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Abstract—With the introduction of ultra-low-power machine
learning (TinyML), IoT devices are becoming smarter as they are
driven by Machine Learning (ML) models. However, any increase
in the training data results in a linear increase in the space
complexity of the ML models. It is highly challenging to deploy
such ML models on IoT devices with limited memory (TinyML
hardware). To alleviate such memory issues, in this paper, we
present an SRAM-optimized classifier porting, stitching, and
efficient deployment approach. The proposed method enables
large classifiers to be comfortably executed on microcontroller
unit (MCU) based IoT devices and perform ultra-fast classi-
fications while consuming 0 bytes of SRAM. We tested our
SRAM optimized approach by utilizing it to port and execute
7 dataset-trained classifiers on 7 popular MCU boards, and
report their inference time and memory (Flash and SRAM)
consumption. It is apparent from the experimental results that;
(i) the classifiers ported using our proposed approach are of
varied sizes but have constant SRAM consumption. Thus, the
approach enabled the deployment of larger ML classifier models
even on tiny Atmega328P MCU-based Arduino Nano, which has
only 8 kB SRAM; (ii) even the resource-constrained 8-bit MCUs
performed faster unit inference (in less than a millisecond) than
a NVIDIA Jetson Nano GPU and Raspberry Pi 4 CPU; (iii) the
majority of models produced 1-4x times faster inference results
in comparison with the models ported by the sklearn-porter,
m2cgen, and emlearn libraries.

Index Terms—IoT Devices, TinyML, Microcontrollers, Offline
Inference, SRAM Optimization, Classifiers Porting.

I. INTRODUCTION

The majority of IoT devices like smart plugs, Heating

Ventilation Air Conditioning (HVAC) controllers, IoT ther-

mostats, etc. are powered by MCUs and small CPUs that

are resource-constrained [1]. Such MCUs lack multiple cores,

parallel execution units, no hardware support for floating-

point operations (FLOPS), and low clock speed [2]. Still, for

decades, the hardware of IoT devices are designed using such

resource-constrained MCUs because; (i) MCUs are tiny in

form factor as its memory units (Flash, SRAM) and processor

unit are contained in a single chip; (ii) MCUs are highly

power-efficient and cheaper than the standard laptop CPUs

and mobile phone processors. For example, the Arduino Nano

is an 8-bit ATmega328 MCU with a 16 MHz clock, 2 kB of

SRAM, 32 kB of ISP flash memory. Similarly, the NUCLEO-

F303K8 is a 32-bit ARM Cortex-M4 MCU with a 72 MHz

clock and 64 kB of flash memory. These two MCU-boards are

popular examples of TinyML hardware that are widely used

to design IoT devices, and billions of similar specification

hardware-based IoT devices have already been deployed in

the world [3].

During the design phase of IoT devices, to conserve

energy and to maintain high instruction execution speeds, no

secondary/backing memory is added. For example, adding a

high-capacity SD card or EEPROM can enable storing large

Decision Trees (DT) and Random Forest (RF) models even

without optimization. But such an approach will highly affect

the model execution speed since the memory outside the chipset

is slow. It also requires ≈ 100x more energy to read the

thousands of outside located model parameters. Due to this

un-addressable memory constraint, the vast majority of MCU-

powered IoT edge devices use simplified versions of DTs and

RFs to solve ranking, regression, and classification problems

offline at the device level [4]. Currently, edge devices cannot

handle complex tree-based ML models with a large number

of tree nodes because they are resource-intensive and often

cannot fit within the memory of MCUs, resulting in memory

overflow issues.

Any increase in training samples increases the model size

and inference complexity of the widely used stable scikit-learn

classifiers [5, 6]. Multiple studies [7, 8] have shown that tree-

based algorithms can only be deployed on embedded sensor

systems or tiny IoT devices after reducing inference complexity

and model size. To comfortably fit within the specific hardware

architecture, either the DTs and RFs are pruned [9, 10], or

node parameters in the DTs are shared using a directed acyclic

graph [11]. Sometimes users design sparse and shallow tree

learners that only require a few kBs of memory [2] to keep

a low memory footprint. Such methods of learning shallow

trees or aggressive pruning to fit within a few kBs often led

to degradation in accuracy. This is due to the approximation

of non-linear and complex decision boundaries using a small

number of axis-aligned hyperplanes. Other studies [12, 13]

have proposed optimization methods, where the models are

trained in high resource setups, then a multi-stage MCU-aware
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optimization (tailored) is performed before deployment.

