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Wrinkling of soft magneto-active plates

Bin Wua,∗, Michel Destradea

aSchool of Mathematics, Statistics and Applied Mathematics,
NUI Galway, University Road, Galway, Ireland.

Abstract

Coupled magneto-mechanical wrinkling has appeared in many scenarios of engineering

and biology. Hence, soft magneto-active (SMA) plates buckle when subject to critical uni-

form magnetic field normal to their wide surface. Here, we provide a systematic analysis

of the wrinkling of SMA plates subject to an in-plane mechanical load and a transverse

magnetic field. We consider two loading modes: plane-strain loading and uni-axial loading,

and two models of magneto-sensitive plates: the neo-Hookean ideal magneto-elastic model

and the neo-Hookean magnetization saturation Langevin model. Our analysis relies on the

theory of nonlinear magneto-elasticity and the associated linearized theory for superimposed

perturbations. We derive the Stroh formulation of the governing equations of wrinkling, and

combine it with the surface impedance method to obtain explicitly the bifurcation equations

identifying the onset of symmetric and antisymmetric wrinkles. We also obtain analytical

expressions of instability in the thin- and thick-plate limits. For thin plates, we make the link

with classical Euler buckling solutions. We also perform an exhaustive numerical analysis to

elucidate the effects of loading mode, load amplitude, and saturation magnetization on the

nonlinear static response and bifurcation diagrams. We find that antisymmetric wrinkling

modes always occur before symmetric modes. Increasing the pre-compression or heightening

the magnetic field has a destabilizing effect for SMA plates, while the saturation magne-

tization enhances their stability. We show that the Euler buckling solutions are a good

approximation to the exact bifurcation curves for thin plates.
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1. Introduction

Soft magneto-active (SMA) materials, such as magneto-active elastomers, are a partic-

ularly promising kind of smart materials that can respond to magnetic field excitation. In

general, these SMA materials are prepared by mixing micron-sized magnetizable particles

(such as carbonyl iron and neodymium-iron-boron) into a non-magnetic elastomeric matrix

such as rubber or silicone (Rigbi and Jilken, 1983; Ginder et al., 2002; Kim et al., 2018). They

can then deform significantly under the simple, remote, and reversible actuation of magnetic

fields. Moreover, their overall magneto-mechanical properties can be altered actively by ap-

plying suitable magnetic fields, thus resulting in tunable vibration and wave characteristics.

Owing to these superior magneto-mechanical coupling behaviors, SMA materials have re-

cently attracted considerable academic and industrial interests, prefiguring various potential

applications which include remote actuators and sensors (Lanotte et al., 2003; Tian et al.,

2011; Kim et al., 2018), soft robotics and biomedical devices (Makarova et al., 2016; Luo

et al., 2019; Tang et al., 2019), tunable vibration absorbers (Ginder et al., 2001; Hoang et al.,

2010), and tunable wave devices (Yu et al., 2018; Karami Mohammadi et al., 2019).

A challenging problem that arises in the study of SMA materials is how to model the

strong nonlinearity and the magneto-mechanical coupling. Thus, a lot of academic inter-

est has been devoted over the years to establish a general theoretical framework of non-

linear magneto-(visco)elasticity in order to describe appropriately the magneto-mechanical

response of SMA materials (Tiersten, 1964; Brown, 1966; Pao and Yeh, 1973; Maugin, 1988;

Brigadnov and Dorfmann, 2003; Dorfmann and Ogden, 2004; Bustamante, 2010; Destrade

and Ogden, 2011; Saxena et al., 2013). Comprehensive reviews regarding the theoretical

development of nonlinear magneto-elasticity include those by Kankanala and Triantafyllidis

(2004) and Dorfmann and Ogden (2014). Furthermore, homogenization techniques based on

micromechanical methods have also been developed to understand the connection between

the magneto-active microstructures and the macroscopic physical or mechanical properties

of SMA materials (Castañeda and Galipeau, 2011; Galipeau et al., 2014).

In a large variety of practical applications, the mechanical and magnetic loads (pre-

stretch, magnetic field, etc.) influence the working performance of smart systems made of

SMA materials and may lead to instability and even failure. In fact, it has long been observed

that a magneto-elastic beam or plate in a uniform transverse magnetic field will buckle once
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the field reaches a critical value (Moon and Pao, 1968; Miya et al., 1978; Gerbal et al., 2015).

On the other hand, local buckling and other instability phenomena can be exploited to realize

active pattern switching devices and reconfigurable metamaterials. Hence Psarra et al. (2017,

2019) made use of wrinkling and crinkling instabilities of a thin SMA film bonded on a

soft non-magnetic substrate to achieve surface pattern control through a combined action

of magnetic field and uni-axial pre-compression. Goshkoderia et al. (2020) investigated

experimentally instability-induced pattern evolutions in SMA elastomer composites driven

by an applied magnetic field.

Thus, it is vital to theoretically study the stability of SMA structures and composites

subject to coupled magneto-mechanical loads, so that we can provide solid guidance for

simulations and experiments. From a theoretical point of view, the classical buckling prob-

lem of a magneto-elastic beam-plate was first addressed by Moon and Pao (1968), based on

the thin-plate theory and the assumption of a linear ferromagnetic material. Pao and Yeh

(1973) used a general theory of magneto-elasticity to re-examine this problem and to yield

an identical antisymmetric buckling equation for thin plates. Following those works, many

investigations looked at the same problem, trying to improve mathematical models to ex-

plain the discrepancy between experimental results and theoretical predictions (Wallerstein

and Peach, 1972; Popelar, 1972; Dalrymple et al., 1974; Miya et al., 1978; Gerbal et al., 2015;

Singh and Onck, 2018). Most of the above-mentioned works employed classical structural

models to elucidate the magneto-mechanical coupling problem. More recently, using the

theory of nonlinear magneto-elasticity, some researchers have explored the onset of instabil-

ities of different SMA structures, including surface instabilities of isotropic SMA half-spaces

(Otténio et al., 2008), buckling modes of rectangular SMA blocks undergoing plane-strain

loading (Kankanala and Triantafyllidis, 2008), macroscopic instabilities of anisotropic SMA

multilayered structures (Rudykh and Bertoldi, 2013), instabilities of a thin SMA layer rest-

ing on a soft non-magnetic substrate (Danas and Triantafyllidis, 2014), and instabilities of

a cylindrical membrane (Reddy and Saxena, 2018).

The present work revisits the stability problem of SMA plates subject to an in-plane

mechanical load and a uniform transverse magnetic field, and evaluates explicitly the on-

set of wrinkling instabilities. This work differs from previous works (Pao and Yeh, 1973;

Kankanala and Triantafyllidis, 2008) in the following respects. (i) We adopt the nonlinear

magneto-elasticity theory and the associated linearized theory developed by Dorfmann and
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Ogden (2004) and Otténio et al. (2008) to derive the governing equations of nonlinear static

response and the bifurcation equations of wrinkles. These theories introduce a total stress

tensor and a modified (or total) energy density function to express constitutive relations in

a simple and compact form. (ii) Two mechanical loading modes are considered: plane-strain

loading (Fig. 1(b)) and uni-axial loading (Fig. 1(c)). (iii) To overcome the complexity of

conventional displacement-based method, we employ the Stroh formulation and the surface

impedance method (Su et al., 2018) to obtain explicit expressions of the bifurcation equations

of antisymmetric and symmetric wrinkling modes (Fig. 1(d) and 1(e)). (iv) We also manage

to derive the explicit bifurcation equations corresponding to the thin- and thick-plate limits,

and to establish the thin-plate approximate formulas.
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Figure 1: (a)-(e): Schematic diagram of a rectangular SMA plate with Cartesian coordinates and geometry.
(a): Undeformed configuration before activation. (b): Deformed configuration subject to plane-strain loading
(λ3 = 1) with a transverse magnetic field B2 and (c): Deformed configuration subject to uni-axial loading
with a transverse magnetic field B2 (the magnetic poles are assumed to be very close to the plate, to ensure
quasi-uniformity of the mechanical and magnetic fields). (d)-(e): Antisymmetric and symmetric modes of
wrinkling instability. (f): Antisymmetric wrinkling due to the application of an external transverse magnetic
field to a pre-compressed SMA plate glued onto an inert substrate (taken from Psarra et al. (2017)).

The paper is organized as follows. The equations of nonlinear magneto-elasticity are

derived in Sec. 2. The linearized stability analysis is conducted in Sec. 3 to obtain the

exact bifurcation equations for symmetric and antisymmetric wrinkles. Section 4 specializes

the analytical expressions to the neo-Hookean magnetization saturation material model,

including the ideal magneto-elastic model. Numerical calculations are carried out in Sec. 5
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to illustrate the effects of loading mode, load amplitude, and saturation magnetization on

nonlinear static response and bifurcation diagrams. Section 6 concludes the work with a

summary. Some mathematical expressions or derivations are provided in Appendices A-C.

2. Equations of nonlinear magneto-elasticity

2.1. Finite magneto-elasticity theory

We first present the basic equations governing the finite magneto-elastic deformations of

an incompressible soft magneto-elastic body, as developed by Dorfmann and Ogden (2004).

In the undeformed stress-free state, the body occupies in the Euclidean space a region

Br (the boundary being ∂Br, with the outward normal N), which is taken to be a reference

configuration. Any material point inside the body is then identified with its position vector

X in Br. The application of both mechanical load and magnetic field deforms quasistatically

the body from Br to the current configuration B (the boundary being ∂B, with the outward

normal n). The particle located at X in Br now occupies the position x = χ(X) in B, where

the vector function χ is a one-to-one, orientation-preserving mapping with a sufficiently

regular property. The associated deformation gradient tensor is F = Gradχ = ∂χ/∂X

(Fiα = ∂xi/∂Xα in Cartesian components) with Grad being the gradient operator in Br.

Note that Greek indices are associated with Br and Roman indices with B.

The Jacobian of the deformation gradient is J = det F, and it is equal to 1 at all times

for incompressible materials. The left and right Cauchy-Green deformation tensors b = FFT

and C = FTF are used as the deformation measures, where the superscript T signifies the

transpose.

In the Eulerian description, the equilibrium equations in the absence of mechanical body

forces, and the Maxwell equations in the absence of time dependence, free charges and electric

currents, are

div τ = 0, div B = 0, curl H = 0, (1)

where τ is the total Cauchy stress tensor including the contribution of magnetic body forces,

B is the Eulerian magnetic induction vector and and H is the Eulerian magnetic field vector;

curl and div are the curl and divergence operators in B, respectively. The conservation of

angular momentum implies that τ is symmetric.
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The Eulerian magnetization vector M is defined by the standard relation

B = µ0(H + M), (2)

where µ0 = 4π × 10−7 N ·A−2 is the magnetic permeability in vacuum.

In vacuum, there is no magnetization and Eq. (2) reduces to B? = µ0H
?, where a star

superscript identifies a quantity exterior to the material. The Maxwell stress tensor τ ? in

vacuum is

τ ? = µ−10

[
B? ⊗B? − 1

2 (B? ·B?) I
]
, (3)

where I is the identity tensor. The external fields B? and H? satisfy div B? = 0 and

curl H? = 0, which leads to div τ ? = 0.

The traction and magnetic boundary conditions are written in Eulerian form as

(τ − τ ?) n = ta, (B−B?) · n = 0, (H−H?)× n = 0, (4)

where ta is the applied mechanical traction vector per unit area of ∂B. Note that the

magnetic traction vector tm induced by the external Maxwell stress τ ? is tm = τ ?n. Using

Nanson’s formula, we can transform the governing equations (1) and boundary conditions

(4) into the Lagrangian form.

