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A B S T R A C T   

In this paper, we investigate the post-buckling development of instability-induced patterns in soft particulate 
composites. Upon reaching the critical strain level, the composite experiences microstructural buckling. Inter-
estingly, in the post-buckling regime, the initial buckling mode may evolve into different new patterns. These 
transformations are governed by the initial microstructure parameters. In particular, depending on the initial 
distance between the columns of inclusions, the initial instabilities may develop into (i) inclusion chains with a 
zigzag or wavy shapes, (ii) a combination of inclusion sets in different length scales, (iii) seemingly disordered 
inclusion sets, (iv) and structures with strictly doubled periodicity. The different post-buckling patterns are 
further characterized via the discrete Fourier transform (DFT) analysis. Our results also show that the initially 
formed post-buckling patterns can further evolve into rather complex new shapes beyond a simple amplification 
in deformation.   

1. Introduction 

Elastic instabilities can induce dramatic microstructure trans-
formations in soft composites at various length scales. Such trans-
formations can enable the design of materials with tunable and 
switchable properties such as tunable bandgaps[29,46,48,54,21,44], 
negative group velocity states[51,2], and negative Poisson’s ratio and 
auxetic behavior[6,8,25,26,28,40]. 

The instability analysis has frequently employed the framework of 
small deformations superimposed on the finitely deformed state[42]. 
The onset of macroscopic or longwave instabilities can be identified 
through the loss of ellipticity analysis. In composite materials, the loss of 
ellipticity analysis requires evaluations of the tensor of elastic moduli, 
which can be calculated through numerical[7,19,18,17,44,11,5,39] or 
analytical[47] homogenization approaches. Alternatively, the loss of the 
ellipticity condition can be determined directly through phenomeno-
logical models[35–38,33–34,4,13,53,43]. However, the onset of the so- 
called microscopic instabilities, which develops at finite wavelengths, 
may precede the occurrence of longwave instabilities[16]. To predict 
the onset of microscopic instabilities and to determine the critical level 
of deformation and wavelength, the Bloch-Floquet analysis is typically 
employed[16,52,6,50]. Note that the longwave limit in the Bloch- 

Floquet analysis is equivalent to the loss of ellipticity condition[16]. 
These methods have been effectively applied in the theoretical pre-

diction of instabilities in various soft systems and have also been realized 
via experimental investigations. For fiber composites (FCs), Galich et al. 
[15] examined the influence of the periodic fiber distribution on in-
stabilities and shear wave propagation in 3D fiber composites. Rudykh & 
Debotton [47] employed micromechanics-based homogenization to 
predict the macroscopic instabilities in transversely isotropic fiber 
composites. Li et al. [27] experimentally observed the transition of 
elastic instabilities in 3D-printed fiber composites from small wave-
length wavy patterns to longwave modes. Through both simulations and 
experiments, Arora et al. [3] examined the influence of constituent 
material properties on buckling orientation in fiber composites. 

Li et al. [31] observed in experiments the microscopic and macro-
scopic instabilities in 3D-printed layered materials. Arora et al. [1] 
considered the inhomogeneous interphases in 3D-printed soft laminates 
and examined their influence on composite stability. Slesarenko and 
Rudykh [49] utilized the visco-hyperelastic behavior [55,56]) to ach-
ieve tunable wavy patterns through variable strain rates. Li et al. [29] 
analyzed the elastic instability in compressible laminates, where the 
stabilizing effect of phase compressibility was reported. Li et al. [30] 
experimentally observed the formation of twinning microstructures in 
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soft laminates driven by instabilities. 
For particulate composites, Triantafyllidis et al. [52] studied the 

microscopic or macroscopic instabilities in particulate composites with 
circular inclusions under combined in-plane loadings. The re- 
examination of this problem under similar combined in-plane loadings 
was conducted by Michel et al. [41], which compared the macroscopic 
stability of the composite with a random distribution of circular or 
elliptical inclusions. Li et al. [24] experimentally observed the formation 
of wavy chain patterns in soft particulate composites. Goshkoderia et al. 
[20] reported that the pattern formation in soft particulate composites 
could be controlled via magnetic fields. Recently, Chen et al. [10] 
employed the Bloch-Floquet analysis to examine the influence of in-
clusion distributions on instability characteristics in soft particulate 
composites, including the critical strain and wavelength. We note that 
the Bloch-Floquet analysis and the alternatives, such as the refined 
eigenvalue analysis [6], are linearized methods. The post-buckling 
analysis considers the nonlinearity in the post-buckling development, 
thus, providing additional information (potentially more accurate) 
about the development of instability patterns under large deformations. 

2. Theoretical background 

Consider a continuum body, where each point is identified with its 
position vector X in the reference (or undeformed) and x in the current 
(or deformed) configurations. The corresponding mapping function is 
x = χ(X, t), where t denotes the time. The deformation gradient is 
defined as F = ∂x/∂X, and its determinant is J ≡ det F > 0. Consider a 
hyperelastic material with a strain energy density function, W(F), so 
that the first Piola-Kirchhoff stress tensor is 

P =
∂W(F)

∂F
. (1) 

For an incompressible material, J = 1, Eq. (1) modifies as 

P =
∂W(F)

∂F
− pF− T , (2) 

where p is an unknown Lagrange multiplier. 
The relationship between the Cauchy stress tensor (σ) and the first 

Piola-Kirchhoff stress can be expressed as σ = J− 1PFT. In the absence of 
body forces, the equations of motion for quasi-static deformation can be 
written in the undeformed configuration as 

DivP = 0. (3) 

The analysis of the onset of instability and the post-buckling devel-
opment is implemented numerically in the finite element code, as dis-
cussed in the next section. 