In contrast to the above-mentioned approaches, in this paper,

we present an SRAM optimized approach. The proposed

approach does not reduce the ML algorithm complexity

since doing so results in highly engineered models that need

special consideration and optimization for different datasets

and IoT scenarios, which is not practically feasible. The main

contributions of the SRAM optimized approach are as follows:

• The proposed method is generic and can efficiently port

and execute a wide variety of DT and RF classifiers on

different resource-constrained MCUs and small CPUs-

based IoT devices with 0 bytes of SRAM consumption.

• The models ported and executed using the proposed

method produce ultra-fast classification results on MCUs

(1-4x times faster than state-of-the-art libraries). Thus,

even the autonomous tiny IoT devices can efficiently

control real-world IoT applications by making timely

predictions/decisions.

• Despite the reduced memory footprint and ultra-fast

classifications, our approach guarantees the same level

of performance (accuracy, F1 score, etc.) as its original

models (before porting) that were trained and tested on

high-resource lab setups.

The rest of the paper is structured as follows: Section II -

III briefs the essential concepts and related studies. Section

IV presents the SRAM optimized approach, and Section V

performs an extensive experimental evaluation that aims to

justify claims of the SRAM optimized approach. Section VI,

concludes by providing a context for future research.

II. BACKGROUND

Recent advancements in the field of ultra-low-power machine

learning (TinyML) promises to unlock an entirely new class

of edge applications [1]. The TinyML segment of libraries,

tools, and frameworks is composed of two main elements, i.e.,

the converter and the interpreter. The converter runs on a high-

resource machine and ports the trained model to optimized

code that can execute on constrained platforms. The interpreter

runs on the target TinyML hardware and executes code of

the ML models generated by the converter. Unlike embedded

Linux (like Raspberry Pi, BeagleBone families), for MCUs,

the generated optimized code is in C++ 11, which requires

32-bit processors (ARM Cortex-M) for reasonable onboard

performance. In the upcoming subsections, we present the state-

of-the-art that can ease the implementation of ML algorithms

on resource-constrained TinyML hardware (embedded Linux,

MCUs, small CPUs).

A. TinyML: Libraries, Tools, and Frameworks

GO programming language (TinyGo) is related to Ten-

sorFlow Lite for Microcontrollers (TFLM) and Google’s

contribution to TinyML [14]. Microsoft’s contribution in this

scene is Embedded Learning Library (ELL) [15], which permits

to design and deploy pre-trained ML models on ARM Cortex-

A and Cortex-M architectures. ELL’s API can be employed

from C++/Python to utilize the pre-trained Neural Network

(NN) models produced by Darknet [16], Cognitive Toolkit

(CNTK) [17], or Open Neural Network Exchange (ONNX)

format [18].

ARM has integrated ML on their product line that can

be leveraged by Artificial Intelligence of Things (AIoT) re-

searchers/developers to deliver advanced AI use cases/solutions

to customers. The ARM-NN toolkit [19] allows the integration

of NN workloads with cutting-edge hardware such as ARM

Cortex-A CPUs, Mali GPUs, and Ethos Neural Processing

Units (NPUs). ARM-NN is open-source and compatible with

TensorFlow, Caffe, and ONNX format. To provide support also

for the Cortex-M, ARM provides the Cortex Microcontroller

Software Interface Standard-NN (CMSIS-NN) [20], a collec-

tion of NN kernels optimized for low hardware specification

Cortex-M processor series.

STMicroelectronics (STM) delivers intelligent, energy-

efficient products and solutions that power the electronics

at the heart of everyday life. STM’s X-CUBE-AI toolkit [21]

can integrate pre-trained NNs with STM32 ARM Cortex-M

MCUs by generating STM32-compatible C code from NN

models generated by Keras, TensorFlow, or standard ONNX

format. The interesting feature of this toolkit is, it enables

running large NNs on TinyML hardware by storing weights

and activation buffers in external flash memory and RAM

respectively (related to the concept of the proposed SRAM

optimized approach for ML classifiers).