Following the theory of nonlinear magneto-elasticity (Dorfmann and Ogden, 2004), it is

convenient to express the nonlinear constitutive relations for incompressible magneto-elastic

materials in terms of a total energy function, or modified free energy function, Ω (F,BL) per

unit reference volume as

T =
∂Ω

∂F
− pF−1, HL =

∂Ω

∂BL
, (5)

where T = F−1τ is the total nominal stress tensor, the nominal magnetic field vector

BL = F−1B and the nominal magnetic induction vector HL = FTH are the Lagrangian

counterparts of B and H, respectively, and p is a Lagrange multiplier related to the in-

compressibility constraint, which can be determined from the equilibrium equations and
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boundary conditions. The Eulerian counterparts of Eq. (5) are

τ = F
∂Ω

∂F
− pI, H = F−T

∂Ω

∂BL
. (6)

For an incompressible isotropic material, the energy function Ω can be reduced to a

function depending only on the following five invariants:

I1 = tr C, I2 = 1
2

[
(tr C)2 − tr

(
C2
)]
,

I4 = BL ·BL, I5 = BL · (CBL) , I6 = BL ·
(
C2BL

)
. (7)

According to Eqs. (6) and (7), the total Cauchy stress tensor τ and the Eulerian magnetic

field vector H are then derived as

τ = 2Ω1b + 2Ω2

(
I1b− b2

)
− pI + 2Ω5B⊗B + 2Ω6 (B⊗ bB + bB⊗B) ,

H = 2
(
Ω4b

−1B + Ω5B + Ω6bB
)
, (8)

where Ωn = ∂Ω/∂In (n = 1, 2, 4, 5, 6).

2.2. Pure homogeneous deformation of a plate

We now specialize the above equations of nonlinear magneto-elasticity to the homoge-

neous deformation of an SMA plate subject to an in-plane mechanical load and a uniform

magnetic field along its thickness direction. In this work, we consider two mechanical loading

modes: plane-strain loading (see Fig. 1(b)) and uni-axial loading (see Fig. 1(c)).

We point out that to simplify the mathematical modelling and obtain explicit analytical

solutions to the nonlinear response and the bifurcation criteria of SMA plates, we make the

following assumptions. (i) The plate is entirely immersed in the external magnetic field and

subjected to an applied uniform magnetic field in the thickness direction. (ii) The plate is

of infinite lateral extent, i.e., the plate lateral dimensions are much larger than its thickness.

(iii) The magnetic poles are very close to the plate, see Fig. 1(b) and 1(c) for sketches and

Fig. 1(f) for the experimental apparatus of Psarra et al. (2017). These assumptions ensure

that the field heterogeneity is only confined to the plate edges, while far away from the edges,

the induced stress and magnetic field distributions can be envisioned as uniform, which is a

good approximation in the sense of Saint-Venant’s principle. A similar processing method
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has been adopted by Su et al. (2020) to analyze the wrinkling of soft electro-active plates

immersed in external electric fields.

Let (X1, X2, X3) and (x1, x2, x3) be the Cartesian coordinates in the reference and cur-

rent configurations, respectively, along the (E1,E2,E3) and (e1, e2, e3) unit vectors. In

the undeformed configuration, the plate has uniform thickness 2H along the X2 direc-

tion and lateral lengths L1, L3 in the (X1, X3) plane. The pure homogeneous deforma-

tions corresponding to the two loading modes are defined by x1 = λ1X1, x2 = λ2X2,

x3 = λ3X3, where λi (i = 1, 2, 3) is the principal stretch in theXi direction and λ2 = (λ1λ3)
−1

by incompressibility. The resulting deformation gradient tensor is the diagonal matrix

F = diag
[
λ1, (λ1λ3)

−1, λ3

]
in the ei ⊗ Ej basis. The current thickness and lateral lengths

of the deformed plate are 2h, `1 and `3, respectively.

We take the underlying Eulerian magnetic induction vector B to be in the x2 direction,

that is, B = [0, B2, 0]T. The associated Lagrangian field BL = F−1B is BL = [0, BL2, 0]T

with BL2 = λ1λ3B2. The five independent invariants in Eq. (7) are written now as

I1 = λ21 + (λ1λ3)
−2 + λ23, I2 = λ−21 + λ−23 + λ21λ

2
3,

I4 = λ21λ
2
3B

2
2 , I5 = (λ1λ3)

−2I4, I6 = (λ1λ3)
−4I4. (9)

Thus, we can define a reduced energy function ω as ω (λ1, λ3, I4) = Ω (I1, I2, I4, I5, I6).

Based on Eq. (9) and the chain rule, the constitutive relations (8) are written as

τ11 − τ22 = λ1ωλ1 , τ33 − τ22 = λ3ωλ3 , H2 = 2(λ1λ3)
2B2ω4, (10)

where ωλ1 = ∂ω/∂λ1, ωλ3 = ∂ω/∂λ3, and ω4 = ∂ω/∂I4. They satisfy

λ1ωλ1 = 2
[(

Ω1 + Ω2λ
2
3

) (
λ21 − λ−21 λ−23

)
−
(
Ω5 + 2Ω6λ

−2
1 λ−23

)
B2

2

]
,

λ3ωλ3 = 2
[(

Ω1 + Ω2λ
2
1

) (
λ23 − λ−21 λ−23

)
−
(
Ω5 + 2Ω6λ

−2
1 λ−23

)
B2

2

]
, (11)

(λ1λ3)
2ω4 = Ω4(λ1λ3)

2 + Ω5 + Ω6(λ1λ3)
−2.

Note that H1 = H3 = 0 from Eq. (8)2. For constant λ1, λ3 and B2, all the fields are uniform

and hence satisfy the equilibrium equations and the Maxwell equations automatically.

It follows from the magnetic boundary conditions (4)2,3 that the non-zero components of
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B? and H? are B?
2 = B2 and H?

2 = µ−10 B2, respectively. Thus, the non-zero components of

the Maxwell stress (3) are

τ?11 = τ?33 = −τ?22 = −1
2µ
−1
0 B2

2 . (12)

These Maxwell stress components generate the magnetic traction vector tm = τ ?n.

For uni-axial mechanical loading in the x1 direction (Fig. 1(c)), there are no mechanical

tractions applied on the faces x2 = ±h and x3 = ±`3/2, only magnetic tractions. The

traction boundary conditions (4)1 yield

τ22 = τ?22, τ33 = τ?33, τ11 − τ?11 = ta1 = λ1s1, (13)

where s1 is the nominal mechanical traction per unit area of ∂Br applied on the faces x1 =

±`1/2. Thus, we deduce from Eqs. (10) and (13) that the governing equations of the nonlinear

response for uni-axial loading are

λ1ωλ1 + τ?22 − τ?11 = λ1s1, λ3ωλ3 + τ?22 − τ?33 = 0, H2 = 2(λ1λ3)
2B2ω4, (14)

Note that Eq. (14)2 determines the induced principal stretch λ3 in terms of the stretch λ1

and magnetic field B2. Then s1 and H2 are calculated from Eqs. (14)1,3, respectively.

For plane-strain mechanical loading in the x1 direction (Fig. 1(b)), we have λ3 = 1 and

λ1 = λ−12 ≡ λ. There is no mechanical traction applied on the faces x2 = ±h, but lateral

mechanical tractions, applied on the faces x1 = ±`1/2 and x3 = ±`3/2, are required to

maintain the plane-strain deformation. As a result, Eq. (9) becomes

I1 = I2 = λ2 + λ−2 + 1, I4 = λ2B2
2 , I5 = λ−2I4, I6 = λ−4I4. (15)

By introducing the reduced energy function ω̃ as ω̃ (λ, I4) = Ω (I1, I2, I4, I5, I6), it follows

from the constitutive relations (8) that

τ11 − τ22 = λω̃λ, H2 = 2λ2B2ω̃4,

τ33 − τ22 = 2
[(
λ−2Ω1 + Ω2

) (
λ2 − 1

)
−
(
Ω5 + 2λ−2Ω6

)
B2

2

]
, (16)
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where ω̃λ = ∂ω̃/∂λ and ω̃4 = ∂ω̃/∂I4. They are determined by

λω̃λ = 2
[(
λ2 − λ−2

)
(Ω1 + Ω2)−

(
Ω5 + 2Ω6λ

−2)B2
2

]
,

λ2ω̃4 = λ2Ω4 + Ω5 + λ−2Ω6. (17)

For this loading mode, the traction boundary conditions (4)1 read

τ22 = τ?22, τ11 − τ?11 = ta1 = λs1, τ33 − τ?33 = ta3 = s3, (18)

where s1 and s3 are the nominal mechanical tractions applied on the faces x1 = ±`1/2 and

x3 = ±`3/2, respectively. In view of Eqs. (16)1,2 and (18), the nonlinear static response for

plane-strain loading is governed by

λω̃λ + τ?22 − τ?11 = λs1, τ33 − τ22 + τ?22 − τ?33 = s3, H2 = 2λ2B2ω̃4, (19)

where τ33 − τ22 is given by Eq. (16)3. Thus, Eq. (19) is used to calculate s1, s3 and H2 in

terms of the applied stretch λ and magnetic field B2.

3. Linearized stability analysis

In this section we employ the linearized incremental theory of magneto-elasticity (Otténio

et al., 2008; Destrade and Ogden, 2011) and the Stroh formalism (Su et al., 2018) to inves-

tigate the formation of small-amplitude wrinkles, signaling the onset of wrinkling instability

of the SMA plate, for the two loading modes described in Sec. 2.2.

3.1. Incremental governing equations

Consider an infinitesimal incremental mechanical displacement u = ẋ along with an

updated incremental magnetic induction vector ḂL0, superimposed on the finitely deformed

configuration reached via x = χ(X). Here and henceforth, a superposed dot indicates an

increment.

The incremental balance laws and the incremental incompressibility condition are formu-

lated in Eulerian, or updated Lagrangian, form as

div Ṫ0 = 0, div ḂL0 = 0, curl ḢL0 = 0, div u = tr L = 0, (20)
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where Ṫ0 = FṪ, ḂL0 = FḂL and ḢL0 = F−TḢL are the push-forward versions of the

corresponding Lagrangian increments Ṫ, ḂL and ḢL, respectively, and L = grad u is the

incremental displacement gradient. The resulting push-forward quantities are identified with

a subscript 0.

The linearized incremental constitutive equations for incompressible SMA materials read

Ṫ0 = A0L + Γ0ḂL0 + pL− ṗI, ḢL0 = ΓT
0 L + K0ḂL0, (21)

where A0, Γ0 and K0 are, respectively, fourth-, third- and second-order tensors, which are

referred to as instantaneous magneto-elastic moduli tensors (see Otténio et al. (2008) and

Destrade and Ogden (2011) for their general expressions). In index notation, these magneto-

elastic moduli tensors are given by

A0piqj = FpαFqβAαiβj , Γ0piq = FpαF
−1
βq Γαiβ, K0ij = F−1αi F

−1
βj Kαβ, (22)

where A, Γ and K are the relevant referential magneto-elastic moduli tensors, which are

defined by A = ∂2Ω/(∂F∂F), Γ = ∂2Ω/(∂F∂BL), and K = ∂2Ω/(∂BL∂BL). Note that

the instantaneous moduli tensors have the symmetries A0piqj = A0qjpi, Γ0piq = Γ0ipq, and

K0ij = K0ji.

Using the incremental form of the rotational balance condition FT = (FT)T, we have

the following relation between A0 and τ for an incompressible material

A0jisk −A0ijsk = (τjs + pδjs) δik − (τis + pδis) δjk. (23)

The incremental fields exterior to the material read

Ḃ? = µ0Ḣ
?, τ̇ ? = µ−10 [Ḃ? ⊗B? + B? ⊗ Ḃ? − (B? · Ḃ?)I], (24)

where Ḃ? and Ḣ? are to satisfy div Ḃ? = 0 and curl Ḣ? = 0, respectively, and hence τ̇ ∗ is

divergence-free, i.e., div τ̇ ? = 0.

