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A B S T R A C T   

In this paper, we investigate the stability of microstructured dielectric elastomer (DE) plates under electro- 
mechanical finite deformations. We examine the influence of the DE composite microstructure parameters on 
the stability of the DE composite plate. In particular, we analyze the DE plates made out of laminated ideal 
dielectric phases. We use an exact solution for the incompressible DE laminates to determine the effective ma-
terial behavior of the composite plates. The corresponding micromechanics-based energy density functions are 
used in the subsequent analysis of the DE plate stability. The unstable domains for different materials compo-
sitions, volume fractions, and properties of the DE composite phases are determined. Finally, we compare these 
results for the onset of structural instabilities in DE plates with the material instabilities predicted based on the 
loss of ellipticity analysis.   

1. Introduction 

Dielectric elastomers (DEs) belong to a class of soft active materials 
that undergo large deformations when excited by an external electrical 
stimulus (Pelrine et al., 1998, 2000a). Owing to their exceptional 
properties – quick response, lightweight, low cost, high energy density 
(Carpi et al., 2010; Suo, 2010), they became an attractive candidate for 
numerous applications, including soft robotics and actuators (Carpi 
et al., 2007; Gu et al., 2017), energy harvesters (Koh et al., 2010), res-
onators (Li et al., 2012), artificial muscles (Brochu and Pei, 2012), 
tunable waveguides (Galich and Rudykh, 2017; Gei et al., 2010), braille 
display (Chakraborti et al., 2012), optical components (Fang et al., 
2010), and prosthetic limbs (Biddiss and Chau, 2008). A typical setup of 
the DE actuator consists of a thin elastomer membrane sandwiched 
between two compliant electrodes. When the voltage is applied across 
the electrodes, the elastomer film contracts in the thickness direction 
and expands in the lateral directions. It has been reported that 
voltage-induced actuation strains in DE actuators can reach well beyond 
100% (Pelrine et al., 2000b). 

The major limitation of DE applications is that they require 
extremely high electric voltage to produce relevant actuation strains. 
Some approaches to overcome the limitation have been proposed, 

including utilizing electro-mechanical instabilities (Keplinger et al., 
2012; Rudykh et al., 2012) or modulating the waveform of input voltage 
(Arora et al., 2018). However, the former approach requires the oper-
ation of DE actuators in the risky vicinity of electro-mechanical in-
stabilities, and the latter is only applicable to oscillatory motion. A 
somewhat more promising approach to improve the performance of DE 
actuators is to design and fabricate composite materials with enhanced 
electro-mechanical coupling. Improvement in electro-mechanical 
coupling by orders of magnitude has been illustrated experimentally 
in DE composite materials (Huang and Zhang, 2004; Stoyanov et al., 
2011). Moreover, theoretical studies on DE composites with periodic 
microstructures predict even more efficient performance (Goshkoderia 
et al., 2020; Rudykh et al., 2013; Tian et al., 2012). Furthermore, recent 
advances in the fabrication of microstructured materials at different 
length scales can further aid us in realizing this approach experimentally 
(Kolle et al., 2013; Lee and Fang, 2012; Li et al., 2018a; Zheng et al., 
2014). 

Although heterogeneities may allow us to access the enhanced 
electro-mechanical coupled behavior, they also make composite mate-
rials susceptible to instabilities. The instability phenomenon in com-
posite materials subjected to purely mechanical loading has been 
studied extensively (Arora et al., 2019, 2020; Bertoldi and 
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Lopez-Pamies, 2012; El Hamdaoui et al., 2015, 2020; Li et al., 2019, 
2021; Merodio and Ogden, 2003, 2005a, 2005b, 2005c; Rudykh and 
deBotton, 2012; Slesarenko and Rudykh, 2017; Triantafyllidis and 
Maker, 1985; Triantafyllidis et al., 2006). Moreover, the stability and 
propagation of waves in the soft composites and structures are signifi-
cantly influenced by the presence of residual stresses (Dehghani et al., 
2019; Melnikov et al., 2021; Nam et al., 2016; Rodríguez and Merodio, 
2016). Regarding DE composites, Bertoldi and Gei (2011), Rudykh and 
Debotton (2011), and Rudykh et al. (2014) analyzed electro-mechanical 
instabilities in soft layered DEs. Goshkoderia and Rudykh (2017) 
investigated the onset of macroscopic electro-mechanical instabilities in 
periodic DE composites with circular and elliptic inclusions. Recently, 
Polukhov et al. (2018) studied the onset of instabilities at different 
length-scales in DE composites with various microstructures. These 
studies illustrate the dependency of DE material stability on the applied 
electric field and pre-stretch, together with their microstructure. 