3. Numerical simulation 

In the numerical simulation, we consider a 2D periodic particulate 
composite consisting of a rectangular primitive unit cell with a single 
circular stiff inclusion located at its center (as illustrated in Fig. 1). The 
dimensions of the primitive unit cell are defined by its width a and 
length b. The geometry of the unit cell can be fully determined using two 
parameters: the periodicity aspect ratio η = a/b and the inclusion 
spacing ratio ξ = d/b, where d represents the diameter of the inclusion. 
The numerical analysis has been implemented in the finite element code 
in COMSOL Multiphysics 6.0. 

To perform the post-buckling analysis, we construct a representative 
volume element (RVE) [6]with a large number (N = 80) of unit cells. The 
RVE is enclosed by four boundaries (AB, CD, AC, and BD), defined by 
nodes A, B, C, and D. We apply uniaxial compression quasi-statically via 
periodic boundary conditions imposed on the boundary pair AB − CD 
and AC − BD as 

usrc − udst = (F − I)
(
X|src − X|dst

)
= H

(
X|src − X|dst

)
, (4) 

where usrc and udst represent the displacement of an arbitrary pair of 
points periodically located on the source and destination boundary of the 
boundary pair, respectively; F denotes the average deformation 
gradient, I denotes the identity tensor and H = F − I denotes the average 
displacement gradient. We apply the in-plane unidirectional compres-
sion to the RVE in the direction of e2 via the displacement gradient 
defined as 

H = (λ1 − 1)e1 ⊗ e1 + (λ2 − 1)e2 ⊗ e2, (5) 

where λ1 and λ2 are the principal stretch ratios in the direction of e1 

and e2, respectively. The compressive loading level is prescribed via the 
average compressive strain ε = 1 − λ2. λ1 is defined via λ1λ2 = 1 ac-
cording to the incompressibility of materials. In the post-buckling 
analysis, geometrical imperfections are introduced in terms of a small 
alternation of the shape and position of the stiff inclusions (the details 
are provided in Appendix C). 

The stiff inclusion and soft matrix materials are described by the 
hyperelastic models with nearly incompressible neo-Hookean strain 
energy density function, namely, 

W(r) =
μ(r)

2
(I1 − 3) +

κ(r)

2
(J − 1)2

, (6) 

where μ(r) is the initial shear modulus, κ(r) is the bulk modulus, and 
I1 = trC is the first invariant of the right Cauchy-Green tensor C = FTF. 
The superscript (r) indicates the properties of different material phases; 
for example, (r) = (i) denotes the stiff inclusion phases, and (r) = (m)

denotes the soft matrix phases. We introduce the ratio Λ = κ(r)/μ(r) rep-
resenting the material compressibility, and assign a high ratio, Λ = 103,

to maintain a nearly incompressible behavior of the materials. We select 
the inclusion-to-matrix ratio of shear moduli μ(i)/μ(m) = 103. Therefore, 
stiff inclusions barely deform, and the deformation is mostly accom-
modated by the soft matrix. 

4. Results and analysis 

4.1. Analysis of post-buckling development 

This section presents the post-buckling numerical calculation results 
and analysis. We start with an example of the particulate composite with 

Fig. 1. Schematic composite microstructure with stiff circular inclusions peri-
odically distributed in soft matrices. 
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the spacing ratio ξ = 0.6 and periodicity aspect ratio η = 2.1. Fig. 2a 
shows the corresponding initial RVE at ε = 0. For a more compact 
illustration, only 40-unit cells of the RVE are displayed here and 
thereafter. We observe that the composite material maintains a straight 
column of inclusions until a critical strain level of εcr = 0.233 is reached. 
At this point the inclusion column experiences a sudden collapse and 
transforms into a wavy chain of inclusions. This can be observed in the 
deformed RVE shown in Fig. 2a, corresponding to ε = 0.253. 

The onset of instability is identified by detecting the initialization of 
the inclusion column collapse. Specifically, the relative horizontal 
displacement between adjacent inclusions is monitored, and once it 
exceeds a small threshold value, the critical strain is identified (the 
detailed procedure is described in Appendix A). The corresponding 
critical strain identified through the post-buckling analysis is εcr = 0.233 
(for the composite with ξ = 0.6 and η = 2.1); this value is in good 
agreement with the prediction of the Bloch-Floquet analysis, namely, 
εcr = 0.2338 [10]. In experiments, Li et al. [24] also observed the for-
mation of the “wavy chain” pattern of inclusions. This pattern trans-
formation, induced by elastic instabilities, is a result of the breaking of 
the composite’s initial periodicity, characterized by the initial wave-
length L0 = b, and the emergence of a new periodicity, characterized by 
the critical wavelength Lcr = [kcr]

− 1b, where kcr is the normalized critical 
wavenumber and lcr = [kcr]

− 1 is the corresponding normalized critical 
wavelength. For simplicity, in this study, we illustrate the results in 
terms of the normalized critical values, such as kcr and lcr, and refer to 
them as the critical wavenumber and critical strain, respectively. It is 

worth noting that the critical wavelength Lcr also represents the height 
of the smallest repeating unit of the post-buckling configuration, 
referred to as the “enlarged primitive cell” [10,6]. Let us examine the 
instability-induced pattern in the composite in the post-buckling regime, 
in particular, at a strain level exceeding the critical value, namely, ε =

0.253. First, repeating blocks of seven inclusions may be observed; that 
would correspond to the critical wavelength of lcr ≈ 7. However, a 
further inspection of the distribution of inclusions shows that the posi-
tion (phase) of the corresponding inclusion within different blocks is 
slightly shifted. For example, the fourth inclusion (from the left) in 
blocks (3) and (4) shifts slightly downward in comparison to that in 
blocks (1) and (2). This deviation stems from the fact that the critical 
wavelength of the instability mode does not correspond to an integer 
number of initial primitive cells. In particular, according to our Bloch- 
Floquet analysis, the critical wavelength of this numerical case is pre-
dicted to be lcr ≈ 6.89. Therefore, in the post-buckling regime, the 
composite is unable to form a strictly periodic structure matching by 
critical wavelength, and is then forced to adapt a configuration with an 
integer wavelength lcr = 7. This forced adaption, however, results in a 
somewhat frustrated distribution of inclusions and thus leads to the 
mismatch of inclusion centers in different inclusion blocks. This frus-
tration brings about serious difficulty (sometimes makes it nearly 
impossible) in determining the actual size of the enlarged primitive cell. 
Therefore, a substitute method that circumvents this effect of the in-
clusion needs to be employed for the correct identification of the critical 
wavenumber. In our study, we introduced a standard post-processing 