B. TinyML: Training ML models on MCUs

Besides open-source contributions by tech giants, few

institutions and companies have released licensed products. The

Artificial Intelligence for Embedded Systems (AIfES) library

is a C-based platform-independent tool for generating NNs

compatible with a range of open-source MCU boards. AIfES

can be used with windows and embedded Linux platforms

by producing efficient code in form of Dynamic Link Library

(DLL). In contrast to the frameworks reviewed in above-section,

and similar to ML-MCU [22], Edge2Train [23] and TinyOL

[24], AIfES permits to implement ML model training process

on the embedded devices. Cartesiam NanoEdge AI Studio [25]

enables the creation of ML static libraries to embed them in

Cortex-M MCUs. It allows integrating the training process

within the constrained device. In addition, it also can perform

unsupervised algorithm training on MCUs.

C. TinyML: Non Neural Networks

Surprisingly, the majority of modern frameworks focus

only on NNs. However, different works released by TinyML

enthusiasts, researchers, and developers consider other ML

algorithms such as DTs, Naive Bayes classifier, k-Nearest

Neighbors (k-NN). For example, to extend the compatibility of

TensorFlow models, uTensor [26] produces C code for Mbed

boards. Weka-porter [27] is a basic tool (limited features) to

covert DTs generated by WEKA into C, Java, and JavaScript

codes. EmbML [28] library can convert models trained by

Scikit-learn or WEKA into C++ source-code files that can
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be compiled and executed in constrained TinyML hardware

platforms.

Sklearn-porter [29] transpiles various trained estimators to

Java, C, JavaScript, GO, Ruby, and PHP. Given this variety

of supported languages, sklearn-porter is a very complete

framework as it is also compatible with a range of ML

algorithms. Specifically for C language, it can also port Scikit-

learn models of SVM, AdaBoost classifier, DTs, RFs. However,

the versatility of this library hinders it to generate MCU-

optimized code in terms of required RAM. m2cgen [30] is a

similar tool that also transpiles Scikit-learn models into a native

code. In this case, both the number of compatible algorithms

as well as the target programming languages are even greater

than those supported by sklearn-porter. Similarly, the emlearn

[31] produces portable C99 code from models trained in

Scikit-learn or Keras Python libraries. It is compatible with

generated models of a range of datasets and ML algorithms.

Also, emlearn has been tested on various chipsets like AVR

Atmega, ESP8266.

III. RELATED WORK

Here, we outline the concept of the selected classifiers,

then compare our approach with the studies that achieve top

optimization levels.

A. Optimizing Decision Trees

Like other supervised ML classifiers, DTs can also under-

stand data, perform inference, and can be used for ranking,

regression, and classification problems commonly found in

IoT settings. When the DTs have a large number of tree

nodes, their memory footprint is high and cannot fit within

the MCU’s memory. Many studies [7, 8] show that such

algorithms can be implemented on embedded sensor systems

or portable IoT devices only when they are optimized to fit

the specific hardware architecture. Currently, to reduce its

complexity, constraints are added to the hypothesis class (set

of considered possible classification functions), and structures

in the hypothesis class are discovered to generate simpler

(resource-friendly) hypotheses. Commonly, for achieving re-

duced memory footprint and to avoid over-fitting, DTs are

pruned [10], sparse and shallow tree learners that only require

a few KBs of memory are designed [2], and node parameters

are shared using a Directed acyclic graph (DAG) [11].

B. Optimizing Random Forests

RFs is based on the concept of the wisdom of the crowd,

where many DTs are combined in a voting scheme. Here,

probably the true predicted class is the class that receives

majority votes from the trees. Like RFs, XGBoost is also an

ensemble-based algorithm, where a number of trees are chained

and each tree learns from the previous errors. For any given m
training samples, implementation of the widely used stable DTs

[5] has O(log(m)) as its inference complexity and O(m) as its

model size. Similarly the stable RFs [6] has O (Ntree log(m))
inference complexity and O (Ntreem) model size. This clearly

shows that their complexity grows with increased training

Fig. 1. Design flow to port, stitch, and execute ML classifiers on resource-
constrained microcontroller-based IoT devices (TinyML hardware).

samples. For such ensemble-based algorithms, if the critical

question of how to select weak learners while preserving the

accuracy is answered, it can result in significant computational

cost savings. To answer this, [32] presents a method that can

automatically trade computation time with accuracy by using

the extra time to select from a set of weak learners. In [9], RFs

were pruned to obtain predictions within a limited hardware

resource budget.