On the structural level, DE plates are also prone to other failure 
modes such as dielectric breakdown, pull-in instability (Stark and Gar-
ton, 1955). The theoretical analysis allowed predicting these in-
stabilities in the context of homogeneous deformation assumptions 
(Díaz-Calleja et al., 2009; Sharma et al., 2018; Xu et al., 2010; Zhao 
et al., 2007; Zhao and Suo, 2007; Zhu et al., 2010). However, in several 
experiments, it has been observed that the DE actuators undergo inho-
mogeneous deformation (Blok and LeGrand, 1969; Sharma et al., 2019); 
for instance, wrinkling appears before pull-in instability (Liu et al., 
2016; Mao et al., 2021; Plante and Dubowsky, 2006). These experi-
mental observations further motivated the theoretical developments in 
this direction. For example, De Tommasi et al. (2010) developed a 
simplified model to account for the non-homogeneous deformation 
states in thin electroelastic films. Later, De Tommasi et al. (2011) 
investigated the onset of wrinkling in thin-film DEs, by employing an 
approach based on tension field theory. By employing the theory of 
linearized incremental deformations and electric field (Dorfmann and 
Ogden, 2005, 2010), Dorfmann and Ogden (2014) investigated the 
diffuse mode of instabilities in a thin homogeneous neo-Hookean DE 
plate. Zurlo et al. (2017) analyzed the localized thinning phenomenon in 
one-side constrained and unconstrained DE films. Recently, Su et al. 
(2018) derived closed-form expressions corresponding to the onset of 
wrinkling phenomenon in DE plates by employing Stroh formulation. 
More recently, Zeng and Gao (2020) studied the effect of material 
anisotropy on the stability of a pre-stretched DE plate, by employing the 
linearized incremental theory. Furthermore, Broderick et al. (2020) 
performed the stability analysis of charge-controlled DE plates. Finally, 
we shall mention the work by Dorfmann and Ogden (2019), reviewing 
the theoretical analysis of the instabilities. 

These various instability modes altogether pose several challenges in 
designing optimized devices based on DEs and thus require careful 
modeling and analysis. Moreover, the knowledge on electro-mechanical 
instabilities may provide additional tools to exploit the phenomenon to 
design microstructured materials with switchable functionalities 
(Babaee et al., 2016; Bertoldi and Boyce, 2008; Li et al., 2018b; Rudykh 
and Boyce, 2014). In the electro-mechanical instability analysis, the 
modeling of DE serves as a fundamental tool. The pioneering works by 
Toupin (1960) and (1956) laid the foundation for the non-linear elec-
troelasticity theory, which has been reformulated and further developed 
(Dorfmann and Ogden, 2005, 2010; Liu, 2013; McMeeking and Landis, 
2005; Suo et al., 2008; Zhao and Suo, 2010). Additionally, the convexity 
aspects of electro-elasticity energy functions have been investigated by 
Itskov and Khiêm (2016) and Ortigosa and Gil (2016). In parallel, sig-
nificant efforts have been made in implementing the framework into the 
numerical schemes (Aboudi, 2015; Jabareen, 2015; Keip et al., 2014; 
Mehnert et al., 2019; Park et al., 2012; Sharma and Joglekar, 2019a, b; 
Vu et al., 2007). 

In this paper, we investigate the interplay between the microstruc-
ture and stability of composite DE plates. In particular, we analyze the DE 
plates made out of layered material and determine the onset of their 

structural instability depending on the microstructural parameters (such 
as volume fractions and material properties of the phases). These results 
are compared with the predictions of material instabilities for the DE 
laminates. The paper is structured as follows. Sec. 2 summarizes the 
electroelasticity framework theoretical background. This is followed by 
the incremental constitutive equations and the incremental electric and 
mechanical boundary conditions presented in Sec. 3. In Sec. 4, the sta-
bility problem of the DE plates made out of isotropic incompressible 
constituents is analyzed. Sec. 5 illustrates the dependence of the onset of 
plate instabilities on microstructural parameters; the examples are 
shown with the comparison of the material instabilities. 

2. Nonlinear theory of electroelasticity 

Consider a deformable electroelastic material in the absence of 
volumetric free charges within the material. Br and B indicate the initial 
and current configurations of the material respectively with boundaries 
∂Br and ∂B. The general motion is described by the mapping x = f(X‚t), 
where x is the spatial position at time t of a material particle with the 
material coordinate X. The deformation gradient is F = ∂x/∂X. Then, 
the volume change of the body with respect to the reference configu-
ration is defined by J ≡ detF > 0. 

We consider the quasi-electrostatic approximation, assuming that 
there are no electric fields nor free body charges and currents within the 
material. The electro-statics equations in the deformed state are 

curl E = 0‚ div D = 0 (1)  

where E and D are the electric field and electric displacement vectors, 
respectively. 

Considering the free surface charge per unit area of B as σf , the 
electrostatic boundary conditions are as follows (Dorfmann and Ogden, 
2014) 

n × (E* − E) = 0‚ n⋅(D* − D) = σf (2)  

where E* and D* are the electric field and electric displacement in a 
vacuum surrounding B; n is the unit vector outward normal to the 
boundary ∂B. 

The relations between Lagrangian and Eulerian electric field and 
electric displacement are defined as E0 = FTE and D0 = JF− 1D. Thus, 
the Lagrangian form of the boundary conditions reads as 
(
FT E* − E0)× N = 0‚

(
JF− 1D* − D0)⋅N = σF (3)  

where σF denotes the free surface charge per unit area of Br and N is the 
unit outward normal to the boundary ∂Br. 