Fig. 2. (a) The deformation sequence under compressive strain level ε = 0, 0.233, and 0.253; initial geometric parameters are ξ = 0.6 and η = 2.1; (b) The position 
of inclusion centers in the deformed RVE. 
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method that characterizes the post-buckling structure obtained from 
FEA and then identifies the corresponding critical wavenumber. In the 
post-processing analysis, we track the position displacement of the in-
clusion centers, as the inclusion wavy chain is formed and developed in 
the post-buckling regime. This procedure is illustrated by a representa-
tion of the discrete wavy curve (connecting the centers of the stiff in-
clusions) in Fig. 2(b). The inclusion center connection curve is built by 
considering the horizontal displacement of the inclusion centers (in e1 
direction); the deformations of the stiff inclusions are neglected. Next, 
we apply a discrete Fourier transformation (DFT) on the obtained in-
clusion center point curve to find its wavenumber components. Given a 
discrete curve defined by the position of inclusions, namely, {xn} := x1,

x2, x3⋯, xN in e1 direction, the DFT utilizes a set of discrete harmonic 
curves based on the fundamental wavenumber 1/N to reassemble the 
discrete curve {xn}, where N is the number of inclusions in the RVE, and 
the corresponding wavenumber of the K th harmonic curve is K/N. 
Through the discrete Fourier transformation, we obtain the dependence 
of the Fourier coefficient fK on the corresponding component wave-
number k = K/N by solving the linear equation system 

xn =
∑N− 1

K=0
fK • ei2πK

N n. (7) 

Finally, the DFT result is represented as a wavenumber spectrum 
fK = F(k), where fK is Fourier coefficient and k is the component 
wavenumber (k = 1/N, 2/N, …, (N − 1)/N, 1). 

Next, we illustrate the results of the DFT analysis in Fig. 3, showing 
the dependence of the Fourier coefficient f on component wavenumber 
k = 0.0125, 0.025, … 0.4875 and 0.5, for fixed compressive strain levels 
(from 0.23 to 0.24). We observe that, below the critical strain level εcr =

0.2338, the composite maintains a straight column of inclusions, and 
correspondingly, we observe that all component wavenumbers are 
characterized by nearly zero Fourier coefficients. For example, in the 
green curve with circular markers corresponding to ε = 0.233 in Fig. 3, 
we observe a straight chain of inclusions in the composite; the corre-
sponding DFT result is a horizontal line at zero values. However, after 
reaching the critical strain level (εcr = 0.2338), the inclusion column 

suddenly collapses and transforms into a wavy chain. Correspondingly, a 
peak of the Fourier coefficient emerges at k = 0.145. This is illustrated 
by the yellow curve with square markers corresponding to ε = 0.235 in 
Fig. 3. We observe a peak in the curve at k = 0.145 as the corresponding 
post-buckling pattern develops a wavy chain. Next, with an increase in 
the compressive strain level, the post-buckling deformation develops 
further, and the amplitude of the wavy-chain pattern increases. Corre-
spondingly, we observe that the peak Fourier coefficient (at k = 0.145) 
becomes more prominent. This is also reflected in the increase in the 
amplitude of the wavy-chain pattern (see, for example, the DFT results 
corresponding to the compressive strain increased from ε = 0.2339 to 
ε = 0.24). The peak point in DFT results corresponds to a component 
harmonic curve that dominates the post-buckling wavy chain pattern, 
and the corresponding wavenumber of this peak point (kcr = 0.145) is 
then identified as the critical wavenumber. This identification method 
may be applied for post-buckling analysis of particulate composites to 
identify the critical wavenumber, including the scenario with the frus-
trating distribution of inclusions (without identifying the enlarged 
primitive cell). We note that the precision of the DFT analysis depends 
on the number of component wavenumbers scanned, which is also 
identical to the number of unit cells built in the RVE. Increasing the 
number of unit cells in the RVE can improve the accuracy of the 
wavenumber identification process. Our numerical results indicate that 
80 unit cells are sufficient for obtaining the critical wavenumber accu-
rately. The corresponding comparison of the DFT results obtained with 
different numbers of unit cells (from 20 to 200) in the RVE is given in 
Appendix B. 

4.2. Transition of post-buckling patterns with periodicity aspect ratios 

We start by examining the post-buckling development with various 
initial geometrical parameters of the periodic microstructure. Specif-
ically, the periodicity aspect and spacing ratios are altered by modifying 
the width of the unit cell and the diameter of the inclusion, respectively, 
while the height of the unit cell keeps constant. First, we examine the 
composites with a high spacing ratio ξ = 0.8 (the inclusions are placed 
relatively close in the direction of compression) and various periodicity 

Fig. 3. The DFT analysis results of the post-buckling development for the composite with spacing ratio ξ = 0.6 and periodicity aspect ratio η = 2.1 at compressive 
strain ε = 0.233, ε = 0.2339, ε = 0.234, ε = 0.235, ε = 0.237, and ε = 0.24 with N = 80 number of unit cells built in the RVE. 
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aspect ratios. In the upper part of Fig. 4, the red curve shows the 
dependence of the critical wavenumber kcr on the periodicity aspect 
ratio η predicted by Bloch-Floquet analysis (from η = 2.5 to η = 8.0) for 
the fixed spacing ratio ξ = 0.8. The corresponding DFT analysis results 
of the post-buckling pattern are overlayed on the curve plot for the 
composites with periodicity aspect ratio η = 2.7, 3.0, 3.25, 3.5, 4.0, 4.75, 
6.0, and 7.5, where the vertical axis is the wavenumber, and the hori-
zontal value is the corresponding Fourier coefficient. The lower part of 
Fig. 4 includes the corresponding post-buckling patterns, showing in-
clusion center positions at higher strain levels (after the onset of insta-
bility). The criterion for selecting these strain levels is based on the 
relative displacement of the inclusion centers; specifically, the post- 
buckling structures attain the same value of the so-called average 
amount of shear. Appendix A describes the details of how this criterion is 
defined and applied. 