As opposed to the family of Neural Networks (NNs), there

are only a few resource profiling results reported for the

on-device deployment of DTs, RF, XG Boost algorithms

[33]. We observed that the review papers and papers with

advancement algorithms compare only the accuracy, training

& inference complexity of one’s method with the previous

related ones. For example, in [2], energy and inference time

were profiled for their tree-based Bonsai and compared with

related techniques such as local deep kernel learning, gradient

boosted decision tree, etc. on the Arduino Uno MCU board.

However, the memory footprint during onboard execution was

not profiled. Similarly, other related works empirically analyze

the complexity and performance of ML algorithms [34, 35] on

PCs but not on resource-constrained MCU-based IoT devices.
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Algorithm 1 SRAM optimized porting of ML classifiers to plain C: runs on a high-resource machine.

1: from sklearn import tree � can also use from sklearn.ensemble import RandomForestClassifier

2: import packages: time, from sklearn.metrics import classification_report, train_test_split

3: dataset ← MNIST Digits � load required dataset e.g. Iris, Breast Cancer, Titanic

4: train_features, test_features, train_types, test_types ← train_test_split (dataset) � splits into random train, test subsets

5: train � function for ML algorithm training using loaded dataset

6: clf_DT ← tree.DecisionTreeClassifier () � define Decision Tree (DT) classifier

7: clf_DT ← clf_DT.fit (train_features, train_types) � trained DT classifier

8: evaluate � function to evaluate trained model

9: predictions ← clf_DT.predict (test_features)

10: inference time ← use clf_DT.predict () inside time.time () � pass data for 1 sample and 100 samples

11: evaluation ← use module classification_report (test_types, predictions) � f1-score, support, macro avg, accuracy,

etc. are reported

12: if evaluation satisfactory then
13: port � function that performs SRAM optimized porting of model to C

14: for i in node_count do � node i = 0 is the tree’s root, node_count is total number of nodes

15: children_left [i], children_right [i], feature [i], threshold [i], classes [i] ← clf_DT � extract entire tree

structure from trained DT (clf_DT) and store in numerous parallel arrays

16: DT_MNIST.h ← clf_DT ported to C � using f.write write extracted information into .h file

17: else
18: re-tune DT parameters (e.g. criterion, splitter, max_depth, etc), then use functions train, evaluate, and port

In this paper, like previous works, we do not aim to

reduce the ML algorithm complexity since it results in

highly engineered models that need special consideration and

optimization for different datasets and IoT scenarios, which is

not practically feasible. Since both RFs and XGBoost depend

on trees, we propose to efficiently port DTs to its C version

that in turn results in optimizing many tree-based methods like

RFs and XGBoost. During profiling, the standard high-quality

DTs, RFs, and XGBoost multi-class classifiers, when ported

to C and deployed using our method, consume 0 bytes of

RAM when executing on MCUs, thereby clearly superior to

the above and other highly engineered methods.

C. Resource-efficient Model Inference on MCUs

A set of articles propose compression techniques to reduce

the size of the model’s weights using quantization and pruning.

Condensa [36], is a system for users to compose simple

operators to build complex model compression strategies. In

[37], two new compression methods jointly leverage weight

quantization and the distillation of larger networks were

proposed. ProtoNN [38] is a kNN inspired algorithm with

several orders lower storage and prediction complexity that

addresses the problem of real-time and accurate prediction on

resource-scarce devices. In both [36, 37] and other similar

articles proposing compressing [39, 40] and optimization

[2, 41] methods, the models are trained in high resource

setups, then a multi-stage MCU-aware optimization (tailored)

is performed before deployment.

Different types of NNs are optimized and implemented

on ARM Cortex-M processors. CMix-NN [42] is an open-

source library for deploying mixed-precision NNs on MCUs

(supports convolutional kernels with 2, 4, or 8 bits precision,

for any of the operands. FANN-on-MCU [43] is an open-source

framework that is built upon the Fast Artificial Neural Network

(FANN) library [44] that can run light NNs on MCUs. FANN-

on-MCU can process Multi-Layer Perceptrons (MLPs) trained

with FANN, then generate code that can run on Parallel Ultra-

Low Power Platforms (PULP) [45] (besides the mentioned

ARM Cortex-M processor).