The equilibrium equation in the absence of mechanical body forces is 

div τ = 0 (4)  

where τ is the total Cauchy stress tensor. The following traction 
boundary condition needs to be satisfied 

τn= tm + t*e , (5)  

where tm and t*e represent the mechanical and Maxwell traction vectors, 
respectively. The corresponding Maxwell stress tensor (in the vacuum) is 

τ*
e = ε0E* ⊗ E* −

1
2
ε0(E*⋅E*)I, (6)  

where ε0 denotes the vacuum permittivity, and I is the identity tensor. 
The total first Piola-Kirchhoff stress tensor P is related to the total 

Cauchy stress via P = JτF− T. The referential form of the equilibrium 
equation is 

Div P = 0 (7) 

The corresponding traction boundary condition (5) transforms to 
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PN = tM + t*E (8)  

where tM is the mechanical traction per unit area of ∂Br and t*E = P*
EN 

with P*
E = Jτ*

eF− T. 
For an electroelastic incompressible material, the first Piola- 

Kirchhoff stress tensor and Lagrangian electric field can be defined 
through a scalar-valued energy-density function w(F‚ D0), namely, 

P =
∂w
(
F‚ D0)

∂F
− qF− T ‚ E0 =

∂w
(
F‚ D0)

∂D0 (9) 

Here, q is the Lagrange multiplier arising from the incompressibility 
constraint. Consequently, the total Cauchy stress and current electric 
field are given by 

τ =
∂w
(
F‚ D0)

∂F
FT − qI‚ E = F− T ∂w

(
F‚ D0)

∂D0 (10)  

3. Incremental equations and boundary conditions 

In this section, the framework of the incremental deformations 
superimposed on a finitely deformed configuration is summarized based 
on the work by Dorfmann and Ogden (2014). The framework will be 
further applied to investigate the instability of a composite dielectric 
plate subject to an in-plane equibiaxial stretch under the action of an 
electric field applied through the thickness of the plate. 

Let us denote the increments in the Lagrangian electric field, electric 
displacement, and the first Piola-Kirchhoff stress tensor by Ė0, Ḋ0 and Ṗ, 
respectively. The corresponding incremental governing equations are 

Curl Ė0
= 0‚ Div Ḋ0

= 0‚ Div Ṗ = 0 (11) 

Consequently, the incremental form of the electrical and traction 
boundary conditions can be written as 
(
ḞT E* + FT Ė*

− Ė0)
× N = 0 on ∂Br

(
F− 1Ḋ*

− F− 1ḞF− 1D* − Ḋ0)⋅N = 0 on ∂Br

ṖN = ṫM + τ̇*
eF− T N − τ*

eF− T ḞT F− T N on ∂Br

(12) 

Here, Ė* and Ḋ* are the increments of the electric field and electric 

displacement outside the material; these satisfy the equations curl Ė*
=

0‚ div Ḋ*
= 0; the increment in the Maxwell stress tensor τ̇*

e is expressed 
as  

τ̇*
e = ε0[Ė

*
⊗ E* + E* ⊗ Ė*

− (E*⋅Ė*
)I ] (13) 

In the following, the “push-forward” transformation of the variables 
– denoted by a superscript “∧” – is employed, in particular, 

Ê = F− T Ė0
, D̂ = FḊ0

, P̂ = ṖFT (14) 

The incremental Eq. (11) transform into 

curl Ê = 0‚ div D̂ = 0‚ div P̂ = 0 (15)  

and the corresponding boundary conditions are 
(
Ė*

+ LT E* − Ê
)
× n = 0 on∂B

(Ḋ*
− LD* − D̂)⋅n = 0 on∂B

P̂n = t̂M + τ̇*
en − τ*

eLT n on∂B

(16) 

The linearized constitutive laws for an incompressible material are 

Ṗ=𝒜
0Ḟ + ℬ0Ḋ0

− q̇F− T + qF− T ḞT F− T (17)  

Ė0
=ℬ0T Ḟ + 𝒞0Ḋ0  

in which 𝒜0‚ ℬ0‚ 𝒞0 stand for the electroelastic moduli tensors associated 

with the energy function w(F‚ D0). In particular, the tensors of the 
electroelastic moduli are defined as 

A
0
αjβl =

∂2w
∂Fαj∂Fβl

, B
0
iαβ =

∂2w
∂Fiα∂D0

β
, C

0
αβ =

∂2w
∂D0

α∂D0
β

(18) 

The updated forms of Eqs. (17) are 

P̂ =𝒜L + ℬD̂ + qLT − q̇I (19)  

Ê =ℬT L + 𝒞D̂ 

The updated tensors of the electroelastic moduli are related to 𝒜0‚ ℬ0 

and 𝒞0 via 

A ijkl = J− 1FjαFlβA
0
iαkβ, B ijk = FjαF− 1

βk B
0
iαβ, C ij = JF− 1

αi F− 1
βj C

0
αβ

(20)  

with the symmetries 

A ijkl = A klij, B ijk = B jik, C ij = C ji (21)  

4. Application to layered dielectric elastomer plates 

Consider a composite electroelastic plate made out of two isotropic 
incompressible constituents with volume fractions c(f) and c(m) = 1 −

c(f). The plate is covered by flexible electrodes on its major surfaces and 
subjected to planar biaxial deformation under the action of an electric 
field applied through the plate thickness as illustrated in Fig. 1. 