In Fig. 4, we included the Bloch-Floquet prediction of kcr (red curve); 
the Bloch-Floquet curve starts with the longwave instability (kcr→0) and 
transits to a microscopic instability (kcr> 0) as the periodicity aspect 
ratio increases (corresponding to the inclusion columns placed farther 
away from each other) beyond a threshold value ηth ≈ 2.95. For the 
corresponding post-buckling patterns, we observe a single period of the 
zigzag chain pattern for every longwave instability mode (see, for 
example, the pattern in the lower part of Fig. 4 corresponding to η =

2.7), with the DFT analysis identifying a single peak of Fourier coeffi-
cient at kcr = 0.0125 (corresponding to the critical wavelength lcr = 80, 

the height of the entire RVE). This is a result of the buckling wavelength 
being significantly larger than the characteristic size of the microstruc-
ture. Specifically, when a finite-sized RVE is used, only a single period of 
pattern with a critical wavelength corresponding to the height of the 
RVE will be observed in the cases of longwave instabilities; the peak of 
the DFT result will be found at the smallest wavenumber scanned, 
namely, the fundamental wavenumber k = 1/N. Similarly, if a larger 
number of unit cells in the RVE is used (for example, 200 cells), the 
critical wavelength will increase to lcr = 200 and the corresponding 
critical wavenumber shifts down to k = 1/200. 

For the microscopic instability modes (kcr > 0), the corresponding 
critical wavelength is smaller than the height of RVE; hence, the wavy 
chain pattern emerges in the post-buckling regime. For example, for the 
patterns corresponding to η = 3.0, and η = 3.25 in the lower part of 
Fig. 4, the inclusion centers are observed in overall wavy distribution. 
The corresponding DFT results show a single peak emerging after the 
onset of instability, and the corresponding wavenumber values are close 
to those predicted via the Bloch-Floquet analysis. For instance, in the 
DFT result corresponding to η = 3.0 (in the upper part of Fig. 4), we 
observe a single peak of the Fourier coefficient at the wavenumber k =

0.075, and the corresponding Bloch-Floquet analysis prediction is kcr =

0.077. 
Next, we examine the post-buckling development in the composite 

with a relatively low spacing ratio ξ = 0.3 (the inclusions are placed 
relatively far away in the direction of compression) for various period-

Fig. 4. Post-buckling patterns and the corresponding DFT results with fixed spacing ratio ξ = 0.8 and various periodicity aspect ratios (compared with the critical 
wavenumber predicted from the Bloch-Floquet analysis). 

D. Chen et al.                                                                                                                                                                                                                                    



Composite Structures 322 (2023) 117337

6

icity aspect ratios. In the upper part of Fig. 5, the Bloch-Floquet curve 
shows the dependence of the critical wavenumber kcr on the periodicity 
aspect ratio η for a fixed inclusion spacing ratio ξ = 0.3. The corre-
sponding DFT results of the post-buckling pattern are also overlayed on 
the curve for the composite with periodicity aspect ratios η = 0.8, 0.9, 
1.0, 1.04, 1.06, 1.1, 1.2, and 1.3. The lower part of Fig. 5 shows the 
corresponding post-buckling patterns. For this composite configuration, 
the Bloch-Floquet predicts the critical wavenumber with only binary 
values, namely, either kcr→0 or kcr = 0.5. The wavenumber starts with 
kcr→0 in the initial ranges of the periodicity aspect ratio, and it jumps 
from kcr→0 to kcr→0.5 after a threshold value ηth ≈ 1.05, without any 
intermediate wavenumber during the transition. In the post-buckling 
analysis, the zigzag chain pattern for the longwave instability mode 
develops (see, for example, the pattern in the lower part of Fig. 5 cor-
responding to η = 1.0), with single peak of Fourier coefficient at kcr =

0.0125 in the DFT analysis. For the microscopic instability mode with 
kcr = 0.5, the initial periodicity doubles (exactly) upon buckling, and we 
observe a repeating two-inclusion period in the post-buckling pattern, 
namely, the periodicity-doubling pattern (see, for example, the patterns 
in the lower part of Fig. 5 corresponding to η = 1.2). The DFT analysis 
also shows a single peak of the Fourier coefficient at the wavenumber 
k = 0.5, corresponding to the critical wavelength lcr = 2. In our nu-
merical results, only the “zigzag chain” and the periodicity doubling 
patterns were found for composites with ξ = 0.3. This binary result 

holds true even in cases that are close to the threshold value of 
ηth ≈ 1.05. For example, as shown in the lower part of Fig. 5, the post- 
buckling patterns for η = 1.04 and η = 1.06 exhibit zigzag chain and 
periodicity doubling patterns, correspondingly; no wavy chain patterns 
are observed. 

