Eq. (A.4) seems more intricate.
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