The reference geometry of the plate is defined as 

− L1 ≤ X1 ≤ L1‚ −
H
2
≤ X2 ≤

H
2

‚ − L3 ≤ X3 ≤ L3 (22)  

where H is the initial thickness of the plate. Here X1‚ X2‚ X3 represent a 
material point in the undeformed configuration and x1‚ x2‚ x3 represent 
its position in the deformed configuration. The plate is subjected to 
planar equi-biaxial stretch λ1 = λ3 = λ and to an electric displacement 
with components D2 = D0‚ D1 = D3 = 0. For incompressibility of the 
material λ2 = λ− 2. Thus, the average deformation gradient F and 
average electric displacement D0 can be written as 

F = λ(I − e2 ⊗ e2) + λ− 2e2 ⊗ e2‚ D0
= D0e2 (23) 

λ is the average stretch ratio in the direction of the layers; the average 
stretch ratio is defined as λ = λ(f)cf + λ(m)cm. 

Next, we consider the superimposed incremental displacement field 
u, the incompressibility condition under the plane-strain condition im-
poses that u1‚1 + u2‚2 = 0. Thus, there exists a function ψ = ψ(x1‚ x2)

such that u1 = ψ ‚2 and u2 = − ψ ‚1. In a similar manner, assuming that 
the out of plane component of the electric displacement is zero in Eq. 
(15)2, one can conclude that there exists a function φ such that D̂1 = φ‚2 

and D̂2 = − φ‚1. Thus, the updated incremental Eqs. (15)1 and (15)3 can 
be written in terms of the potential functions, namely, 

aψ ‚1111 + 2bψ ‚1122 + cψ ‚2222 + (e − d)φ‚112 + dφ‚222 = 0
dψ ‚222 + (e − d)ψ ‚112 + f φ‚22 + gφ‚11 = 0 (24) 

Fig. 1. Schematic of an anisotropic dielectric plate with the loading conditions.  
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Here, the material coefficients are 

a = A 2121‚ 2b = A 1111 + A 2222 − 2A 1221‚ c = A 1212‚
d = B 211‚ e = B 222‚ f = C 11‚ g = C 22

(25) 

From the plane-strain assumption in the (x1‚ x2) plane, it can be 

deduced that a scalar function φ*(x1‚ x2) exists such that Ė*
1 = − φ*

‚1 and 

Ė*
2 = − φ*

‚2, where φ* satisfies Laplace’s equation. Setting the incre-
mental mechanical traction to zero, the incremental traction and elec-
trical boundary conditions (16) in terms of ψ and φ take the following 
form  

(
τ22 + τ*

e22 − c
)
ψ ‚11 + cψ ‚22 +dφ‚2 +D*

2φ*
‚1 = 0 on x2 =±

h
2

(
2b+ c − τ22 + τ*

e22

)
ψ ‚112 + cψ ‚222 +eφ‚11 +dφ‚22 − D*

2φ*
‚12 = 0 on x2 =±

h
2

(
ε− 1

0 D*
2 − d

)
ψ ‚11 +dψ ‚22 + f φ‚2 +φ*

‚1 = 0 on x2 =±
h
2

φ‚1 − ε0φ*
‚2 +D*

2ψ ‚12 = σ̇F0 on x2 =±
h
2

(26) 

Here h= λ− 2H denotes the deformed plate thickness. On the bound-
aries x2 =±h

2, it can be prescribed either the electrostatic potential or the 
charge density. We will use the first option so that the incremental 
boundary conditions specialize to Ê1 = 0, and (26)3 applies. In the 
absence of the mechanical traction on the faces x2 = ± h

2, the total stress 
component τ22 = 0. Here, we consider the case when the top and bottom 

surfaces of the dielectric plate are coated by flexible electrodes. Thus, 
there is no external field, and as a result Eqs. (26) reduce to 

(ψ ‚22 − ψ ‚11) = 0 on x2 = ±
h
2

(2b + c)ψ ‚112 + cψ ‚222 + eφ‚11 + dφ‚22 = 0 on x2 = ±
h
2

φ‚2 = 0 on x2 = ±
h
2

(27)  

We seek a solution for the incremental boundary-value problem in the 
following form (Dorfmann and Ogden, 2014) 

ψ = Ae− ksx2 eikx1 , φ = kBe− ksx2 eikx1 (28)  

where k is the wavenumber of the perturbation, and s is a parameter to 
be obtained. Substitution of these functions into Eq. (24) and setting the 
determinant of the coefficients matrix equal to zero leads to an equation 
from which one can determine s 
(
cf − d2)s6 − [2bf + cg+ 2(d − e)d]s4 +

[
2bg+ af − (d − e)2]s2 − ag= 0

(29) 

It is easy to see that this equation is cubic in t = s2. The roots are 
denoted by s1‚ s2‚ s3‚ s4 = − s1‚ s5 = − s2‚ s6 = − s3. Substitution of the 
general solution ψ =