The mechanical and magnetic boundary conditions for the incremental fields can be
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expressed, in updated Lagrangian form, as

[
ṪT

0 − τ̇ ? + τ ?LT − (div u) τ ?
]

n = ṫA0 ,[
ḂL0 − Ḃ? + LB? − (div u) B?

]
· n = 0,(

ḢL0 − Ḣ∗ − LTH∗
)
× n = 0, (25)

where ṫA0 da = ṫAdA, with tA being the applied mechanical traction vector per unit area of

∂Br (i.e., tAdA = tada). Note that dA and da are area elements of the reference and current

configurations, respectively.

In this work we focus on incremental two-dimensional solutions independent of x3, such

that u3 = ḂL03 = ḢL03 = 0, and hence ui = ui(x1, x2), ḂL0i = ḂL0i(x1, x2) and ḢL0i =

ḢL0i(x1, x2) for i = 1, 2 and ṗ = ṗ(x1, x2).

From Eq. (20)3, the incremental magnetic field vector ḢL0 is curl-free and thus an in-

cremental magnetic scalar potential ϕ̇ can be introduced such that ḢL0 = −gradϕ̇, with

components

ḢL01 = −ϕ̇,1, ḢL02 = −ϕ̇,2. (26)

The incremental balance laws and incompressibility condition (20)1,2,4 become

Ṫ011,1 + Ṫ021,2 = 0, Ṫ012,1 + Ṫ022,2 = 0,

ḂL01,1 + ḂL02,2 = 0, u1,1 + u2,2 = 0. (27)

For pure homogeneous deformation of the SMA plate subject to the transverse magnetic

field, we have Fij = 0 for i 6= j and B1 = B3 = 0. The magneto-elastic moduli tensors A0,

Γ0 and K0 satisfy (Otténio et al., 2008)

A0iijk = 0, K0jk = 0, for j 6= k,

Γ0ii1 = Γ01ii = Γ0ii3 = Γ03ii = 0,

Γ0ijk = 0, for i 6= j 6= k 6= i. (28)

Consequently, using Eqs. (26) and (28), the incremental constitutive relations (21) are written
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in terms of ui (i = 1, 2) and ϕ̇ as

Ṫ011 = (c11 + p)u1,1 + c12u2,2 + e21ϕ̇,2 − ṗ,

Ṫ012 = (c69 + p)u1,2 + c66u2,1 + e16ϕ̇,1,

Ṫ021 = (c69 + p)u2,1 + c99u1,2 + e16ϕ̇,1,

Ṫ022 = (c22 + p)u2,2 + c12u1,1 + e22ϕ̇,2 − ṗ, (29)

and

ḂL01 = e16(u2,1 + u1,2)− µ11ϕ̇,1,

ḂL02 = e21u1,1 + e22u2,2 − µ22ϕ̇,2, (30)

where the effective material parameters cij , eij and µij are defined as

µ11 = K−1011, µ22 = K−1022, e16 = −Γ0211K
−1
011, e21 = −Γ0112K

−1
022, e22 = −Γ0222K

−1
022,

c11 = A01111 + Γ0112e21, c12 = A01122 + Γ0112e22, c22 = A02222 + Γ0222e22,

c69 = A01221 + Γ0211e16, c66 = A01212 + Γ0211e16, c99 = A02121 + Γ0211e16. (31)

3.2. Stroh formulation and its resolution for plates

The two-dimensional incremental solutions, for the wrinkling instability with sinusoidal

shape along the x1 direction and amplitude variations along the x2 direction (see Fig. 1(d)

and 1(e)), are sought in the form

{
u1, u2, ϕ̇, Ṫ021, Ṫ022, ḂL02

}
= <

{[
k−1U1, k

−1U2,
√
G/µ0k

−1Φ, iGΣ21, iGΣ22, i
√
Gµ0∆

]
eikx1

}
, (32)

where i =
√
−1, U1, U2, Φ, Σ21, Σ22 and ∆ are non-dimensional functions of kx2 only,

k = 2π/L is the wrinkling wavenumber with L being the wavelength of the wrinkles, and G

is the initial shear modulus (in Pa) of the SMA plate in the absence of magnetic field.

Following a standard derivation procedure (Su et al., 2018, 2019), we can rewrite the

incremental governing equations (27), (29) and (30) in the following non-dimensional Stroh
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form:

η′ = iNη = i

N1 N2

N3 N
†
1

η, (33)

where η =

[
U1 U2 Φ Σ21 Σ22 ∆

]T
is the Stroh vector, N is the 6×6 Stroh matrix, the

prime denotes differentiation with respect to kx2, and † signifies the Hermitian operator. In

what follows we use the generalized displacement and traction vectors U =

[
U1 U2 Φ

]T
and S =

[
Σ21 Σ22 ∆

]T
to express the Stroh vector as η =

[
U S

]T
. For reference, the

3× 3 real sub-matrices Ni (i = 1, 2, 3) are presented in Appendix A.

For the constant Stroh matrix N considered here, we seek solutions to Eq. (33) in the

form,

η (kx2) = η0eiqkx2 . (34)

Substituting Eq. (34) into Eq. (33) yields an eigenvalue problem
(
N− qI

)
η0 = 0, with eigen-

value q and eigenvector η0. The requirement of non-trivial solutions results in det
(
N− qI

)
=

0, which gives the following bi-cubic characteristic equation in q:

c g q6 +
[
2bg + cf + d

(
d− 2e

)]
q4 +

[
a g + 2b f − 2d̄

(
d− e

)
− e2f/g

]
q2 + af + d

2
= 0, (35)

It is clear that the characteristic equation and hence the eigenvalues do not depend on τ22

(appearing in the Stroh matrix (A.1)) for any choice of energy density function, despite the

presence of external magnetic field.

Thus, the two-dimensional wrinkling solutions to Eq. (33) for an SMA plate are found as

η (kx2) =

U (kx2)

S (kx2)

 =
6∑
j=1

Ajη
(j)eiqjkx2 . (36)

where Aj (j = 1, . . . , 6) are arbitrary constants to be determined, qj (j = 1, . . . , 6) are the

eigenvalues, and η(j) (j = 1, . . . , 6) are the eigenvectors associated with qj . The eigenvalues

are complex conjugate pairs because of the real coefficients of Eq. (35).

So far, there is no restriction on the specific form of energy density function Ω. To proceed

further and demonstrate the possibility of obtaining concise and analytical eigen-equation

and eigenvectors, we henceforth consider the magneto-elastic material to be characterized
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by the following Mooney-Rivlin magneto-elastic model,

Ω =
G (1− β)

2
(I1 − 3) +

Gβ

2
(I2 − 3) + F (I5) , (37)

where F is an arbitrary function of I5 only and β ∈ [0, 1] is a constant. Note that Eq. (37)

with β = 0 reduces to the neo-Hookean magneto-elastic model, including, for example, the

ideal model with no saturation and the magnetization saturation Langevin model, which we

consider in Sec. 4.

Using Eqs. (37) and (A.5), the dimensionless parameters a−g in Eq. (A.2) are calculated

as

a = λ21 (1− β) + λ21λ
2
3β − 2B

2
2F 5, c = λ−21 λ−23 (1− β) + λ−21 β,

b =
1

2

(
λ−21 λ−23 + λ21

) [
(1− β) + λ23β

]
+B

2
2

(
3F 5 + 2B

2
2F 55

)
,

d = −B2, e = −B2

[
1 + F 5/

(
F 5 + 2B

2
2F 55

)]
,

f = 1/
(
2F 5

)
, g = 1/

[
2
(
F 5 + 2B

2
2F 55

)]
, (38)

where B2 = B2/
√
Gµ0 is the dimensionless applied magnetic induction; F 5 and F 55 are

defined as

F 5 = µ0F5 = µ0∂F/∂I5, F 55 = Gµ20F55 = Gµ20∂
2F/∂I25 . (39)

Then we find that the characteristic equation (35) factorizes as

(
q2 + 1

) (
q2 + λ41λ

2
3

) (
F 5q

2 + F 5 + 2B
2
2F 55

)
= 0, (40)

which yields six pure imaginary eigenvalues as

q1 = −q4 = ip1, q2 = −q5 = ip2, q3 = −q6 = ip3, (41)

where the real numbers p1, p2, and p3 are

p1 = 1, p2 = λ21λ3, p3 =

√
1 + 2B

2
2F 55/F 5. (42)
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The associated eigenvectors are derived as

η(1) =
[
1, i, id/f, i(2c+ d

2
/f − τ22), τ22 − (a+ c+ d

2
/f), −d

]T
,

η(2) =
[
p2, i, id/f, i(a+ c+ 2d

2
/f − τ22), (τ22 − 2c)p2, −dp2

]T
,

η(3) =
[
0, 0, ip3, ip3d, −d, f

]T
,

η(4) = (η(1))
∗
, η(5) = (η(2))

∗
, η(6) = (η(3))

∗
, (43)

where the asterisk ∗ denotes the complex conjugate. We observe from Eq. (43) that

η
(j+3)
1 = η

(j)
1 , η

(j+3)
2 = −η(j)2 , η

(j+3)
3 = −η(j)3 ,

η
(j+3)
4 = −η(j)4 , η

(j+3)
5 = η

(j)
5 , η

(j+3)
6 = η

(j)
6 , (j = 1, 2, 3) , (44)

where η
(j)
i is the i-th component of the eigenvector η(j).

3.3. Incremental boundary conditions

We take the applied mechanical traction tA as a dead load (i.e., ṫA0 = ṫA = 0), so that the

general incremental boundary conditions (25) are specialized to the two-dimensional problem

at x2 = ±h, as

Ṫ021 = −τ?11u2,1 + τ̇?21, Ṫ022 = −τ?22u2,2 + τ̇?22,

ḂL02 = Ḃ?
2 −B?

2u2,2, ḢL01 = Ḣ?
1 +H?

2u2,1. (45)

From curl Ḣ? = 0, we deduce the existence of an incremental magnetic scalar potential

ϕ̇? = ϕ̇?(x1, x2) in vacuum such that

Ḣ?
1 = −ϕ̇?,1, Ḣ?

2 = −ϕ̇?,2, Ḃ?
1 = −µ0ϕ̇?,1, Ḃ?

2 = −µ0ϕ̇?,2. (46)

Substituting Eq. (46)3,4 into div Ḃ? = 0 results in the Laplace equation for ϕ̇?,

ϕ̇?,11 + ϕ̇?,22 = 0. (47)

To satisfy the decay condition ϕ̇? → 0 as x2 → ±∞, we take the solutions to Eq. (47) which
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are localized near the interfaces x2 = ±h, as

ϕ̇?+ = k−1A?+e−kx2eikx1 , (x2 > h),

ϕ̇?− = k−1A?−ekx2eikx1 , (x2 < −h), (48)

where A?+ and A?− are arbitrary constants. Thus, the associated incremental Maxwell stress

tensor (24)2 has non-zero components

τ̇?11 = τ̇?33 = −τ̇?22 = B?
2ϕ̇

?
+,2, τ̇?12 = τ̇?21 = −B?

2ϕ̇
?
+,1 (49)

and

τ̇?11 = τ̇?33 = −τ̇?22 = B?
2ϕ̇

?
−,2, τ̇?12 = τ̇?21 = −B?

2ϕ̇
?
−,1 (50)

for x2 > h and x2 < −h, respectively.