Finally, we examine the post-buckling development of the composite 
with a moderate spacing ratio, namely, ξ = 0.45 and various periodicity 
aspect ratios. These composite configurations are characterized by a full 
evolution of critical wavenumber from the longwave (kcr→0) to the 
periodicity-doubling mode (kcr = 0.5) with an increase in the periodicity 
aspect ratio (corresponding to an increasing distance between inclusion 
columns). This is illustrated by the red curve in the upper part of Fig. 6, 
showing the dependence of (the Bloch-Floquet predicted) critical 
wavenumber kcr on the periodicity aspect ratio η for fixed inclusion 
spacing ratio ξ = 0.45. The lower part of the figure shows the corre-
sponding post-buckling patterns. In the lower part of Fig. 6, we observe 
an overall transition of the post-buckling patterns from a zigzag chain 
(for example, the pattern corresponding to η < 1.46) to the periodicity 
doubling pattern (for example, the pattern corresponding to η > 2.18). 
During the transition range (from η = 1.46 to η = 2.18), the post- 
buckling development starts with the wavy chain pattern correspond-
ing to a relatively small critical wavenumber (see, for example, the cases 
corresponding to kcr = 1.5 and kcr = 1.6 in Fig. 6). However, as the 
critical wavenumber increases beyond kcr ≈ 0.25, we observe a 

Fig. 5. Post-buckling patterns and the corresponding DFT results with fixed spacing ratio ξ = 0.3 and various periodicity aspect ratios (in comparison with the 
critical wavenumber predicted from Bloch-Floquet analysis). 
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significant change in the post-buckling shapes (see the patterns corre-
sponding to η = 1.7 and η = 1.8 in Fig. 6). These patterns exhibit a su-
perposition of two modes with different wavelengths. This is also 
identified in the corresponding DFT analysis results. In particular, we 
observe that the post-buckling pattern corresponding to η = 1.7 in Fig. 6 
is not a typical wavy chain, but is composed of wavelets of small length 
scales (see the blue inclusion chains) enveloped in longer waves (see the 
red envelope curves). Correspondingly, we observe two peaks emerging 
in the DFT result after the onset of instability. The first peak locates at 
k = 0.0625 (representing the wavenumber of the envelope waves in 
large length scales), and the second peak locates at k = 0.3125 (repre-
senting the wavenumber of the wavelets in small length scales). 
Compared with the Bloch-Floquet prediction, kcr = 0.31, the second 
peak in the post-buckling DFT analysis (k = 0.3125) represents the 
initial instability mode, and the first peak (k = 0.0625) represents an 
inclusion set in large length scales combined with the initial one for 
adaption of the composite configuration as the initial instability mode 
does not correspond to an integer number of initial primitive cells. 

A further increase in the periodicity aspect ratio (see the pattern 
corresponding to η = 1.9 in Fig. 6) leads to the formation of seemingly 
disordered and lacking periodicity microstructures in the post-buckling 
regime. In the DFT results, a single peak is observed at k = 0.4125. 
However, this wavenumber is found to be larger than the prediction 
from the Bloch-Floquet analysis (kcr = 0.343). This discrepancy results 

from the limited number of inclusions that need to be accommodated 
(between 2 and 3, given lcr ≈ 2.91) in an enlarged primitive cell. The 
frustrated composite cannot transform into a periodic structure within 
the instability-dictated length scale, and hence, it is forced to conform 
with a combination of inclusion sets in different length scales. This 
adaptation in post-buckling development leads to the critical wave-
number diverging from its Bloch-Floquet prediction. The frustrated 
patterns, however, become more regulated as the periodicity aspect 
ratio further increases (see the pattern corresponding to η = 2.0 and η =

2.1 in Fig. 6). These composites start developing the periodicity 
doubling post-buckling structure (corresponding to a major peak at k =

0.5 in the DFT analysis) even though their critical wavenumber is not 
exactly 0.5. For example, the DFT analysis for the composite with η =

2.0 (see Fig. 6), shows the peak at k = 0.5, while the Bloch-Floquet 
prediction is kcr = 0.423. Interestingly, for those composites attaining 
the periodicity-doubling mode, a single localized defect emerges (see 
Fig. 6 corresponding to η = 2.0). The DFT analysis also detects certain 
signals near the peak at k = 0.5. For instance, the DFT result corre-
sponding to η = 2.0 in Fig. 6 detects multiple “minor signals” appears 
near the major peak at k = 0.5. These defects, however, disappear as the 
critical wavenumber is further increased. For example, the composite 
with η = 2.1 (corresponding to kcr = 0.455 in the Bloch-Floquet anal-
ysis) exhibits a perfect periodicity doubling without developing the 
defects in the post-buckling regime. Finally, after the periodicity aspect 

Fig. 6. Post-buckling patterns and the corresponding DFT results with fixed spacing ratio ξ = 0.45 and various periodicity aspect ratios (compared with the critical 
wavenumber predicted from Bloch-Floquet analysis). 
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ratio reaches η = 2.18, the post-buckling pattern does not change with a 
further increase in the periodicity aspect ratio η, and the composite 
develops the exact periodicity-doubling in the post-buckling regime. 

Next, we summarize the results of the post-buckling pattern de-
velopments as a map in the geometrical parameter space of η and ξ in 
Fig. 7. The map is divided into five sub-domains: (i) the red surface with 
diagonal strips – labeled as the “zigzag chain” – denotes the geometries 
for which longwave instabilities develop (with kcr→0), where the post 
buckling pattern is a single zigzag chain of inclusions; (ii) the blue 
surface with diagonal strips – labeled as the “periodicity doubling” – 
denotes the microscopic instabilities with constant critical wavenumber 
kcr = 0.5, and the post buckling pattern is the initial inclusion column 
being (exactly) doubled upon bifurcation; (iii) the solid pink surface – 
labeled with “Wavy chain” – denotes the microscopic instabilities with 
relatively low kcr from 0 to the vicinity of 0.25, where the post-buckling 
pattern is a “wavy chain” of inclusions; (iv) the pure purple surface – 
labeled with “Superposed” – denotes the microscopic instabilities with 
relatively high kcr from approximately 0.25 to 0.4, where the post- 
buckling pattern exhibits a superposition of wavelets (in small length 
scales) in between envelopes in large length scales; (v) the pure blue 
surface – labeled with “adapted periodicity doubling” – denotes the 
microscopic instabilities with kcr close but not equal to 0.5; these com-
posites adapt the “periodicity-doubling” post-buckling structure even 
though their critical wavenumber is not exactly 0.5. 