∑6
j=1Aje− ksjx2 eikx1 and φ =

∑6
j=1kBje− ksjx2 eikx1 into 

the boundary conditions (27) yields 

∑6

j=1
αje±j Bj = 0,

∑6

j=1
βje

±
j Bj = 0,

∑6

j=1
γje

±
j Bj = 0, on x2 = ±

h
2

(30)  

where e±j = e±
ksjh

2 . Using the relation between Aj and Bj (Dorfmann and 
Ogden, 2014), the coefficients αj‚ βj and γj can be written as 

αj =
sj

(
1 + s2

j

)(
ds2

j + d − e
)

cs4
j − 2bs2

j + a
,

βj =
[(2b + c + a)d − ce ]s2

j − ae
cs4

j − 2bs2
j + a

, (31)  

γj = sj 

Next, we specify the analysis for DE laminate plate (see Fig. 1) with 
isotropic incompressible dielectric phases characterized by the neo- 
Hookean ideal dielectric model 

w(r) =
μ(r)

2
(
F(r) : F(r) − 3

)
+

1
2ε(r)D

0(r)⋅C(r) ċD0(r) (32)  

where μ(r) and ε(r) respectively denote the shear moduli and dielectric 
constants of the two phases; C(r) is the right Cauchy-Green deformation 
tensor. 

For this case, it has been shown that an explicit exact solution can be 
obtained for the local fields in the laminate phases (see (Galich and 
Rudykh, 2017; Rudykh et al., 2014; Rudykh and Debotton, 2011; 
Spinelli and Lopez-Pamies, 2015)). Moreover, based on the exact solu-
tion, the effective energy function can be constructed, namely,  

where F and D0 are the average deformation gradient and electric 
displacement, respectively; M denotes the initial lamination direction; 
the effective arithmetic and harmonic averages of the material constants 
are 

μ= c(f )μ(f ) + c(m)μ(m)‚ μ̆=

(
c(f )

μ(f ) +
c(m)

μ(m)

)− 1

(34)  

ε= c(f )ε(f ) + c(m)ε(m)‚ ε̆=
(

c(f )

ε(f ) +
c(m)

ε(m)

)− 1 

We note that the effective energy function is derived based on the 
exact solution for the finitely deformed dielectric laminates. By applying 
the loss of ellipticity condition, the critical deformation and applied field 
corresponding to the onset of macroscopic instability can be determined. 
Specifically, for the average deformation gradient (23), introducing the 
incremental equation (19) into the electrostatic equation (15) along 
with the incompressibility condition gives the critical stretch λm

cr and 
critical electric displacement D0

cr as follows (Galich and Rudykh, 2017) 

λm
cr =

(
D(0) 2

cr

με̆

(
1 −

ε̆
ε

)
−

μ̆
μ + 1

)1/6

(35)  

D0
cr̅̅̅̅̅
με̆

√ =

(

λ(m) 6
cr +

μ̆
μ − 1

)1/2(
1 −

ε̆
ε

)− 1/2 

We refer to the macroscopic instability criterion as the material 
instability (Bertoldi and Gei, 2011); in the sequel, we compare condition 
(35) with the structural instability analysis of the plate made out of the 
composite material described by the effective energy function given in 

w
(
F‚ D0)

=
μ
2
(F : F − 3) −

μ − μ̆
2

(

M⋅CM −
1

M⋅C− 1M

)

+
1
2εD0⋅CD0

+
1
2

(
1
ε̆ −

1
ε

) (
D0⋅M

)2

M⋅C− 1M
(33)   
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Eq. (33). 
By making use of the energy function (33), the tensors of the elec-

troelastic moduli defined in Eq. (20) are determined, thus, allowing us to 
derive the explicit expressions for the material coefficients defined in Eq. 
(25), namely, 

a = λ− 4
[

μ
(
λ6 − 1

)
+ μ̆ + D0 2

(
1
ε −

1
ε̆

)]

2b = λ− 4
[

μ
(
λ6 + 3

)
− 2μ̆ + D0 2

(
3
ε̆ −

2
ε

)]

‚ c = λ− 4
[

μ̆ +
D0 2

ε

]

‚

d =
D0

λ2ε
‚ e =

2D0

λ2ε̆
‚ f =

1
ε ‚ g =

1
ε̆

(36) 

Using the microscopic electroelastic moduli (36), the coefficients 
(31) take the following form   

where D = D0
/
̅̅̅̅̅
μ̆ε̆

√
is dimensionless Lagrangian electric displacement 

perpendicular to the layers. 
The analytical explicit formulas for roots sj with respect to the energy 

function (33) are given in Appendix A. It is clear from relations (37) that 

α3+j = − αj, β3+j = βj, γ3+j = − γj (38) 

Substitution of the coefficients (37) into the boundary conditions 
(30) yields a system of 6 × 6 linear equations. Putting the determinant of 
the coefficients matrix equal to zero, we can obtain the bifurcation 
equations and determine the onset of instability 

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1e−1 α2e−2 α3e−3 − α1e+1 − α2e+2 − α3e+3
β1e−1 β2e−2 β3e−3 β1e+1 β2e+2 β3e+3
γ1e−1 γ2e−2 γ3e−3 − γ1e+1 − γ2e+2 − γ3e+3
α1e+1 α2e+2 α3e+3 − α1e−1 − α2e−2 − α3e−3
β1e+1 β2e+2 β3e+3 β1e−1 β2e−2 β3e−3
γ1e+1 γ2e+2 γ3e+3 − γ1e−1 − γ2e−2 − γ3e−3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (39) 