Inserting Eqs. (26)1, (32), (46)1 and (48)1 into the incremental magnetic boundary con-

dition (45)4 at the plate top surface x2 = +h leads to the relation

A
?
+e−kh = Φ (kh) +B2U2 (kh) , (51)

where A
?
+ = A?+

√
µ0/G. Using Eqs. (12), (32), (46)4, (48)1, (49) and (51), we write the

incremental boundary conditions (45)1−3 at x2 = +h in an impedance form, as

S(kh) = iZ
?
+U(kh), (52)

where

Z
?
+ =


0 iB

2
2/2 iB2

−iB
2
2/2 −B2

2 −B2

−iB2 −B2 −1

 (53)

is a surface impedance matrix connecting the vectors S(kh) and U(kh) at the face x2 = +h.

Similarly, at the plate bottom surface x2 = −h, we obtain

A
?
−e−kh = Φ (−kh) +B2U2 (−kh) , A

?
− = A?−

√
µ0/G, (54)
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and

S(−kh) = iZ
?
−U(−kh), (55)

where the surface impedance matrix in the lower half-space is

Z
?
− =


0 iB

2
2/2 iB2

−iB
2
2/2 B

2
2 B2

−iB2 B2 1

 . (56)

3.4. Bifurcation equations for wrinkling instabilities

Using Eq. (A.6), we rewrite Eqs. (52) and (55) as

 S (kh)

S (−kh)

 = i

Z
?
+ 0

0 Z
?
−


 U(kh)

U(−kh)



= i

Z
?
+ 0

0 Z
?
−





η
(1)
1 E+

1 η
(2)
1 E+

2 η
(3)
1 E+

3 η
(4)
1 E−1 η

(5)
1 E−2 η

(6)
1 E−3

η
(1)
2 E+

1 η
(2)
2 E+

2 η
(3)
2 E+

3 η
(4)
2 E−1 η

(5)
2 E−2 η

(6)
2 E−3

η
(1)
3 E+

1 η
(2)
3 E+

2 η
(3)
3 E+

3 η
(4)
3 E−1 η

(5)
3 E−2 η

(6)
3 E−3

η
(1)
1 E−1 η

(2)
1 E−2 η

(3)
1 E−3 η

(4)
1 E+

1 η
(5)
1 E+

2 η
(6)
1 E+

3

η
(1)
2 E−1 η

(2)
2 E−2 η

(3)
2 E−3 η

(4)
2 E+

1 η
(5)
2 E+

2 η
(6)
2 E+

3

η
(1)
3 E−1 η

(2)
3 E−2 η

(3)
3 E−3 η

(4)
3 E+

1 η
(5)
3 E+

2 η
(6)
3 E+

3





A1

A2

A3

A4

A5

A6



. (57)

Substituting Eqs. (44) and (A.7) into Eq. (57) yields



D1E
+
1 D2E

+
2 D3E

+
3 −D1E

−
1 −D2E

−
2 −D3E

−
3

F+
1 E

+
1 F+

2 E
+
2 F+

3 E
+
3 F−1 E

−
1 F−2 E

−
2 F−3 E

−
3

G+
1 E

+
1 G+

2 E
+
2 G+

3 E
+
3 G−1 E

−
1 G−2 E

−
2 G−3 E

−
3

D1E
−
1 D2E

−
2 D3E

−
3 −D1E

+
1 −D2E

+
2 −D3E

+
3

F−1 E
−
1 F−2 E

−
2 F−3 E

−
3 F+

1 E
+
1 F+

2 E
+
2 F+

3 E
+
3

G−1 E
−
1 G−2 E

−
2 G−3 E

−
3 G+

1 E
+
1 G+

2 E
+
2 G+

3 E
+
3





A1

A2

A3

A4

A5

A6



= 0, (58)
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where

Dj = η
(j)
4 +B2

(
B2η

(j)
2 + 2η

(j)
3

)
/2,

F±j = η
(j)
5 −B

2
2η

(j)
1 /2± iB2

(
B2η

(j)
2 + η

(j)
3

)
,

G±j = η
(j)
6 −B2η

(j)
1 ± i

(
B2η

(j)
2 + η

(j)
3

)
, (j = 1, 2, 3) . (59)

By conducting some simple linear matrix manipulations of Eq. (58) and using the re-

lations E+
j +E−j = 2 cosh (pjkh) and E+

j − E−j = −2 sinh (pjkh), we obtain two sets of

independent linear algebraic equations,

Psym


A1 +A4

A2 +A5

A3 +A6

 = 0, Panti


A1 −A4

A2 −A5

A3 −A6

 = 0, (60)

where the 3× 3 coefficient matrices Psym and Panti have non-zero components

P sym
1j =

[
η
(j)
4 +B2

(
B2η

(j)
2 + 2η

(j)
3

)
/2
]

tanh (pjkh) ,

P sym
2j =

(
η
(j)
5 −B

2
2η

(j)
1 /2

)
− iB2

(
B2η

(j)
2 + η

(j)
3

)
tanh (pjkh) ,

P sym
3j =

(
η
(j)
6 −B2η

(j)
1

)
− i
(
B2η

(j)
2 + η

(j)
3

)
tanh (pjkh) , (61)

and

P anti
1j = η

(j)
4 +B2

(
B2η

(j)
2 + 2η

(j)
3

)
/2,

P anti
2j =

(
η
(j)
5 −B

2
2η

(j)
1 /2

)
tanh (pjkh)− iB2

(
B2η

(j)
2 + η

(j)
3

)
,

P anti
3j =

(
η
(j)
6 −B2η

(j)
1

)
tanh (pjkh)− i

(
B2η

(j)
2 + η

(j)
3

)
, (62)

for j = 1, 2, 3. For non-trivial solutions of Eq. (60), the determinants of coefficient matrices

must vanish, i.e.,

det (Psym) = 0, det
(
Panti

)
= 0, (63)

which identify, respectively, possible symmetric and antisymmetric wrinkling modes.

Substituting Eqs. (A.4), (38), (42)1,2 and (43)1,2,3 into Eqs. (61)-(63) and with the help
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of Mathematica (Wolfram Research, Inc., 2013), we are able to obtain the explicit bifurcation

equation for antisymmetric modes as

[
1 + β

(
λ23 − 1

)] [
2F 5p3 + tanh (p3kh)

]
×[(

1 + λ41λ
2
3

)2
tanh (kh)− 4λ21λ3 tanh

(
λ21λ3kh

)]
= λ21λ

2
3

(
λ41λ

2
3 − 1

)
B

2
2

(
1− 2F 5

)2
tanh (p3kh) , (64)

where kh = λ−11 λ−13 kH. The bifurcation equation for symmetric modes is the same as

Eq. (64) except that tanh is replaced by coth everywhere. Note that Eq. (64) is applicable

to both the uni-axial and plane-strain loading considered in Sec. 2.2.

In the thick-plate or short-wave limit (kH → ∞), the tanh functions in Eq. (64) are

replaced by 1 and the bifurcation criteria for both symmetric and antisymmetric modes

reduce to

[
1 + β

(
λ23 − 1

)] (
1 + 2F 5p3

) [(
λ21λ3

)3
+
(
λ21λ3

)2
+ 3λ21λ3 − 1

]
= λ21λ

2
3

(
λ21λ3 + 1

)
B

2
2

(
1− 2F 5

)2
. (65)

Note that the bifurcation equation (65) identifies the surface wrinkling instability for the

magneto-elastic half-space, which can also be derived based on the surface impedance method

shown in Appendix B. For B2 = 0, Eq. (65) reduces to
(
λ21λ3

)3
+
(
λ21λ3

)2
+ 3λ21λ3 − 1 = 0,

corresponding to the surface instability of a purely elastic half-space (Flavin, 1963).

In the thin-plate or long-wave limit (kH → 0), we find that the antisymmetric bifurcation

equation (64) can be rearranged as

2F 5

(
λ21 − λ−21 λ−23

) [
1 + β

(
λ23 − 1

)]
= B

2
2

(
1− 2F 5

)2
. (66)

For B2 = 0, Eq. (66) recovers the critical buckling condition λ21λ3 = 1 for the purely elastic

case, which results in λcr1 = 1.0 for both the uni-axial and plane-strain loading. This indicates

that in the absence of magnetic field, the infinite-long plate or thin-plate buckles immediately

when subject to an extremely small in-plane compression.
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4. Specialization to the neo-Hookean magneto-elastic solid

For definiteness, we now specialize the previous results to the neo-Hookean (β = 0)

ideal magneto-elastic model and the neo-Hookean magnetization saturation Langevin model,

which are characterized by the following energy functions, respectively,

Ω =
G

2
(I1 − 3) +

1− χ
2µ0

I5, (67)

and

Ω =
G

2
(I1 − 3) +

I5
2µ0

+
µ0(m

s)2

3χ

{
ln

(
3χ
√
I5

µ0ms

)
− ln

[
sinh

(
3χ
√
I5

µ0ms

)]}
, (68)

where ms is the saturation magnetization and χ is the magnetic susceptibility that is asso-

ciated with the relative magnetic permeability µr by µr = 1/ (1− χ).

The neo-Hookean ideal model (67) has been used to study the stability of anisotropic

magnetorheological elastomers in finite deformations (Rudykh and Bertoldi, 2013). The

compressible counterpart of the neo-Hookean magnetization saturation Langevin model (68)

has been adopted to investigate instability-induced pattern evolutions of the heterogeneous

materials and structures (Psarra et al., 2017, 2019; Goshkoderia et al., 2020).

Note that the magneto-elastic material models (67) and (68) take no account of particle-

particle interactions and thus neglect magneto-mechanical coupling in terms of pure material

magnetostriction. However, it is emphasized that the neo-Hookean magnetization saturation

model (68) allows for a satisfactory quantitative and very good qualitative agreement with

the experimental data presented in previous works (Psarra et al., 2017, 2019; Goshkoderia

et al., 2020), although it is anticipated to be less accurate in the post-bifurcation regime,

especially when wrinkles develop substantially due to the large shear strains. As a result,

more elaborate magneto-mechanical models such as the ones proposed recently by Mukherjee

et al. (2020) are required to explore the effects of the strain-stiffening and the constituent

phase properties (such as particle volume fraction, particle-particle interactions, etc) on the

wrinkling instability of SMA structures, but such models are out of the scope of this paper.

Using Eqs. (2), (8)2 and (67) or (68), we get the governing equations of the magnetization

response

M = µ−10 χB (69)
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for the ideal model, and

M =

[
ms

|B|
coth

(
3χ |B|
µ0ms

)
− µ0(m

s)2

3χ|B|2

]
B (70)

for the saturation Langevin model. In the limit of small magnetic field (B → 0), one

can verify that the saturation magnetization response (70) is compatible with the linear

magnetization response (69).

Now introduce the following dimensionless quantities in terms of the initial shear modulus

G and the vacuum magnetic permeability µ0:

I5 =
I5
Gµ0

= B
2
2, M2 = M2

√
µ0
G
, ms = ms

√
µ0
G
,

s1 =
s1
G
, s3 =

s3
G
, τ11 =

τ11
G
, τ33 =

τ33
G
. (71)

Inserting Eqs. (67) and (68) into Eq. (39) gives

F 5 = (1− χ)/2, F 55 = 0 (72)

for the ideal model, and

F 5 =
1

2

[
1+

(ms)2

3χI5
− ms√

I5
coth

(
3χ

ms

√
I5

)]
,

F 55 =
1

2

[
−(ms)2

3χI
2
5

+
ms

2I
3/2
5

coth

(
3χ
√
I5

ms

)
+

3χ

2I5
sinh−2

(
3χ
√
I5

ms

)]
(73)

for the saturation Langevin model.

Thus, the magnetization responses (69) and (70) to the applied transverse magnetic field

are written in non-dimensional form, as

M?
2 =

(
1− 2F 5

)
B?

2 , (74)

where B?
2 ≡ B2/(µ0m

s) = B2/m
s and M?