In contrast to the above, we provide a generic method that

applies to any dataset trained tree-based classifiers. When our

method is utilized, without any alterations, the standard/stable

models from ML frameworks can be efficiently deployed and

executed by MCUs of tiny IoT devices while consuming 0

bytes of SRAM. In [46, 47], we laid a foundation by exploring

the porting and execution of ML classifiers, anomalies detection

models on embedded systems in IoT.

IV. SRAM OPTIMIZED APPROACH DESIGN

In Fig. 1, we present the design flow of our SRAM-

optimized approach. This flow can be followed to execute

any commercial/standard dataset trained or any pre-trained

marketplace models on tiny IoT devices like HVAC controllers,

smart plugs, etc. At first, the developer needs to port the

standard Python scikit-learn trained ML classifier models

(which are trained in a resource extensive setup) to its MCU

executable C versions. Then, we need to stitch the generated

classifier with the IoT use-case application, followed by

efficiently deploying and executing models on MCUs and

small CPUs of IoT devices. The pseudocode of the design

flow in Fig. 1, is given in Algorithm 1 and 2. We explain our

porting method in the upcoming subsection, followed by our

IoT application stitching and execution method.
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Algorithm 2 Executing classifiers on IoT devices: runs on TinyML hardware designed using MCUs and small CPUs.

1: load ported DT classifier and test set � dependencies or external libraries not required for our approach

2: #include DT_MNIST.h � file contains ported DT in C that matches human-readable version of trained model

3: predict (X) � links ported DT model with main IoT application

4: #include MNIST_test.h � file contains data samples (test set) to supply during onboard inference

5: 2D array X [test_set_size] [features_dim] � test_set_size rows containing features_dim features of test set

6: Y [test_set_size] � one row containing labels of all test set samples

7: for i in test_set_size do
8: predictions ← predict (X[i]) � data is passed to predict function inside DT_MNIST.h during inference

9: onboard evaluate � function to evaluate ported classifier on MCUs

10: inference time ← use predict () inside millis () � pass data for 1 sample and 100 samples

11: accuracy ← compare predictions with Y [test_set_size]

A. SRAM Optimized Porting of ML Classifiers to Plain C

In this section, we explain how the proposed method

performs SRAM-efficient porting of trained DTs and RFs.

1) SRAM Optimized Porting of Decision Trees: In MCUs

and small CPUs based tiny IoT devices, the program space

(flash memory) is always much greater than the available

SRAM (see Table I). So, we propose a method, that when

realized, produces a C version of DTs which does not depend

on the SRAM during execution. Instead, it exploits the larger

flash memory in order to enable the deployment and execution

of bigger classifiers. In other words, we propose to sacrifice

flash memory in favor of the limited SRAM since it is the

scarcest resource in the majority of MCUs. The proposed

SRAM optimized method, hard codes the DT splits in C,

without storing any reference of the splits and other DTs

related parameters/values into variables. Since our method

does not allocate any variables, 0 bytes of SRAM will be

consumed to execute the C version of the ported classifier to

produce inference results.

When using the proposed method, the flash memory con-

sumption will grow almost linearly with the increasing number

of splits in DTs. This limitation cannot be addressed since

there is no better alternative to store the hard-coded splits.

Storing on SRAM is not feasible since the limited available

memory restricts executing large-high-quality models, and the

majority of MCUs do not have EEPROM to store the models.

Although the external I2C peripheral-based EEPROM can be

interfaced with MCUs, the model’s code stored in such external

NAND type flash memory, during the MCU power-up, gets

copied to the internal SRAM from which the MCUs execute

models. Again this approach leads to an SRAM overflow

during runtime. Even in such SRAM-constrained cases, our

method is well-suited to execute larger models since we do

not store any model-related variables on SRAM. Also, since

most of the new generation MCU boards like the ESP32 and

ESP01s etc. have at least 1 MB of flash, which is sufficient for

the proposed method to store and execute large DTs containing

tens of thousands of splits.