The determinant can be factorized into two independent equations as 

β1(α3γ2 − α2γ3)T1 + β2(α1γ3 − α3γ1)T2 + β3(α2γ1 − α1γ2)T3 = 0 (40)  

β1(α3γ2 − α2γ3)

T1
+

β2(α1γ3 − α3γ1)

T2
+

β3(α2γ1 − α1γ2)

T3
= 0  

in which Tj = tanh(ksjh /2). 
The first equation represents the bifurcation equation for antisym-

metric modes, and the second one corresponds to symmetric ones. The 
schematic illustrations of the antisymmetric and symmetric modes of 
wrinkling are depicted in Fig. 2. 

Each of these bifurcation equations provides an implicit relation 
between the critical stretch λp

cr, applied electric field, normalized 
wavenumber, and material parameters. In the next section, some nu-
merical examples are provided to illustrate the effect of different vari-
ables on the instabilities of composite DE plates. 

5. Results and discussion 

In this section, we illustrate the results of the plate instability anal-
ysis. The critical stretch and applied electric field corresponding to the 
antisymmetric and symmetric instability modes are determined by 
solving Eq. (40). The results for the electroelastic plate instabilities are 
further compared to the material instability results from Eq. (35) for the 
identical energy function (33). The comparison allows us to map both 
material and structural instabilities in the same dielectric composite 
design space and electro-mechanical loadings. 

Fig. 3 shows the critical stretch as a function of the normalized 
wavenumber kH. The results are shown for the DE laminate plate with 
c(f) = 0.2, χ = μ(f)/μ(m) = 10 and ξ = ε(f)/ε(m) = 10; the DE laminate 
plate is subjected to different values of dimensionless electric displace-
ment D = D0

/
̅̅̅̅̅
μ̆ε̆

√
; namely, D = 0, 1, 2, 2.63, 3, 4. The blue and red 

curves correspond to the antisymmetric and symmetric modes, 
respectively. 

In each figure, the upper curve separates the stable domain from that 
in which instabilities may develop, i.e., the unstable region is enclosed 
by the area under the upper curve. The unstable domain increases as the 
applied electric displacement increases. This observation indicates that 
the electric field has a destabilizing effect in this configuration. Plots (a)- 
(f) show as the normalized wavenumber increases, the range of unstable 
stretch values reduces. Fig. 3(a) displays the results for the purely 

αj =

sj

(
1 + s2

j

)
λ2 D

̅̅̅̅̅
μ̆ε̆

√
(

s2
j − 2

ε
ε̆ + 1

)

(
D2

+
ε
ε̆

)
s4

j −

[
μ
μ̆

ε
ε̆
(
λ6 + 3

)
− 2

ε
ε̆ + D2

(
3

ε
ε̆ − 2

)]

s2
j +

μ
μ̆

ε
ε̆
(
λ6 − 1

)
+ D2

(
1 −

ε
ε̆

)
+

ε
ε̆

βj =

2D
λ2

̅̅̅̅
μ̆
ε̆

√ {[
μ
μ̆
(
λ6 + 1

)
−

ε
ε̆

]

s2
j −

μ
μ̆

ε
ε̆
(
λ6 − 1

)
− D2

(
1 −

ε
ε̆

)
−

ε
ε̆

}

(
D2

+
ε
ε̆

)
s4

j −

[
μ
μ̆

ε
ε̆
(
λ6 + 3

)
− 2

ε
ε̆ + D2

(
3

ε
ε̆ − 2

)]

s2
j +

μ
μ̆

ε
ε̆
(
λ6 − 1

)
+ D2

(
1 −

ε
ε̆

)
+

ε
ε̆

γj = sj

(37)   

Fig. 2. Schematics for DE plate in (a) antisymmetric and (b) symmetric modes of instability.  
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mechanical case in the absence of an electric field. The blue curve cor-
responds to a flexural (antisymmetric) mode, while the red curve de-
notes the symmetric mode. As expected, for this purely elastic case, the 
antisymmetric mode occurs under compression of the plate, and de-
velops first at kH→0. For the electrically excited cases (D > 0), the plate 
is unstable even in the undeformed state λ = 1, and a pre-stretch (of the 
level depending on the applied electric field) is needed to reach the 
stable state and avoid the instability development. We note that at a 
certain level of the electric field, the symmetric bifurcation curve 

experiences a significant shape change; in particular, two distinct curves 
corresponding to the symmetric instability modes appear (instead of a 
single curve for the cases with lower levels of the applied electric field). 
This is illustrated by the example of the plate subjected to the electric 
excitation level D = 2.63 in Fig. 3(d). The dotted horizontal lines coin-
cide with the critical stretches corresponding to the macroscopic mate-
rial instabilities (Galich and Rudykh, 2017; Goshkoderia and Rudykh, 
2017; Rudykh et al., 2013, 2014; Rudykh and Debotton, 2011, 2012; 
Slesarenko and Rudykh, 2017). 