While the post-buckling patterns demonstrate a good agreement with 
the Bloch-Floquet predictions [10] for small critical wavenumbers 
(typically, kcr ≤ 0.5), the difference appears when the critical wave-
number increases beyond kcr = 0.25 (but not yet reached 0.5). The 
reason is that the composite configuration cannot transform into a pe-
riodic structure dedicated by the critical instability wavelength; the 
pattern is then forced to adapt a structure in nearby length scales, or a 
combination of inclusion sets in different length scales in the post- 
buckling regime. The formation of those adapted patterns necessitates 
a large enough finite deformation after the onset of instability; thus, it 
was not able to be shown in the Bloch-Floquet analysis that considers 
linearized incremental deformations (superposed upon the deformed 
state at the onset of instability). The post-buckling computations, 
together with the DFT analysis, capture those adapted post-buckling 
patterns with combined instability modes, enriching the understand-
ing of the buckling behavior of particulate composites. 

4.3. Evolution of post-buckling patterns upon further deformations 

Finally, we examine the evolution of the post-buckling development 
with deformation beyond the critical loading. Here, we are specifically 
interested in the situation when the initial buckling mode changes with 
the applied deformation. Recall that the composites that develop rela-
tively short-wave instability (lcr≲4) are characterized by the adaptation 
of a combination of inclusion sets in different length scales in the post- 
buckling regime. Interestingly, in the post-buckling regime, we find 
the composite with a critical wavenumber lower than 0.25 (which 
initially forms a wavy-chain pattern) may also transform into a “su-
perposed pattern” as the applied deformation forces the initial wavy 
buckling pattern to evolve. In Fig. 8, we illustrate this phenomenon via 
an example case for the composite with spacing ratio ξ = 0.45 and 
periodicity aspect ratio η = 1.5. The lower part of Fig. 8 shows the post- 
buckling pattern of the composite (illustrated by the inclusion center 
positions) right after the critical strain εcr = 0.338, and further after the 
buckling at ε = 0.3386, ε = 0.34 and ε = 0.348. The upper part of Fig. 8 
shows the DFT analysis results corresponding to the above four defor-
mation levels. 

After the onset of instability at εcr = 0.338, the initial straight col-
umn of inclusions collapses and then transforms into a wavy chain as the 
compression continues to increase in a relatively small range. This is 
illustrated by the pattern in Fig. 8-2 showing the configuration at ε =

0.3386; the inclusions are located on a wavy curve with seemingly 
constraint amplitudes. The corresponding DFT results show a single 
peak at kcr

I = 0.15. However, the corresponding wavelength lcrI ≈ 6.67 is 
a non-integer value (see the DFT results corresponding to Fig. 8-2). 

A further increase in the compressive strain leads to the trans-
formation of the initial wavy chain pattern into a zigzag chain pattern. 
This emerging zigzag chain pattern appears to be enveloped between 
wavy curves in large length scales corresponding to the height of 
approximately 20 unit cells (see, for example, the area enveloped by the 
red dash curves in Fig. 8-4 corresponding to ε = 0.348). Interestingly, at 
the same time, we observe that there is a second peak in the Fourier 
coefficient emerging at kcr

II = 0.05, indicating the existence of the en-
velope in large length scales. This two-peak DFT result was also observed 
in the post-buckling pattern shown in Fig. 6, corresponding to high 
wavenumbers (kcr > 0.25). However, the case shown in Fig. 8 has a 
lower wavenumber kcr

I = 0.15, and the first and second peak of the DFT 
results do not emerge simultaneously upon the onset of instability (the 
secondary peak emerges only after certain additional compression is 

Fig. 7. Post-buckling pattern mapping in the geometrical parameter space.  
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applied, while the first peak appears right after buckling). This is due to 
the fact that the initial wavy chain pattern (corresponding to the “first” 
wavenumber kcr

I = 0.15, and the “first” critical wavelength lcrI ≈ 6.67) 
does not have an integer number of inclusions in a wave period. For 
example, the inclusion blocks shown on the left of Fig. 8-3 exhibit 
seemingly incomplete wave periods with a non-integer number of in-
clusions between 5 and 6. Under relatively small increases in deforma-
tion after buckling, the inclusion chain can still maintain the overall 
wavy shape. However, as the post-buckling deformations become even 
higher, the composite can no longer maintain a non-integer number of 
inclusions in a wave period. It finally accommodates a combination of 
inclusion sets in different length scales. For example, the inclusion 
blocks shown on the right side of Fig. 8-4 have exactly 20 inclusions 
corresponding to the secondary critical wavelength lcrII ≈ 20; and in each 
inclusion block we observe three small wavelets, the average length is 
20/3 ≈ 6.67, which corresponds to the first critical wavelength 
lcrI ≈ 6.67. The results discussed above indicate that the post-buckling 
pattern continues to evolve with further deformation after its initial 
formation. Remarkably, the evolution may be rather complex beyond a 

simple amplification of the initial pattern. Specifically, the post-buckling 
pattern can evolve from a single wavy chain into distinct configurations 
characterized by a combination of inclusion sets with different length 
scales. 

5. Conclusion 

We have investigated the post-buckling development of instability- 
induced patterns in soft particulate composites. The collapse of the 
initial straight columns of inclusions in the particulate composites 
beyond the critical strain level, is followed by the formation of various 
post-buckling patterns: i) the “wavy-chain” of inclusions, ii) the “zigzag- 
chain” of inclusions, ii) the “periodicity doubling” pattern and iv) the 
“superposed” pattern (a combination of inclusion sets in different length 
scales), determined by the initial composite geometry. The onset of 
instability detected in post-buckling analysis agrees well with the critical 
strain predicted by the linearized Bloch-Floquet analysis superimposed 
on large deformation. 