2) SRAM Optimized Porting of Random Forests: RFs are

based on the concept of wisdom of the crowd, where many

DTs are combined via voting. Since RFs depend on trees, our

core method explained above which efficiently ports the DTs,

can in turn result in efficiently porting many other tree-based

methods like RFs and XGBoost. Hence, the SRAM optimized

method that produces 0 bytes consuming C classifiers applies

to all algorithms that depend on trees to produce inference

results. For example, it hard codes all composing trees of

an RF classifier. But since the class votes have to be stored

(proposing or implementing alternatives for class votes will

result in altering the standard classifier versions), our method

consumes a few bytes of memory for this purpose, which is

negligible. Thus explained SRAM optimized porting of ML

classifiers to plain C is summarised in Algorithm 1.

B. Executing Classifiers on IoT Devices

The IoT application executed by MCUs receives the input

data in different formats such as sensor readings, voice signals,

and image frames. When users intend to improve their device’s

intelligence, we recommend them to train a high-quality ML

model that can produce inference results based on the data

seen by their edge devices, then port that model to C code

using the method from previous subsection. In this section,

we first describe the structure of the generated C code. Then

we explain how to stitch the C code with the IoT application

and perform inference whenever required by the user or the

IoT edge application.

To obtain prediction results using the SRAM optimized

method, no dependencies or shared libraries are required to be

added in the file system along with the C code of the model.

In the proposed execution method, just the .h file needs to be

compiled along with the user’s main IoT edge application and

flashed via any MCU-supported software such as Arduino IDE,

Atmel Studio, Keil MDK, etc. The interior of the .h model

file generated using the proposed method contains the C code

of the user trained model. Here, during the programming or

edge application design phase, the users have to just include

the generated .h model as a header file at the beginning of

their program. Inside any of the model files generated using

our method, we provide a function named predict, to which the

main program can pass the values for which it needs predictions.

When predict is called, the MCU starts to execute the model

using its default available C compiler (without requiring any

dependencies or external libraries) as a subroutine, without
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TABLE I
DATASETS, HARDWARE CHOSEN TO EVALUATE THE SRAM OPTIMIZED APPROACH.

Name: feature dimension, class counts
Iris Flowers [48]: 4, 3 Banknote Auth [49]: 5, 2

Datasets Heart Disease [50]: 13, 2 Haberman’s Survival [51]: 3, 2
Breast Cancer [52]: 30, 2 Titanic [53]: 11, 2

MNIST Digits [54]: 64, 10
MCU# Name Specs: flash, SRAM, clock

1 ATmega328P, Arduino Nano 32kB, 8kB, 16MHz
2 nRF52840, Adafruit Feather 1MB, 256kB, 64MHz
3 STM32f10, Blue Pill 128kB, 20kB, 72MHz
4 Generic ESP32 4MB, 520kB, 240MHz

MCU boards 5 ATSAMD21, Adafruit Metro 256kB, 32kB, 48MHz
6 ATmega2560, Arduino Mega 256kB, 8kB, 16MHz
7 ESP-01S, ESP8266 1MB, 32kB, 80MHz

CPU# Name Basic specs
1 Laptop Intel Core i7, W10, 1.9GHz
2 NVIDIA Jetson Nano Ubuntu,128-core GPU, 1.4GHz

CPU devices 3 Laptop Intel Core i5, W10, 1.6GHz
4 Laptop Intel Core i7, Ubuntu, 2.4GHz
5 Raspberry Pi 4 ARM Cortex-A72, Raspbian, 2.4GHz

disturbing the device’s main routine, which is handled by the

main IoT edge application. Thus explained model execution

method on MCUs is summarised in Algorithm 2.

V. EXPERIMENTAL EVALUATION

To justify claims of the SRAM optimized approach, exten-

sive experimental evaluations are performed using standard

datasets and popular MCUs that are the brain of billions of

resource-constrained IoT devices (TinyML hardware).

A. Devices, Datasets and Experiment Procedure

Table I presents the datasets and hardware (various popular

MCUs and CPUs) used for the experimental evaluation of the

SRAM optimized approach. To ensure an extensive evaluation,

we selected 7 datasets that have feature dimensions ranging

from 4 to 64 features and class counts from 2 to 10 classes.

Using these datasets, we train DT and RF classifiers on high-

resource setups using Python scikit-learn (we perform an 80/20

training/testing split for each dataset). Then, as explained in

Section IV, we port it to C, stitch it with an IoT application,

finally deploy and execute on MCUs 1-7, whose specifications

are given in Table I. In the experiments, the ported classifier,

the .h dataset file and the main program will be compiled and

flashed on the MCU’s memory using the Arduino IDE. We

selected 5 popular CPUs, whose details are given in Table I.