2 ≡M2/m
s = M2/m

s.

Substituting Eqs. (67) and (68) into Eqs. (11)1,2, (16)3 and (17)1, we obtain the nonlinear

mechanical response from Eqs. (14)1,2 and (19)1,2 as

λ21 − λ−21 λ−23 +
(
1− 2F 5

)
B

2
2 = λ1s1, λ23 − λ−21 λ−23 +

(
1− 2F 5

)
B

2
2 = 0 (75)
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for uni-axial loading, and

λ2 − λ−2 +
(
1− 2F 5

)
B

2
2 = λs1, s3 = 1− λ−2 +

(
1− 2F 5

)
B

2
2 (76)

for plane-strain loading. Practically, we determine the response by prescribing the pre-

stretch λ1 or λ and solving (75) for s1 and λ3 (uni-axial loading) or solving (76) for s1 and

s3 (plane-strain loading).

For the neo-Hookean saturation Langevin model, the bifurcation or buckling equations

(64)-(66) are the same except that β = 0 and F 5 and F 55 are given in Eq. (73).

For the neo-Hookean ideal model, we find from Eqs. (42)3 and (72) that p3 = 1. As a

result, the bifurcation equation (64) reduces to

[1− χ+ tanh (kh)]
[(

1 + λ41λ
2
3

)2
tanh (kh)− 4λ21λ3 tanh

(
λ21λ3kh

)]
= B

2
2χ

2λ21λ
2
3

(
λ41λ

2
3 − 1

)
tanh (kh) . (77)

Equations (65) and (66) become

(2− χ)
[(
λ21λ3

)3
+
(
λ21λ3

)2
+ 3λ21λ3 − 1

]
= B

2
2χ

2λ21λ
2
3

(
λ21λ3 + 1

)
(78)

for the thick-plate limit (kH →∞), and

(1− χ)
(
λ21 − λ−21 λ−23

)
= B

2
2χ

2 (79)

for the thin-plate limit (kH → 0).

5. Results and discussion

We first conduct numerical calculations in Sec. 5.1 to investigate quantitatively the non-

linear static response of incompressible SMA plates subject to mechanical and magnetic

loads. Section 5.2 then focuses on the bifurcation analysis to calculate the critical mechani-

cal and/or magnetic field generating the wrinkling instability.

We consider two different loading modes (plane-strain and uni-axial loading) and two

neo-Hookean magneto-elastic models ((67) and (68)). The material properties used in the

numerical computations are taken as G = 10 kPa, χ = 0.4 and µ0m
s = 0.5 T, which are
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obtained from experiments with a class of magnetorheological elastomers (Psarra et al., 2017,

2019) consisting of a soft silicone mixed with iron particles at a volume fraction of 20%. More

details about the fabrication technique can be found in the paper by Psarra et al. (2017).

5.1. Nonlinear static response

The nonlinear static response of an SMA plate subject to mechanical and magnetic loads

is calculated from Eqs. (74)-(76).

Figure 2: Plane-strain loading: (a) magnetization response of the dimensionless magnetization M?
2 = M2/m

s

versus the dimensionless magnetic induction field B?
2 = B2/m

s from Eq. (74); (b) response of the dimen-
sionless nominal mechanical traction s1 versus the dimensionless magnetic induction field B2 from Eq. (76)1
for three different values of pre-stretch λ = 0.75, 1.0, 2.0. Solid lines correspond to the ideal magneto-elastic
model while dashed lines represent the saturation Langevin model.

For plane-strain loading, Fig. 2(a) shows the magnetization response of the dimensionless

magnetization M?
2 = M2/m

s versus the dimensionless magnetic induction field B?
2 = B2/m

s

(see Eq. (74)) for the two material models (67) and (68). We see from Fig. 2(a) that a neo-

Hookean ideal magneto-elastic plate exhibits a linear magnetization response, whereas the

response of a plate with magnetization saturation is nonlinear. The magnetization responses

of the two material models are essentially identical for B
?
2 ≤ 1.0 (i.e., B2 ≤ 4.46). The

magnetization begins to saturate at B
?
2 ' 6.0 (i.e., B2 ' 26.76). We note from Eqs. (73)1

and (74) that the magnetization response of each material model is independent of the

mechanical stretch ratio.

For plane-strain loading, the effect of the magnetic induction field B2 on the nominal

mechanical traction s1 applied to the SMA plate is plotted in Fig. 2(b) for three different

values of pre-stretch λ = 0.75, 1.0, 2.0. Clearly, when B2 increases, the required mechanical

traction increases monotonically, which indicates that the SMA plate has an in-plane con-
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traction trend because of the increasing external Maxwell stress. For the three pre-stretches

λ = 0.75, 1.0, 2.0, the mechanical tractions corresponding to the two material models overlap

up to B2 ' 3.8, 4.2, 5.0, respectively. However, the difference predicted by the two material

models becomes more evident with subsequent increases in B2. Specifically, at the same level

of B2, the plate with saturation magnetization effect requires a smaller mechanical traction

as compared to the ideal magneto-elastic plate. This is because the presence of saturation

magnetization will induce a smaller in-plane contraction trend.

Figure 3: Uni-axial loading for three different values of pre-stretch λ1 = 0.75, 1.0, 2.0: (a) response of the
stretch ratio λ3 versus the dimensionless magnetic induction field B2 from Eq. (75)2; (b) response of the
dimensionless nominal mechanical traction s1 versus B2 from Eq. (75)1. Solid lines correspond to the ideal
magneto-elastic model while dashed lines represent the saturation Langevin model.

For uni-axial loading, the magnetization responses of the two material models are essen-

tially the same as those for plane-strain loading, as shown in Fig. 2(a). For three different

values of pre-stretch λ1 = 0.75, 1.0, 2.0, Fig. 3(a) and 3(b) display the effect of the magnetic

induction field B2 on the stretch ratio λ3 and the nominal mechanical traction s1, respec-

tively, for the two material models. Again, we point out that the induced mechanical and

magnetic field distributions are assumed to be uniform when solving the nonlinear static

response, as explained previously, and that the material models (67) and (68) neglect pure

material magnetostriction. We observe from Fig. 3(a) that the stretch ratio λ3 decreases no-

tably with increasing B2 only due to the magnetic traction induced by the external Maxwell

stress. The stretch λ3 for the ideal model is slightly lower than that predicted by the sat-

uration Langevin model, because the saturation magnetization generates a smaller stretch

λ2 in the thickness direction. It is clear from Fig. 3(b) that the mechanical traction s1 in-

creases gradually with B2. After B2 reaches a certain value, s1 remains unchanged. This is
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because the in-plane elongation trend due to the compression in the x3 direction counteracts

the in-plane contraction tendency due to the external Maxwell stress in the x1 direction.

Furthermore, in the whole B2 range of interest, the mechanical tractions based on the two

material models are almost identical, because the saturation magnetization does not alter

the contraction trend in the x1 direction and just affects the compression amount in the x3

direction.

5.2. Bifurcation analysis

We now examine the critical values of stretch in the x1 direction and of transverse mag-

netic induction field for which antisymmetric (see Fig. 1(d)) and symmetric (see Fig. 1(e))

modes of wrinkling instability appear.

For plane-strain loading, antisymmetric modes are identified by bifurcation equations

(64) and (77) with λ1 = λ, λ3 = 1 for the two material models. The critical buckling fields

of antisymmetric modes for uni-axial loading are calculated by solving bifurcation equations

(64) and (77) together with nonlinear static response (75)2. The corresponding critical fields

of symmetric modes are calculated by using coth to replace tanh in Eqs. (64) and (77). The

wrinkling criteria for thin- and thick-plate limits are obtained by evaluating Eqs. (65) and

(66) or Eqs. (78) and (79) for the two material models.

Figure 4: Bifurcation curves (or critical combinations of stretch ratio and dimensionless magnetic induction
field) of antisymmetric wrinkling modes for the thin- and thick-plate limits and kH = 1.0: (a) plane-strain
loading (λ versus B2); (b) uni-axial loading (λ1 versus B2). Solid lines correspond to the ideal magneto-elastic
model while dashed lines represent the saturation Langevin model.

For plane-strain loading and uni-axial loading, Fig. 4(a) and 4(b) illustrate the critical

combinations of stretch ratio λ or λ1 and dimensionless magnetic induction field B2 of

antisymmetric wrinkling modes for the two material models. Specifically, Fig. 4 shows the
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results corresponding to the thin- and thick-plate limits and a representative value of kH = 1.

Since it is found that antisymmetric modes always occur first, Fig. 4 does not display the

results for symmetric modes, which are addressed below.

We first focus on the results for the ideal magneto-elastic model in Fig. 4. In the absence

of magnetic field (B2 = 0, purely elastic case), a thin plate with kH → 0 is unstable for

λ < 1 (λ1 < 1) and is stable for any λ > 1 (λ1 > 1) for plane-strain (uni-axial) loading. For

both loading modes, a larger value of the parameter kH requires an increasing compression

to induce instability. In the thick-plate limit kH → ∞, we recover the well-known critical

compression stretches for surface instability in the purely elastic case, namely λcr = 0.544

and λcr1 = 0.444 for plane-strain and uni-axial loading, respectively (Beatty and Pan, 1998).

For a fixed non-zero B2, the variation trends of the critical stretch λcr or λcr1 with increasing

kH are qualitatively the same as that for B2 = 0. Besides, the critical magnetic field B
cr
2 ,

for a given stretch λ or λ1, increases monotonically with kH, resulting in enhanced stability.

Furthermore, for a given kH, Fig. 4(a) shows that the critical stretch λcr exhibits a

monotonous increase when B2 goes up, which means that the plate become more and more

unstable and the magnetic field has a destabilizing effect. In particular, thin plates with

kH → 0 are unstable in tension (λcr > 1) for non-zero B2, while the plate with kH = 1 has

a wrinkling instability in tension for B2 & 2.8. Similar phenomena are observed in Fig. 4(b)

for uni-axial loading.

We now evaluate the effect of saturation magnetization on the stability. Fig. 4(a) shows

that for plane-strain loading, the critical stretch λcr predicted by the saturation Langevin

model coincides with that based on the ideal model for small and moderate values of B2, the

range of which depends on kH. For example, the results based on the two material models

are almost the same when B2 . 3.0, 3.5, 4.0 for kH = 0, 1,∞, respectively. However, the

presence of saturation magnetization reduces remarkably the critical stretch λcr for a large

value of B2. These phenomena are also found in Fig. 4(b) for uni-axial loading. Nevertheless,

compared with plane-strain loading, the effect of saturation magnetization on the critical

fields is weaker for uni-axial loading because there is no constraint in the x3 direction.

5.2.1. Critical stretch for a prescribed magnetic load

For a prescribed magnetic induction field, we first determine the critical stretch of the

underlying deformed configuration for which antisymmetric and symmetric wrinkling modes
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are induced. Specifically, for plane-strain (uni-axial) loading, Fig. 5(a) (Fig. 6(a)) displays

the variation of the critical stretch λcr (λcr1 ) with kH for the neo-Hookean magnetization

saturation SMA plates subject to three representative values of B2 = 0, 2.5, 5.0 (B2 =

0, 2.5, 4.0), wherein the antisymmetric and symmetric solutions are represented by the solid

and dashed-dotted lines, respectively.

Figure 5: Plane-strain loading: (a) critical stretch λcr as a function of kH for antisymmetric (solid lines)
and symmetric (dashed-dotted lines) modes of the neo-Hookean saturation Langevin plates subject to three
prescribed values of B2 = 0.0, 2.5, 5.0; (b) λcr as a function of kH for antisymmetric modes of the neo-Hookean
ideal (dashed lines) and saturation Langevin (solid lines) magneto-elastic plates subject to four fixed values
of B2 = 0.0, 2.5, 4.0, 5.0.