For the composites with instability modes characterized by a non- 

Fig. 8. Post-buckling patterns and the corresponding DFT results for the case with spacing ratio ξ = 0.45 and periodicity aspect ratio η = 1.5 under various 
compressive strain levels (1) εcr = 0.338, (2)ε = 0.3386, (3)ε = 0.34 and (4)ε = 0.348. 
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integer number of inclusions in one wave period, the mismatch of in-
clusions in different wave periods occurs. To analyze the effect, we have 
developed a post-processing method based on the discrete Fourier 
transformation (DFT). The method is further used to characterize the 
post-buckling pattern and determine the critical wavenumber. The post- 
buckling patterns can then be quantified through the wavenumber 
spectrum obtained from the DFT analysis. In particular, the “zigzag- 
chain,” “periodicity doubling,” and “wavy-chain” patterns exhibit a 
single peak in the DFT spectrum with the fundamental wavenumber 
(k = 1/N), k = 0.5, and the intermediate wavenumber 1/N < k < 0.5, 
respectively. The “superposed pattern” exhibit double peaks emerging in 
the corresponding DFT spectrum; here, one peak corresponds to the 
critical instability mode, and the other peak corresponds to an inclusion 
set of a large length scale. The two-peak spectrum indicates the adaption 
of the post-buckling pattern, as the composites cannot transform into the 
periodic structure dictated by the critical instability mode. 

Next, we have investigated the transition of post-buckling patterns 
with respect to variations in geometric parameters. We have observed 
transitions from a “zigzag-chain” pattern to a “periodicity-doubling” 
pattern with an increase in the periodicity aspect ratio (corresponding to 
an increase in the distance between inclusion columns). In particular, 
when inclusions are initially close to each other in the direction of 
compression, the transition is binary with no intermediate patterns; 
when inclusions are far away from each other in the direction of 
compression, a transition from “zigzag-chain” to “wavy-chain” patterns 
is observed, but it never reaches the “periodicity doubling” pattern. 
When inclusions have a moderate distance from each other in the di-
rection of compression, a more diverse array of transition patterns was 
observed, including the “wavy chain” pattern corresponding to rela-
tively low kcr (from 0 to the vicinity of 0.25), the “superposed pattern” 

corresponding to a relatively high kcr (from approximately 0.25 to 0.4) 
and the adapted “periodicity-doubling” pattern corresponding to kcr 

close (but not equal) to 0.5, where the composites adapt the “period-
icity-doubling” post-buckling structure even though their critical 
wavenumber is not exactly 0.5. 

Finally, we observed that the post-buckling pattern continues to 
evolve with further deformation after its initial formation. Remarkably, 
the evolution may be rather complex beyond a simple amplification of 
the initial pattern. Specifically, we observed an evolution of the post- 
buckling pattern from a single wavy chain into distinct configurations 
characterized by a combination of inclusion sets with different length 
scales. While we detected a single post-buckling pattern evolution only, 
there may be additional modes that transform into new patterns in the 
post-buckling regime. 
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Appendix A. The average shear of the post-buckling development and the identification of critical strains 

To identify the onset of instability, a method to detect the collapse of the inclusion column is developed. It was observed that the collapse of the 
vertical inclusion column could be identified by the inclination of the inclusion chain, which can also be computed by counting relative horizontal 
displacement between neighboring inclusions. Similar to the approach used in our DFT analysis, we first measured the horizontal position of the 
inclusion centers {xk} := x1, x2, x3⋯, xN in e1 direction. Then, the so-called “average shear” γ of the inclusion chain is calculated by computing the 
slopes (absolute value) of the connection lines between centers of neighboring inclusion and averaging all slope values. Specifically, the computation 
can be written as 

γ =
1
N

1
λb

[
∑N− 1

k=1
(|xk+1 − xk| ) + |x1 − xN |

]

, (8)  

where xk denotes the position of the center of the k th inclusion (Ik) in e1 direction, and N is the total number of inclusions in the RVE (in particular, 
N = 80 in this study). When the composite is stable, the inclusion column maintains a straight alignment; thus, the “average shear” γ is equal to zero. 
However, as the inclusion column begins to collapse at the onset of instability, the “average shear” γ will be detected as a non-zero positive value. In 
this study, we set a threshold value γth = 10− 4 and identify the lowest compressive strain level that leads to γ > γth as the critical strain. 

The “average shear” is also used to quantify the development of the post-buckling deformation. Note that, this quantification is employed as it is 
independent of the critical wavenumber and is only related to the compressive strain. For example, Fig. S1 (a)-(c) illustrates post-buckling patterns 
with the same “average shear” γ but different critical wavenumbers kcr = 0.125, kcr = 0.25 and kcr = 0.5. Therefore, in sec. 4.2, the same “average 
shear” value is selected for the post-buckling patterns with different wavenumbers for comparison. This unified “average shear” is set to γ = 0.12 in our 
study, which is large enough for the post-buckling pattern formation and not so large as to reach the next stage of evolution in the post-buckling 
pattern (as discussed in sec. 4.3). 
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Fig. S1. The average shear of the post-buckling development.  

For example, Fig. S2 shows the dependence of the “average shear” γ on the compressive strain for the composite with spacing ratio ξ = 0.6 and 
periodicity aspect ratio η = 2.1. We observe that the average shear γ starts with zero and suddenly increases beyond the threshold γ = 10− 3 after ε =

0.2338. Therefore, the critical strain is identified as εcr = 0.2338. Finally, the simulation stops at ε = 0.24 while γ reaches 0.12.

Fig. S2. The dependence of the average shear γ on the compressive strain for the composite with spacing ratio ξ = 0.6 and periodicity aspect ratio η = 2.1.  