Fig. 3. The critical stretch versus the normalized wavenumber (kH) for the DE laminate plate with c(f) = 0.2, χ = 10, ξ = 10. The plate is subjected to different levels 
of electric excitation: D = 0 (a), 1 (b), 2 (c), 2.63 (d), 3 (e), 4 (f). The blue and red curves denote the antisymmetric and symmetric bifurcation modes, respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Note that the antisymmetric and symmetric mode curves approach 
each other as the wavenumber is increased. Fig. 4 displays the depen-
dence of the critical stretch on the normalized wavenumber kH for a 
wide range to illustrate the asymptotic behavior of the mode curves. The 
example is given for the composite with c(f) = 0.2, χ = 10, and ξ = 10, 
subjected to the electric excitation of D = 3. The blue and red curves 
correspond to the antisymmetric and symmetric modes, respectively. 
The critical stretch curve for the antisymmetric instabilities decreases 
monotonically with an increase in kH, and then asymptotically ap-
proaches the level of λcr ≈ 1.22. An opposite effect is observed for the 
symmetric bifurcation curve. The symmetric instability curve increases 
monotonically with kH, and then asymptotically approaches the values 
of λcr ≈ 1.22. 

For completeness, we also show the results for an isotropic neo- 
Hookean ideal dielectric plate in Fig. 5. The verification results are 
calculated for the composite dielectric plate with c(f) = 1, c(m) = 0, 
(μ(f)/μ(m) = 1; ε(f)/ε(m) = 1); for this case, the effective energy function 
(33) reduces to that for isotropic media 

w
(
F‚ D0)=

μ
2
(F : F − 3) +

β
2ε0

D0⋅CD0 (41) 

Here, μ is the initial shear modulus; β = 1/εr, where εr is the relative 
permittivity related to the dielectric constant through ε = εrε0, with ε0 is 
the vacuum permittivity. For the isotropic case, we use the dimension-
less Eulerian electric displacement as D̂ = λ− 2D0/

̅̅̅̅̅̅̅με0
√ . The results are 

plotted for two different values of the electric displacement D̂ = 2 (a), 
2.4 (b) and electroelastic coupling parameter β = 1/2. The results 
coincide with the ones obtained by (Dorfmann and Ogden, 2014) for the 
isotropic dielectric plate under the same loading conditions. 

Next, we illustrate the effect of the phase volume fraction on the 
plate stability. Fig. 6 shows the results for the DE composite plate with 
different volume fractions c(f) = 0.1, 0.2,0.5 denoted by continuous, 
dashed, and short-dashed curves, respectively. The blue and red curves 
correspond to the antisymmetric and symmetric instability modes, 
respectively. The composite plates with the shear and dielectric modulus 
contrast ratios χ = 10 and ξ = 10 are subjected to the electric excitation 
of the magnitude D = 2. We observe that the DE composite plates with 

Fig. 4. The critical stretch versus the normalized wavenumber (kH) for the DE 
laminate plate with c(f ) = 0.2, χ = 10, ξ = 10. The plate is subjected to the 
electric excitation D = 3. The blue and red curves denote the antisymmetric 
and symmetric bifurcation modes, respectively. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 5. The critical stretch versus the normalized wavenumber kH for an equibiaxially stretched plate with flexible electrodes for the material model (41) with 
material parameter β = 1/2. The plate is subjected to two different levels of electric excitation D̂ = 2 (a), and D̂ = 2.4 (b) (Dorfmann and Ogden, 2014). The blue and 
red curves denote the antisymmetric and symmetric bifurcation modes, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 6. The critical stretch versus the normalized wavenumber kH for the DE 
laminate plate with χ = 10, ξ = 10 and different volume fractions c(f) = 0.1, 
0.2, 0.5. The plate is subjected to electric excitation D = 2. The blue and red 
curves denote the antisymmetric and symmetric modes, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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low volume fractions of the stiffer phase are more prone to instabilities 
than those with higher volume fractions. We note that the effect of the 
phase volume fraction varies to the opposite effect for c(f) > 0.5, and 
plates with higher volume fractions of the stiffer phase become more 
prone to instability development. As it can be observed from the figure, 
for c(f) < 0.1, the symmetric bifurcation curve experiences a significant 
shape change. 

Fig. 7 summarizes these results showing the critical stretch as the 
function of the stiff phase volume fraction. Note that the results are 
shown for the long-wave mode kH→0. Here, the results are displayed for 
the composites with the shear and dielectric modulus contrast ratios χ =

10 and ξ = 10. The plates are subjected to D = 2 (a) and D = 4 (b). The 
black and blue curves correspond to the macroscopic material, and 
structural (plate) antisymmetric modes of instability, respectively. 

We observe that for D = 2, the macroscopic material instabilities 
appear earlier than the structural plate instabilities. The macroscopic 
instability curve increases monotonically for volume fractions up to 
c(f) = 0.29 and then continues to lower critical stretches with an in-
crease in the volume fraction up to c(f) = 0.5. This effect varies to the 
opposite effect for c(f) > 0.5. For D = 4, the material instability curve 
increases for volume fractions up to c(f) = 0.17, then decreases to lower 
critical stretches until c(f) = 0.5. Moreover, the antisymmetric unstable 

domain decreases with an increase in the volume fraction up to c(f) =

0.5, and increases with an increase in the volume fraction for c(f) > 0.5. 
The curves are symmetric with respect to c(f) = 0.5, and the trend of the 
curves is reversed for plates with higher stiffer phase volume fractions. 