We find from Figs. 5(a) and 6(a) that antisymmetric modes always occur before symmet-

ric modes become possible for any value of kH. Therefore, to realize a symmetric buckling

mode we must in principle suppress the appearance of the antisymmetric mode.

For a fixed B2, the critical stretch λcr (or λcr1 ) required to initiate the antisymmetric

instability decreases monotonically with increasing kH, asymptotically approaching the sur-

face instability of the thick-plate limit when kH →∞. However, the symmetric bifurcation

curves exhibit an opposite trend. Thus, the stable range of combinations of λ (or λ1) and

kH is determined by the region above the solid line for a fixed B2. Moreover, the critical

stretch λcr (or λcr1 ) for any value of kH is shifted upwards when raising B2, thus indicat-

ing that the SMA plate is destabilized by the application of an increasing magnetic field.

In particular, for plane-strain loading with B2 = 0, 2.5, 5.0, the critical stretches λcr of a

plate with kH → 0 are 1.000, 1.426, 2.282, while those with kH → ∞ are 0.544, 0.608,

0.961, respectively. For uni-axial loading with B2 = 0, 2.5, 4.0, the critical stretches λcr1 of

the thin-plate limit are equal to 1.000, 2.016, 3.080, while those of the thick-plate limit are

0.444, 0.639, 0.918, respectively. The effect of small magnetic field on the stability is more
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significant for uni-axial loading than for plane-strain loading.

Figure 6: Uni-axial loading: (a) critical stretch λcr
1 as a function of kH for anti-symmetric (solid lines)

and symmetric (dashed-dotted lines) modes of the neo-Hookean saturation Langevin plates subject to three
prescribed values of B2 = 0.0, 2.5, 4.0; (b) λcr

1 as a function of kH for anti-symmetric modes of the neo-
Hookean ideal (dashed lines) and saturation Langevin (solid lines) magneto-elastic plates subject to four
fixed values of B2 = 0.0, 2.5, 4.0, 5.0.

For antisymmetric modes, Figs. 5(b) and 6(b) illustrate how the saturation magnetization

affects the bifurcation curves (λcr versus kH and λcr1 versus kH) for plane-strain and uni-axial

loading, respectively. We see that the bifurcation curves based on the two material models

overlap in the entire range of kH for B2 ≤ 2.5. This means that the critical stretch is hardly

affected by the saturation magnetization for small to moderate values of the magnetic field.

However, the saturation magnetization plays an important role in determining the critical

stretch λcr or λcr1 for large values of B2: the figures show that it then stabilizes the SMA

plate, and that its effect is much stronger for plane-strain loading than for uni-axial loading.

5.2.2. Critical magnetic induction field for a fixed pre-stretch

We now evaluate the effect of pre-stretch on the bifurcation curves (B
cr
2 versus kH) of an-

tisymmetric and symmetric wrinkling modes. For plane-strain (uni-axial) loading, Fig. 7(a)

(Fig. 8(a)) shows the critical magnetic induction field B
cr
2 as a function of kH for the neo-

Hookean magnetization saturation SMA plates for four different levels of pre-stretch λ or

λ1 = 0.8, 0.9, 1.0, 1.25. Note that the solid and dashed-dotted lines denote the antisymmetric

and symmetric solutions, respectively.

We observe from Figs. 7(a) and 8(a) that antisymmetric wrinkling modes are always

triggered before the symmetric modes in the entire range of kH, which is analogous to

what Figs. 5(a) and 6(a) show. As kH increases, the critical magnetic field B
cr
2 for a given

pre-stretch increases gradually for antisymmetric modes and decreases monotonically for
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Figure 7: Plane-strain loading for four fixed values of pre-stretch λ = 0.8, 0.9, 1.0, 1.25: (a) critical magnetic
induction field B

cr
2 as a function of kH for antisymmetric (solid lines) and symmetric (dashed-dotted lines)

modes of the neo-Hookean saturation Langevin plates; (b) B
cr
2 as a function of kH for antisymmetric modes

of the neo-Hookean ideal (dashed lines) and saturation Langevin (solid lines) magneto-elastic plates.

symmetric modes, both asymptotically tending to the surface instability of the thick-plate

limit. The stable region of B2 and kH for a fixed pre-stretch is enclosed below the solid line

for antisymmetric modes. Furthermore, an increase in the pre-stretch results in a larger value

of B
cr
2 for a given kH. This means that increasing the pre-stretch enhances the stability of

SMA plates.

Figure 8: Uni-axial loading for four fixed values of pre-stretch λ1 = 0.8, 0.9, 1.0, 1.25: (a) critical magnetic
induction field B

cr
2 as a function of kH for antisymmetric (solid lines) and symmetric (dashed-dotted lines)

modes of the neo-Hookean saturation Langevin plates; (b) B
cr
2 as a function of kH for antisymmetric modes

of the neo-Hookean ideal (dashed lines) and saturation Langevin (solid lines) magneto-elastic plates.

Besides, we see from Figs. 7(a) and 8(a) that in the absence of pre-stretch (i.e., λ = 1

or λ1 = 1), a thin plate (kH → 0) buckles immediately when subject to an extremely small

transverse magnetic field. By contrast, for a thin plate with a pre-stretch (say λ = 1.25 or

λ1 = 1.25), a non-zero magnetic induction field B
cr
2 ' 2.0 (plane-strain loading) or B

cr
2 ' 1.25
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(uni-axial loading) is required to trigger the buckling instability. Interestingly, if an SMA

plate with small values of kH is subject to a pre-compression (i.e., the pre-stretch is less than

1), the underlying configuration is unstable for any applied B2. For example, a plate with

λ = 0.8 or λ1 = 0.8 is unstable for kH . 0.97 under plane-strain loading and for kH . 0.85

under uni-axial loading. Physically, this means that plates with small values of kH do not

support pre-compression even if there is no magnetic field.

For antisymmetric modes, the effect of saturation magnetization on the bifurcation curves

(B
cr
2 versus kH) is highlighted in Figs. 7(b) and 8(b) for plane-strain and uni-axial loadings,

respectively. We observe that for a given pre-stretch, the two material models predict an

identical critical magnetic field B
cr
2 for small and moderate values of kH. For example, the

bifurcation curves of a plate without pre-stretch (λ = 1 or λ1 = 1) overlap for kH . 1.0

and kH . 1.4 under plane-strain and uni-axial loading, respectively. For a large value of

kH with a fixed pre-stretch, the saturation Langevin model leads to a higher B
cr
2 compared

with the prediction of the ideal magneto-elastic model. On the other hand, for a large value

of kH, the predicted difference based on the two material models become larger and larger

when increasing the pre-stretch.

5.2.3. Euler’s buckling approximations

For the magneto-elastic coupling case, it is useful to establish thin-plate approximate

equations (i.e., the Euler buckling solutions) of the antisymmetric wrinkling modes, as they

always occurs first. The derivation procedure is provided in Appendix C in detail. We

specialize the analysis to the neo-Hookean ideal magneto-elastic model (67) because its pre-

dicted bifurcation curves coincide with those based on the magnetization saturation model

for small and moderate values of kH, as shown in Figs. 5-8.

For plane-strain loading, we find that the critical stretch is approximated as

λcr = λ0 +

[
1− λ40

2
(
1 + λ40

)
(1− χ)

]
kH −

[
2λ30

3
(
1 + λ40

) − λ120 + 11λ80 − 9λ40 − 3

8λ0
(
1 + λ40

)3
(1− χ)2

]
(kH)2, (80)

where

λ0 =

√√√√ χ2B
2
2

2(1− χ)
+

√
χ4B

4
2

4(1− χ)2
+ 1. (81)

Note that if there is no magnetic field (B2 = 0), then λ0 = 1, the correction of order

one vanishes, and λcr = 1− (kH)2/3, in agreement with the classical Euler solution for the
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buckling of a slender plate under plane-strain loading (Beatty and Pan, 1998). In Appendix C

we also establish the quadratic expansions of the critical magnetic field and the corresponding

expansions for the uni-axial loading mode.

Figure 9: Critical stretch as a function of kH for antisymmetric modes of a neo-Hookean ideal magneto-
elastic plate subject to different fixed values of B2: (a) plane-strain loading (λcr versus kH) with B2 =
0.0, 2.5, 3.0, 4.0; (b) uni-axial loading (λcr

1 versus kH) with B2 = 0.0, 1.5, 2.5, 4.0. The solid lines, dashed
lines, and dashed-dotted lines represent, respectively, the exact solutions, the first-order and second-order
Euler buckling solutions.

Fig. 9 compares the critical stretch λcr or λcr1 versus kH based on the exact solutions to

that calculated by the thin-plate buckling approximations. Fig. 10 illustrates the bifurcation

curves of the critical magnetic induction field B
cr
2 versus kH obtained by the exact solutions

and the Euler buckling solutions. The results for plane-strain loading are shown in Figs. 9(a)

and 10(a) while those for uni-axial loading are depicted in Figs. 9(b) and 10(b). The solid,

dashed, and dashed-dotted lines represent, respectively, the exact solutions, the first-order

and second-order Euler solutions.

We see from Fig. 9 that in the absence of magnetic field (B2 = 0), the λcr−kH curve and

the λcr1 − kH curve for the thin plate should be approximated quadratically, as in the purely

elastic case (Beatty and Pan, 1998). For B2 6= 0, the earliest correction for the stretch is of

the first order in kH. For plane-strain loading, the first-order Euler solutions provide enough

accuracy to approximate the exact solutions without having to resort to the second-order

correction. However, for uni-axial loading, the linear approximations are not great and the

quadratic corrections are required to approximate the exact bifurcation curves.

Fig. 10 shows that in the absence of pre-stretch (λ = 1 or λ1 = 1), the first-order Euler

buckling solutions can approximate well the B
cr
2 −kH curve for the thin plate under the two

loading modes, as described by Kankanala and Triantafyllidis (2008). But for a pre-stretch
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Figure 10: Critical magnetic induction field B
cr
2 as a function of kH for antisymmetric modes of a neo-

Hookean ideal magneto-elastic plate subject to different fixed pre-stretch: (a) plane-strain loading with λ =
1.0, 1.1, 1.25, 1.4; (b) uni-axial loading with λ1 = 1.0, 1.25, 1.5. The solid lines, dashed lines, and dashed-dotted
lines represent, respectively, the exact solutions, the first-order and second-order Euler buckling solutions.

larger than 1, the B
cr
2 − kH curve should be approximated quadratically for small values of

kH to enlarge the effective range of Euler’s buckling solutions.

6. Conclusions

In the framework of nonlinear magneto-elasticity theory and its associated incremental

formulation, we presented a comprehensive theoretical analysis of the wrinkling instability of

SMA plates under the combined action of transverse magnetic field and in-plane mechanical

loading. We discussed two loading modes (plane-strain loading and uni-axial loading) and

two types of neo-Hookean magneto-elastic material models (ideal model and magnetization

saturation model). Employing the Stroh formulation and the surface impedance method, we

derived explicit bifurcation equations of symmetric and antisymmetric modes and obtained

their corresponding thin- and thick-plate limits analytically. Finally, we conducted detailed

calculations to demonstrate the dependence of the nonlinear static response and bifurcation

diagrams on the loading mode, load amplitude, and saturation magnetization. Our main

observations are summarized below:

(1) In contrast to the ideal model, introducting saturation magnetization results in a non-

linear magnetization response. Its effect on nonlinear mechanical response and critical

buckling fields is more significant for plane-strain loading than for uni-axial loading.

(2) Antisymmetric wrinkling modes always appear before symmetric modes are expressed.
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(3) Increasing the pre-compression and the magnetic field weakens the stability of SMA

plates. However, the saturation magnetization effect strengthens their stability, espe-

cially for large pre-stretch or high magnetic field.