Similar to MCUs, we also execute the same 7 datasets trained

DT and RF classifiers (14 models) on CPUs 1-5. The inference

performance of both MCU 1-7 and CPUs 1-5 are reported in

Fig. 2. The onboard memory consumption of MCUs 1-7 are

reported in Fig. 3. For statistical validation, in both figures,

the plotted values correspond to the average of 5 runs 1. In

the upcoming subsection, analysis is performed based on the

obtained results.

1Code, experiment setting and performance report are available at
https://github.com/bharathsudharsan/ML-Classifiers-on-MCUs

B. Analyzing the Inference Performance on MCUs

Here we present the time taken by each MCU to perform

unit inference and inference for 100 samples for each of the

14 models. The onboard test for accuracy, F1 score is also

performed. The inference performance results are shown in

Fig. 2, and report the following observations:

• All the MCUs, irrespective of their specifications, for

all the datasets, performed unit inference in less than 1

millisecond.

• The resource-constrained 8-bit Atmega328P MCU1 per-

formed faster unit inference than the NVIDIA Jetson

Nano GPU and Raspberry Pi 4 CPU. This is because, to

execute ML models, the better-resourced devices depend

on ML frameworks like TensorFlow Lite, which creates

computational overheads. But such devices perform infer-

ence for 100 samples at much higher speeds than MCUs

because, after initializing the framework, there are no

significant overheads, and the advantage of multi-core,

multi-thread processors running at high clock speed are

utilized efficiently.

• During execution on MCUs, the ported models show

the same level of accuracy and F1 score as its original

models (before porting) when evaluated on high-resource

lab setups.

• For datasets with low features count like Haberman’s

Survival, Iris Flowers, Titanic, and Heart Disease, the

ESP32 (MCU 4) produces faster inference results for 100

samples than CPU class devices. For the largest 64-feature

Digits dataset, the 3 $ ESP32 inferred for 100 samples

in 7 ms, which is only ≈ 5 ms slower than CPUs 3 &

4, which are 200 times more costly than MCUs. During

the experiment, we noticed that loading the models and

datasets from .h files is much faster than loading from

.csv files, using libraries like Pandas and NumPy.
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Fig. 2. Experiment results: Comparing time consumed by MCUs 1-7 (uses SRAM optimized approach) and CPUs 1-5 (uses Python scikit-learn) when
performing inference for datasets of various features dimensions (3-64), class counts (1-10).

• From the subfigure titled Features count vs inference time

in Fig. 2, we can observe that using high-feature data as

input has only a few ms of impact on the unit inference

time. Whereas for 100 input samples, the slower MCUs

1,5 & 6 show a logarithmic growth in inference time, the

fast MCUs 2, 3, 4 & 7 show time growth only for the

Cancer and Digits dataset.

It is apparent from the observations that the SRAM op-

timized method produces ultra-fast classification results on

MCUs. Thus, even the autonomous tiny IoT devices can

efficiently control real-world IoT applications by making timely

predictions/decisions. Also, we report the ported ML classifiers,

during execution, preserved model accuracy. This is because,

unlike existing methods, the SRAM optimized approach does

not perform pruning, sparsification, compression, or alter any

properties and parameters of the high-resource ML framework

trained classifiers. When users perform the same experiments

or deploy their IoT use case models on advanced MCUs or

Artificial Intelligence of Things (AIoT) boards like Sipeed

MAIX Bit, M5 StickV, Sipeed Maix Amigo, they will obtain

even faster inference results due to the onboard FPU, KPU,

and FFT support.

C. Analyzing SRAM Consumption

In the same experimental setup, we execute the 7 datasets

trained DT, RF classifiers (14 models) on MCUs 1-7, then

report the Flash, SRAM consumption in Fig. 3, (y-axis in

base-10 log scale) and report the following observations:

• It is apparent that all the DT and RF classifiers ported us-

ing the proposed method are of varied sizes (varying Flash

consumption) but have constant SRAM consumption. For

example, the RF classifier trained using the largest Digits

dataset (64 features and 10 classes) has the largest model

size after porting (so it occupies more Flash memory).