Appendix B. The influence of the number of unit cells in the RVE on the DFT analysis of post-buckling development 

In this part, we show the influence of the number of unit cells (built in the RVE) on the DFT analysis results of the post-buckling development. We 
build multiple numerical models with different numbers of unit cells in the RVE (in particular, N = 20,N = 40,N = 80,N = 120, N = 160, and N =

200). The corresponding DFT results at the compressive strain level ε = 0.237 are shown in Fig. S3, where the Fourier coefficient of each curve is 
scaled so that their Fourier peak coefficients are all equal to one. We observe that as the number of unit cells N increases, the peak point of the curve 
slightly shifts and finally converges to kcr = 0.145. A larger N can increase the precision of identifying the critical wavenumber since more wave-
numbers are scanned. The results also show that N = 80 provides enough precision for the numerical simulation. 
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Fig. S3. The DFT results of the post-buckling development for composite with spacing ratio ξ = 0.6 and periodicity aspect ratio η = 2.1 at compressive strain ε =

0.237, for various numbers of unit cells built in the RVE (N = 20,N = 40,N = 80,N = 120,N = 160, and N = 200.). 

Appendix C. Geometric imperfection. 

As a perturbation to trigger instabilities, geometrical imperfection is introduced in terms of a slight alternation of the shape and position of the stiff 
inclusions. Specifically, as shown in Fig. S4, the inclusions are modeled as nearly-circular ellipses, where the geometrical differences are introduced 
independently onto the major diameter Ln, minor diameter Sn and the position Xn of the center of the n th inclusion, namely, 

Ln = d +ΔLn,

Sn = d +ΔSn,

Xn = X +ΔXn.

where d is the diameter of the perfect circular inclusion and Xn is the acuate horizontal position of the center of the n th inclusion; ΔLn, ΔSn, and ΔXn 
are random deviations. Note that the imperfections shown in Fig. S4(b) are significantly scaled for better illustration, since the original imperfection is 
too small to be visually discernible. Next, we generated three sets of random deviations, 

{ΔLn} := ΔL1,ΔL2,ΔL3⋯,ΔLN ,

{ΔSn} := ΔS1,ΔS2,ΔS3⋯,ΔSN ,

{ΔXn} := ΔX1,ΔX2,ΔX3⋯,ΔXN ,

and use them to alter the inclusions in the numerical model (where N is the total number of inclusions modeled in an RVE). Moreover, the dis-
tribution of the random set is symmetric to zero and is arranged to stay within Kimp • d, where Kimp is the amplitude of deviation.

Fig. S4. (a) Schematic composite cell without geometric imperfection. (b) Schematic composite cell with geometric imperfections (the imperfections are significantly 
scaled in the figure for better illustration since the original imperfection is too small to be visually discernible). 

To find the proper value of Kimp (with which the instabilities can be successfully triggered and the results are insensitive enough to the imper-
fections), we compare the results from numerical models with different Kimp (in particular, Kimp = 10− 2, 10− 3, 10− 4, 10− 5, 10− 6 and 10− 7). The 
corresponding DFT results are shown in Fig. S5(a) at the compressive strain level ε = 0.241 (after the Bloch-Floquet critical strain εcr = 0.2338). We 
observe that, for a large enough amplitude of deviation (for example, Kimp = 10− 2,10− 3,10− 4), the instability was successfully trigged. However, the 
inclusion chains (the post-buckling pattern) are found to be frustrated because of overwhelming imperfections, resulting in jagged DFT curves. For 
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small enough amplitudes of deviation (for example, Kimp = 10− 6 and10− 7), the imperfection is too small that it fails to trigger the instability in nu-
merical computation; thus, we find the DFT results maintain a zero line.

Fig. S5. The DFT results of the post-buckling development at compressive strain ε = 0.241 for numerical models with (a) various amplitudes of geometric 
imperfection (Kimp = 10− 2, 10− 3, 10− 4,10− 5, 10− 5, and 10− 7); (b) different realizations of random imperfection with the same amplitude of geometric imperfection 
Kimp = 10− 5. 

Our results indicate that, with an intermediate amplitude of deviation, Kimp = 10− 5, the instability pattern can be successfully triggered without 
being overwhelmed by the imperfections (see the red curve shown in Fig. S5(a) corresponding to Kimp = 10− 5). Moreover, to verify the insensitivity of 
the FEA results to specific realizations of the random imperfection, we compared five numerical models with independent realizations. The corre-
sponding DFT results (where the peak corresponds to the critical wavenumber) are shown in Fig. S5(b). Moreover, the derived critical strains cor-
responding to realizations 1 to 5 are found at εcr = 0.23377, 0.23374, 0.23375, 0.23377, and 0.23378. These results demonstrate that, with an 
amplitude of deviation at Kimp = 10− 5, the critical strains and wavenumbers are insensitive enough to specific realizations of the random imperfection. 

It should be noted that the imperfections introduced in our study are designed to trigger the instability without impacting the prediction of the 
composite’s buckling behavior. However, they may not accurately reflect the imperfections in natural materials resulting from geometrical [9,12,57] 
or material [22,23,45] uncertainties. The prediction of the composite’s buckling behavior may be affected by those uncertainties. Additionally, in-
terphases between the composite constituents, which may occur during the material manufacturing processes, can potentially affect the instability 
characteristics [1]. To quantify the influence of these uncertainties, multi-field coupled stochastic analyses can be employed [14,32]. 

Appendix D. Additional Details of Finite Element Analysis (FEA) 

This section provides additional details of the FEA computation of post-bucking in particulate composites using COMSOL Multiphysics 6.0. The 2D 
geometric model was constructed using the software’s built-in Geometry module. The model mesh is generated with 2D quads elements (9-node) with 
quadratic Lagrange shape function. The mesh was particularly refined near the interface between the soft and stiff material phases, resulting in a 
minimum element size of 10− 2b and a maximum element size of 5 • 10− 2b (where b is the length of a single primitive unit cell). We assign pure 
hyperelastic models to both stiff inclusion and soft matrix materials without rate-dependent properties. Moreover, the mechanical loading was applied 
quasi-statically, which ignores the materials’ mass effect. Finally, we performed convergence studies to ensure the insensitivity of the FEA results to 
the mesh quality, as well as the validation of the accuracy and reliability of the simulation. 
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