(4) The thin-plate approximate formulas agree well with the exact bifurcation curves for

thin plates.

Note that we made the assumption of uniform magneto-mechanical biasing fields in this

work to simplify the mathematical modelling of infinite SMA plates and to derive explicit

analytical solutions. One factor that influences the uniformity of biasing fields is the shape

and geometrical size of the SMA specimen. The mechanical and magnetic field distributions

are usually non-uniform for ellipsoidal and cylindrical SMA specimens (see, for example,

Martin et al. (2006); Rambausek and Keip (2018); Lefèvre et al. (2017, 2020)). In addition,

the SMA plate slenderness may affect the magneto-mechanical field distributions. If the

biasing fields are not uniform (i.e., they vary with spatial coordinates), then the Stroh

formulation for wrinkling instabilities becomes a set of first-order differential equations with

variable coefficients, which are difficult to solve analytically. Nonetheless, as shown by the

work of Shuvalov et al. (2004) for example, the Stroh formalism is still useful and forms

the basis of a robust numerical resolution with the surface impedance matrix method. Non-

uniform biasing fields are beyond the scope of this preliminary paper and are worthy of

further research.
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Appendix A. Magneto-elastic moduli components

The three 3 × 3 real sub-matrices Ni (i = 1, 2, 3) of the Stroh matrix N in the Stroh

formulation (33) are

N1 =


0 −1 + τ22/c −d/c

−1 0 0

−e/g 0 0

 , N2 =


1/c 0 0

0 0 0

0 0 −1/g

 ,

N3 =


−2
(
b+ c− τ22

)
0 0

0 −a+ (c− τ22)2/c −dτ22/c

0 −dτ22/c f + d
2
/c

 , (A.1)

where the dimensionless parameters a− g and τ22 are defined as

a = a/G, b = b/G, c = c/G, τ22 = τ22/G,

d = d/
√
Gµ0, e = e/

√
Gµ0, f = f/µ0, g = g/µ0, (A.2)

with the magneto-elastic material parameters a− g being

a = c66 = A01212 −
Γ2
0211

K011
, c = c99 = A02121 −

Γ2
0211

K011
, d = e16 = −Γ0211

K011
,

e = e22 − e21 =
Γ0112 − Γ0222

K022
, f = µ11 =

1

K011
, g = µ22 =

1

K022
,

2b = c11 + c22 − 2c12 − 2c69 +
(e22 − e21)2

µ22
= 2

(
b0 +

Γ2
0211

K011

)
,

2b0 = A01111 +A02222 − 2A01122 − 2A01221, (A.3)

where A0, Γ0 and K0 are the magneto-elastic moduli tensors. Note that we have used

Eq. (31) and the relation A01221 + p = A02121− τ22 from Eq. (23) to derive the Stroh matrix

(A.1).

The total Cauchy stress tensor used in the Stroh matrix (A.1) is obtained from Eqs. (12)

and (13)1 as

τ22 = τ?22 = B
2
2/2, (A.4)

where B2 = B2/
√
Gµ0 is the dimensionless applied magnetic induction.
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Using the incremental theory of magneto-elasticity (Otténio et al., 2008; Destrade and

Ogden, 2011), we compute the instantaneous magneto-elastic moduli appearing in Eq. (A.3)

for the applied bi-axial deformation λ1, λ3 and the transverse magnetic field B2, as follows

A01212 = 2λ21
(
Ω1 + λ23Ω2 +B2

2Ω6

)
,

A02121 = 2λ−21 λ−23

{(
Ω1 + λ23Ω2

)
+B2

2

[
λ21λ

2
3Ω5 +

(
2 + λ41λ

2
3

)
Ω6

]}
,

b0 =
(
λ−21 λ−23 + λ21

) (
Ω1 + λ23Ω2

)
+ 2
(
λ21 − λ−21 λ−23

)2 (
Ω11 + 2λ23Ω12 + λ43Ω22

)
+B2

2

{
4
(
λ−21 λ−23 − λ

2
1

) [(
Ω15 + λ23Ω25

)
+ 2λ−21 λ−23

(
Ω16 + λ23Ω26

)]
+ Ω5 + 2

(
3λ−21 λ−23 − λ

2
1

)
Ω6

}
+ 2B4

2

(
Ω55 + 4λ−21 λ−23 Ω56 + 4λ−41 λ−43 Ω66

)
,

Γ0211 = 2B2

[
Ω5 +

(
λ21 + λ−21 λ−23

)
Ω6

]
,

Γ0112 − Γ0222 = 4B2

{(
λ41λ

2
3 − 1

) [(
Ω14 + λ23Ω24

)
+ λ−21 λ−23

(
Ω15 + λ23Ω25

)
+λ−41 λ−43

(
Ω16 + λ23Ω26

)]
− Ω5 − 2λ−21 λ−23 Ω6

−B2
2

(
λ21λ

2
3Ω45 + 2Ω46 + Ω55 + 3λ−21 λ−23 Ω56 + 2λ−41 λ−43 Ω66

)}
,

K011 = 2
(
λ−21 Ω4 + Ω5 + λ21Ω6

)
,

K022 = 2
(
λ21λ

2
3Ω4 + Ω5 + λ−21 λ−23 Ω6

)
+ 4B2

2

(
λ41λ

4
3Ω44 + 2λ21λ

2
3Ω45

+ 2Ω46 + Ω55 + 2λ−21 λ−23 Ω56 + λ−41 λ−43 Ω66

)
. (A.5)

After obtaining the eigenvalues qj and eigenvectors η(j), the generalized displacement

and traction vectors at the faces x2 = ±h are expressed, according to Eq. (36), as

 U (kh)

U (−kh)

 =



η
(1)
1 E+

1 η
(2)
1 E+

2 η
(3)
1 E+

3 η
(4)
1 E−1 η

(5)
1 E−2 η

(6)
1 E−3

η
(1)
2 E+

1 η
(2)
2 E+

2 η
(3)
2 E+

3 η
(4)
2 E−1 η

(5)
2 E−2 η

(6)
2 E−3

η
(1)
3 E+

1 η
(2)
3 E+

2 η
(3)
3 E+

3 η
(4)
3 E−1 η

(5)
3 E−2 η

(6)
3 E−3

η
(1)
1 E−1 η

(2)
1 E−2 η

(3)
1 E−3 η

(4)
1 E+

1 η
(5)
1 E+

2 η
(6)
1 E+

3

η
(1)
2 E−1 η

(2)
2 E−2 η

(3)
2 E−3 η

(4)
2 E+

1 η
(5)
2 E+

2 η
(6)
2 E+

3

η
(1)
3 E−1 η

(2)
3 E−2 η

(3)
3 E−3 η

(4)
3 E+

1 η
(5)
3 E+

2 η
(6)
3 E+

3





A1

A2

A3

A4

A5

A6



, (A.6)
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and

 S (kh)

S (−kh)

 =



η
(1)
4 E+

1 η
(2)
4 E+

2 η
(3)
4 E+

3 η
(4)
4 E−1 η

(5)
4 E−2 η

(6)
4 E−3

η
(1)
5 E+

1 η
(2)
5 E+

2 η
(3)
5 E+

3 η
(4)
5 E−1 η

(5)
5 E−2 η

(6)
5 E−3

η
(1)
6 E+

1 η
(2)
6 E+

2 η
(3)
6 E+

3 η
(4)
6 E−1 η

(5)
6 E−2 η

(6)
6 E−3

η
(1)
4 E−1 η

(2)
4 E−2 η

(3)
4 E−3 η

(4)
4 E+

1 η
(5)
4 E+

2 η
(6)
4 E+

3

η
(1)
5 E−1 η

(2)
5 E−2 η

(3)
5 E−3 η

(4)
5 E+

1 η
(5)
5 E+

2 η
(6)
5 E+

3

η
(1)
6 E−1 η

(2)
6 E−2 η

(3)
6 E−3 η

(4)
6 E+

1 η
(5)
6 E+

2 η
(6)
6 E+

3





A1

A2

A3

A4

A5

A6



, (A.7)

where E±j = e±iqjkh (j = 1, . . . , 6). Thus, we note from Eq. (41) that E±j = e∓pjkh for

j = 1, 2, 3 since qj = ipj (j = 1, 2, 3), and that E±j+3 = E∓j for j = 1, 2, 3 since qj+3 =

−qj (j = 1, 2, 3).

Appendix B. Bifurcation equation of surface instability based on the surface

impedance method

Assume that the SMA half-space in the reference and current configurations occupies the

region X2 ≥ 0 and x2 ≥ 0, respectively. To satisfy the decay condition at x2 → +∞ in the

half-space, we only keep the eigenvalues in Eq. (36) with positive imaginary parts. Thus, we

take the three eigenvalues q1, q2, q3 according to Eqs. (41) and (42). The general solution to

the Stroh formulation (33) is written as

η (kx2) =

U (kx2)

S (kx2)

 =
3∑
j=1

Ajη
(j)eiqjkx2 =

3∑
j=1

Ajη
(j)e−pjkx2 , (B.1)

where qj = ipj (j = 1, 2, 3) with pj > 0. In matrix form, Eq. (B.1) is expressed as

η (kx2) =

P1

P2




e−p1kx2 0 0

0 e−p2kx2 0

0 0 e−p3kx2




A1

A2

A3

 , (B.2)
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where

P1 =



η
(1)
1 η

(2)
1 η

(3)
1

η
(1)
2 η

(2)
2 η

(3)
2

η
(1)
3 η

(2)
3 η

(3)
3


, P2 =



η
(1)
4 η

(2)
4 η

(3)
4

η
(1)
5 η

(2)
5 η

(3)
5

η
(1)
6 η

(2)
6 η

(3)
6


, (B.3)

Setting x2 = 0, we obtain from Eqs. (B.1) and (B.2) that

S (0) = iZU (0) , (B.4)

where Z = −iP2P
−1
1 is the surface impedance matrix of the half-space, through which the

generalized traction and displacement vectors at the face x2 = 0 are connected.

In view of Eqs. (55) and (56), the surface impedance matrix exterior to the material is

Z
?

=



0 iB
2
2/2 iB2

−iB
2
2/2 B

2
2 B2

−iB2 B2 1


, (B.5)

which, at the face x2 = 0, satisfies

S (0) = iZ
?
U (0) . (B.6)

From Eqs. (B.4) and (B.6), we get the bifurcation equation governing the surface wrin-

kling instability, as

det
(
Z− Z

?
)

= 0. (B.7)

Substituting Eqs. (A.4), (38), (42)1,2, (43)1,2,3 and (B.5) into Eq. (B.7) and with the help

of Mathematica, we obtain the explicit bifurcation equation for the surface wrinkles as

[
1 + β

(
λ23 − 1

)] (
1 + 2F 5p3

) [(
λ21λ3

)3
+
(
λ21λ3

)2
+ 3λ21λ3 − 1

]
−B2

2

(
1− 2F 5

)2
λ21λ

2
3

(
λ21λ3 + 1

)
= 0, (B.8)
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which is the same as Eq. (65).

Appendix C. Thin-plate buckling approximations

For the neo-Hookean ideal magneto-elastic model (67), this appendix makes use of the

exact bifurcation equation (77) to establish thin-plate approximations to antisymmetric wrin-

kling modes, which always occur first.