But it consumes the same amount of SRAM as other

classifiers produced by training using smaller datasets

like Iris Flowers (4 features and 3 classes). Thus, our
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Fig. 3. Experiment results: Memory consumed by MCUs to execute various datasets trained DT and RF classifiers. As shown, SRAM optimized approach
ported classifiers have varying Flash usage but constant SRAM usage.

SRAM optimized method is a promising way/method to

fit and execute large models on MCU-based IoT devices.

• The MCU 7 has ≈ 31 times more Flash memory than

the available 8 kB SRAM (see Table I). Similarly, other

IoT hardware also has a significantly larger Flash than

the SRAM in its Flash to SRAM ratio. Our approach is

best suited for such scenarios since it does not store any

model-related parameters/values in variables, so the ported

models do not consume SRAM. Instead, it sacrifices the

larger Flash memory in favor of the limited SRAM.

• Although a constant SRAM consumption was achieved,

in MCU1, we faced a memory overflow issue since the

model size was greater than the available Flash memory.

Similarly, the Flash is almost full in MCU6. In such cases,

we need to reduce the maximum tree depth during the

model design phase and then perform porting.

The above results show that the proposed SRAM optimized

method is applicable for a broad spectrum of various datasets

trained ML classifiers. Also, the ported models are compatible

to be executed on billions of TinyML hardware like resource-

constrained embedded systems, IoT devices that have small

CPUs and MCUs as their brain.

D. Comparison with Existing Libraries
As described in Section II-C, the emlearn [29], sklearn-porter

[31], m2cgen [30] are popular C code generation libraries. To

successfully, without errors, compile models generated by

these libraries, we had to perform manual fine-tuning of their

ported C code, which usually spans thousands of lines in the

case of large models. This, demands time and a high level of

debugging skills from the developer. As shown in Fig. 4, even

after fine-tuning, many classifiers crashed. Few faced memory

overflow issues when the Arduino IDE compiled the C code

of the classifiers ported using these libraries for the target

MCUs. Next, we also had to alter the data types of the input

data according to the requirement from the ported model that

performs inference, which affects the precision, thus resulting
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Fig. 4. Comparing inference time for 100 samples: Speedups achieved when
porting and executing models on MCUs using SRAM optimized approach.

in less accurate classifications. We found the emlearn to be the

most optimized library for MCUs, but still, to execute Tree-

based models require an eml_trees.h file that consumes

additional memory which is already at the peak utilization. We

faced more SRAM overflow issues when using sklearn-porter

since it declares all the model parameters like support vectors

as variables that consume more memory. For example, when

using the Breast Cancer dataset, it produced a 57 x 30 matrix

of double data type, resulting in consuming 6.9 kB just to store

the support vectors. To alleviate such issues, in Sections IV, we

presented our SRAM optimized approach. When users realize

this method to port trained classifiers, the generated C code

will be stored in a .h file as shown in Fig. 1, and can readily

execute on all the Arduino IDE supported MCU boards without

requiring any fine-tuning or datatype conversions. Since the

SRAM optimized method aims to simplify the deployment and

execution of models on MCUs, the generated C code contains

just one function to which the IoT application needs to send

the data for which it requires classification results.

In Fig. 4, we compare the inference performance (for 100

data samples) of the models ported using the SRAM optimized

method with the performance of the same models ported using

m2cgen, sklearn-porter, and emlearn libraries. We report that

the models ported and executed using the SRAM optimized

method can infer 1-4 x faster. The highly resource-constrained

MCUs 1 & 7 benefited the most since they achieved higher

inference speedups than other boards.

VI. CONCLUSION

In this paper, an SRAM-optimized ML classifier porting,

stitching, and efficient execution approach is presented. When

researchers and developers apply this method to port and

execute any use-case ML models on their IoT devices/products,

similar to the experiment results, they can; (i) deploy and

execute large problem-solving ML classifiers on low-cost, low-

power MCU-based IoT devices that have only a few kB of

SRAM; (ii) make even the small MCUs perform ultra-fast

classifications (1-4x times faster than state-of-the-art libraries).

In the future, we plan to run an integrity test (to ensure model

quality preservation after porting) on the presented method

and all its supported classifiers before packaging the code and

releasing it as an open-source library.
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