Appendix C.1. Plane-strain loading

For plane-strain loading, the exact bifurcation equation (77) becomes

[1− χ+ tanh (kh)]
[(

1 + λ4
)2

tanh (kh)− 4λ2 tanh
(
λ2kh

)]
= B

2
2χ

2λ2
(
λ4 − 1

)
tanh (kh) , (C.1)

where kh = λ−1kH. At the zero-th order in kH, the thin-plate equation (79) gives

B
2
2 = χ−2 (1− χ)

(
λ2 − λ−2

)
. (C.2)

Appendix C.1.1. Critical stretch

For a fixed magnetic induction field B2, we first derive the approximations of the critical

stretch λcr. In this case, we denote the root of Eq. (C.2) as λ0. In the thin-plate limit

(kH → 0), we may expand the tanh functions in Eq. (C.1) in power series as follows:

tanh (kh) ≈ λ−1kH −
(
λ−1kH

)3
/3, tanh

(
λ2kh

)
≈ λkH − (λkH)3/3. (C.3)

Inserting Eq. (C.3) into Eq. (C.1) and retaining only terms of first order in kH, we obtain

(1− λ2)(1 + λ2)kH + λ
[
(1− χ)(1− λ2)(1 + λ2) +B

2
2χ

2λ2
]

= 0. (C.4)

As expected, when kH = 0, λ is equal to λ0. Hence, substituting the first-order expansion

λcr = λ0 + ε1kH in Eq. (C.4) and retaining terms to the first order in kH, we find the

equation governing ε1 as

1− λ40 + ε1

[
(1− χ)(5− 9λ40) + 7B

2
2χ

2λ20

]
= 0. (C.5)
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Using Eq. (C.2) in Eq. (C.5), we thus obtain the first-order correction of the critical stretch

λcr = λ0 +
1− λ40

2
(
1 + λ40

)
(1− χ)

kH. (C.6)

Similarly, we insert the power series expansion (C.3) into Eq. (C.1) and retain only

terms of second order in kH. Then, we introduce the second-order expansion of stretch

λcr = λ0 + ε1kH + ε2(kH)2 in the resultant equation, keep terms to the second order in kH,

and thereby get the second-order correction of the critical stretch

λcr = λ0 +
1− λ40

2
(
1 + λ40

)
(1− χ)

kH + ε2(kH)2, (C.7)

where

ε2 = − 2λ30
3
(
1 + λ40

) +
λ120 + 11λ80 − 9λ40 − 3

8λ0
(
1 + λ40

)3
(1− χ)2

. (C.8)

When B2 = 0, we have λ0 = 1 and from Eq. (C.7) the first correction for stretch is

of order two: λcr = 1 − (kH)2/3. This is equivalent to the classical Euler solution for the

buckling of a slender or a thin plate under plane-strain loading in the purely elastic case

(Beatty and Pan, 1998).

Appendix C.1.2. Critical magnetic induction field

Next, we derive the approximations of the critical magnetic field B
cr
2 for a given pre-

stretch λ. In this case, the root of Eq. (C.2) is represented by B20. Analogous to the

derivations of the critical stretch described in Appendix C.1.1, we obtain

B
cr
2 = B20

[
1 +

1

2λ (1− χ)
kH

]
(C.9)

for the first-order correction, and

B
cr
2 = B20

[
1 +

1

2λ (1− χ)
kH + γ2(kH)2

]
, γ2 =

3 + λ4 [13 + 16χ (χ− 2)]

24λ2 (λ4 − 1) (1− χ)2
(C.10)

for the second-order correction.

However, in the special case where there is no pre-stretch (λ = 1), we see that B20 = 0

from Eq. (C.2). In that case, Eqs. (C.9) and (C.10) give B
cr
2 ≡ 0, which is independent of kH

and unphysical. That case thus requires a separate treatment. Expanding the bifurcation
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equation (C.1) in power series in kH, keeping terms up to the third order in kH, and setting

λ = 1, we have

− 4(kH)3 +
[
4(χ− 1)−B2

2χ
2
]

(kH)2 + 3B
2
2χ

2 = 0. (C.11)

Then, we introduce the first-order expansion of the critical magnetic field B
cr
2 = γ10kH in

Eq. (C.11), keep terms to the second order in kH, and obtain the first-order correction as

B
cr
2 =

2
√

1− χ√
3χ

kH. (C.12)

Further, the second-order correction of the critical magnetic field is found as

B
cr
2 =

2
√

1− χ√
3χ

kH +
1

χ
√

3 (1− χ)
(kH)2. (C.13)

Note that the thin-plate buckling approximation (C.13) of B
cr
2 agrees with the classical

asymptotic formula obtained by Pao and Yeh (1973) (see their Eq. (8.13) and let the Poisson

ratio in their formula tend to 1/2 for incompressible materials).

Appendix C.2. Uni-axial loading

For uni-axial loading, the exact bifurcation equation for antisymmetric wrinkles is gov-

erned by Eq. (77), which is reproduced here, as

[1− χ+ tanh (kh)]
[(

1 + λ41λ
2
3

)2
tanh (kh)− 4λ21λ3 tanh

(
λ21λ3kh

)]
= B

2
2χ

2λ21λ
2
3

(
λ41λ

2
3 − 1

)
tanh (kh) , (C.14)

where kh = λ−11 λ−13 kH, and from Eq. (75)2 we obtain the nonlinear mechanical response

(determining λ3) for the ideal magneto-elastic model as

λ23 − λ−21 λ−23 + χB
2
2 = 0. (C.15)

At the zero-th order in kH, the thin-plate equation (79) gives

B
2
2 = χ−2 (1− χ)

(
λ21 − λ−21 λ−23

)
. (C.16)
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Appendix C.2.1. Critical stretch

First, the approximations of the critical stretches λcr1 and λcr3 are derived according to

Eqs. (C.14) and (C.15) for a fixed B2. The root of the zero-order equations (C.15) and

(C.16) is denoted by λ10 and λ30. For kH → 0, we expand Eq. (C.14) up to the first order

in kH, as

(1− λ41λ23)kH + λ1λ3

[
(1− χ)(1− λ41λ23) +B

2
2χ

2λ21λ
2
3

]
= 0. (C.17)

We then introduce the first-order corrections λcr1 = λ10+ε1kH and λcr3 = λ30+ε2kH into

Eqs. (C.15) and (C.17), and retain terms to the first order in kH. The resultant zero-order

terms satisfy the zero-order thin-plate equations (C.15) and (C.16), while the first-order

terms constitute a set of two linear algebraic equations for ε1 and ε2, which are solved as

ε1 =

(
1− λ410λ230

) (
1 + λ210λ

4
30

)
2λ210λ

3
30

(
λ210 + λ230 + λ410λ

4
30

)
(1− χ)

, ε2 = − λ30

λ10
(
1 + λ210λ

4
30

)ε1. (C.18)

The next order in kH is order two. With similar manipulations of Eqs. (C.14) and (C.15),

we find the second-order correction of the critical stretches, as

λcr1 = λ10 + ε1kH + ε3(kH)2, λcr3 = λ30 + ε2kH + ε4(kH)2, (C.19)

where ε1 and ε2 are determined by Eq. (C.18), and

[ε3, ε4]
T = 2Q−11 [t1, t2]

T , (C.20)

in which we have

Q1 =

9λ410λ
5
30

(
1 + λ410λ

2
30

)
(χ− 1) 9λ510λ

4
30 (χ− 1)

λ−110 λ−130

(
1 + λ210λ

4
30

)
 ,

t1 =12λ710λ
5
30 (1− χ) +

9k1
(
1− λ410λ230

)
4λ10λ30

(
λ210 + λ230 + λ410λ

4
30

)2
(1− χ)

,

t2 =

(
1− λ410λ230

)2 (
2 + λ210λ

4
30 + 3λ410λ

8
30

)
4λ610λ

6
30

(
λ210 + λ230 + λ410λ

4
30

)2
(1− χ)2

,

k1 =λ410λ
2
30

[
λ210λ

4
30

(
14 + λ610λ

6
30

)
+ 4λ410λ

6
30

(
λ210 + 3λ230

)
+3
(
1 + λ630 + λ410λ

2
30

)]
− 2

(
1 + λ210λ

4
30

)
. (C.21)
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Again we verify that for B2 = 0, we have λ10 = λ30 = 1 and from Eqs. (C.18)-(C.21) we

recover the purely elastic result: λcr1 = 1 − 4(kH)2/9 and λcr3 = 1 + 2(kH)2/9. This is the

classical Euler solution for the buckling of a slender or a thin plate under uni-axial loading

(Beatty and Pan, 1998).

Appendix C.2.2. Critical magnetic induction field

We now derive the approximations of the critical magnetic field B
cr
2 for a given pre-

stretch λ1. We call the root of Eqs. (C.15) and (C.16) as B20 and λ30. The derivation is

essentially the same as the one of the critical stretch given in Appendix C.2.1. Hence, we

get the first-order corrections

B
cr
2 = B20 + γ1kH, λcr3 = λ30 + γ2kH, (C.22)

with

γ1 =

(
1− λ41λ230

) (
2λ230 + χB

2
20

)
χB20λ1λ30

{
5 (1− χ) + λ21λ

2
30

[
7λ21 (χ− 1) + χ

(
5χB

2
20 − 4λ230

)]} ,
γ2 =

λ41λ
2
30 − 1

λ1

{
5 (1− χ) + λ21λ

2
30

[
7λ21 (χ− 1) + χ

(
5χB

2
20 − 4λ230

)]} , (C.23)

and the second-order corrections

B
cr
2 = B20 + γ1kH + γ3(kH)2, λcr3 = λ30 + γ2kH + γ4(kH)2, (C.24)

with

[γ3, γ4]
T = −Q−12 [t3, t4]

T , (C.25)

where

Q2 =

6λ41λ
4
30χ

2B20 3λ21λ30

{
5 (1− χ) + 7λ21λ

2
30

[
λ21 (χ− 1) + χ2B

2
20

]}
2λ230χB20 2

(
2λ330 + λ30χB

2
20

)
 ,

t3 =
(
1 + 3λ41λ

2
30

)
(χ− 1) + λ21λ

2
30χ

2
(

3λ21λ
2
30γ

2
1 −B

2
20

)
+

+ 3λ21γ
2
2

{
10 (1− χ) + 21λ21λ

2
30

[
λ21 (χ− 1) +B

2
20χ

2
]}
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+ 6λ1γ2
[
2 + λ31λ

2
30

(
7λ30χ

2B20γ1 − 3λ1
)]
,

t4 =4λ30χB20γ1γ2 + λ230χγ
2
1 +

(
6λ230 + χB

2
20

)
γ22 . (C.26)

Again, when there is no pre-stretch (λ1 = 1), the zero-order thin-plate equations (C.15)

and (C.16) yield one root B20 = 0 and λ30 = 1. Hence, the corrections (C.22) and (C.24)

give B
cr
2 ≡ 0 independent of kH, are not applicable in this case and we need to re-do the

expansion. Specifically, expanding the bifurcation equation (C.14) to the third order in kH,

and setting λ1 = 1, we obtain

− 2(1 + λ23)(kH)3 + λ3

[
(χ− 1)(1 + 3λ23)−B

2
2χ

2λ23

]
(kH)2

+ 3λ23(1− λ23)kH + 3λ33

[
(1− χ)(1− λ23) +B

2
2χ

2λ23

]
= 0. (C.27)

Conducting the same operations of Eqs. (C.15) and (C.27) as those in Appendix C.1.2,

we finally get

B
cr
2 =

2
√

2 (1− χ)√
3χ (1 + χ)

kH, λcr3 = 1 +
2 (χ− 1)

3 (1 + χ)
(kH)2 (C.28)

for the first-order correction of B
cr
2 , and

B
cr
2 =

2
√

2 (1− χ)√
3χ (1 + χ)

kH +
2
√

2χ (1 + χ)

(1 + χ)2
√

3 (1− χ)
(kH)2,

λcr3 = 1 +
2 (χ− 1)

3 (1 + χ)
(kH)2 − 4χ

3(1 + χ)2
(kH)3 (C.29)

for the second-order correction of B
cr
2 .
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