Next, we examine the influence of the phase shear moduli contrast 
ratio on the instabilities in the composite dielectric plates. Fig. 8 shows 
the dependence of the critical stretch on the normalized wavenumber kH 
for the DE composite plates with various shear moduli ratios χ = 3, 10 
(denoted by continuous, and dashed curves, respectively) in Fig. 8(a), 
and χ = 20, 50 (denoted by continuous, and dashed curves, respec-
tively) in Fig. 8(b). The blue and red curves correspond to the anti-
symmetric and symmetric instability modes, respectively. The plate with 
the volume fraction of the stiffer phase c(f) = 0.2 and contrast ratio ξ =

10 is subjected to electrical excitation D = 2. The diagrams show that 
with an increase in the shear moduli ratio, the critical stretch decreases. 
Furthermore, for values of χ = 3 and less, the shape of the symmetric 
bifurcation curve changes, and two different symmetric modes appear 
(instead of a single curve for the cases with higher levels of the shear 
moduli ratio). The upper instability curve has its maximum at kH→0, 
and it gradually decreases as the normalized wavenumber increases. 
Fig. 8(b) shows that, at large enough contrasts, the variation of the 
critical stretch with respect to the normalized wavenumber is much less 
than that at low contrasts. For example, for the composite with χ = 50 

Fig. 7. The critical stretch versus the volume fraction of the stiffer phase c(f ) for the DE laminate plate with χ = 10, ξ = 10; the curves are shown for the longwave 
limit kH→0. The plate is subjected to two different levels of electric excitation: D = 2 (a), and D = 4 (b). The black and blue curves denote the macroscopic material, 
and plate instabilities, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. The critical stretch versus the normalized wavenumber kH for the DE laminate plate with c(f) = 0.2, ξ = 10 and different shear moduli ratios χ = 3, 10 (a), 
and χ = 20, 50 (b). The plate is subjected to the electric excitation D = 2. The blue and red curves denote the antisymmetric and symmetric bifurcation modes, 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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the change of the critical stretch ratios is 1.028 < λcr < 1.065 in the 
entire range of kH. 

Fig. 9 illustrates the evaluations of unstable domains with the phase 
dielectric constant ratio. The results are shown for the DE composite 
plates with c(f) = 0.2, χ = 10, and ξ = 3, 10 (denoted by continuous, 
and dashed curves, respectively) in Fig. 9(a), and ξ = 20, 100 (denoted 
by continuous, and dashed curves, respectively) in Fig. 9(b). The DE 
composite plate is subjected to the electric excitation D = 2. We observe 
that an increase in the permittivity ratio results in an increase in the 
critical stretch for both antisymmetric and symmetric instability modes 
for wavenumbers kH > 0. We note, however, that the antisymmetric 
critical stretch corresponding to kH→0 does not change with a change in 
the dielectric constant contrast; for the considered cases the critical 
stretch ratio is λcr ≈ 1.183. This seemingly counterintuitive result stems 
from the normalization of the applied electric displacement; the actual 
applied electric displacement changes with a change in the dielectric 
contrast (when the normalized electric displacement value is fixed). The 
dependence is illustrated by considering the actual electric displacement 
(normalized by the matrix properties) in Appendix B. Also, a shape 
change in the symmetric bifurcation curve is shown in Fig. 9(a) for the 
phase dielectric constant ratio ξ = 3. We can observe the instability 
curves get close to each other for the composites with high dielectric 

constants ratios (see the continuous and dashed curves corresponding to 
ξ = 20 and 100, respectively, in Fig. 9(b)). 

In Fig. 10, we plot the dependence of the critical stretches on the 
phase contrasts such that the contrasts in shear moduli and electric 
permittivities are identical, namely, χ = ξ. The results are shown for the 
long-wave limit kH→0. The black and blue curves represent the material 
and plate (antisymmetric modes) instabilities, respectively. The exam-
ples are given for the DE laminates with c(f) = 0.03 in Fig. 10(a) and 
c(f) = 0.5 in Fig. 10(b), and subjected to D = 2 and 4. We observe that an 
increase in the phase contrasts leads to a decrease in the plate critical 
stretch, whereas the critical stretch (corresponding to the material 
instability) increases for composites with lower contrasts between the 
properties of the phases, and then decreases for composites with higher 
contrasts. Note that for the laminate with c(f) = 0.03 the material sta-
bility criterion predicts similar critical stretch values as the structural 
plate intability analysis for high enough contrast ratios, χ = ξ larger than 
≈300. The curve of the material instability branches from the curve of 
the plate instability in a large range of contrast ratios (up to χ =

ξ ≈ 300). For the DE composite plate with c(f) = 0.5, the predictions of 
the two failure criteria are close to each other at contrasts smaller than 
those for the DE plate with c(f) = 0.03 (see Fig. 10(b)). The bifurcation 

Fig. 9. The critical stretch versus the normalized wavenumber kH for the DE laminate plate with c(f ) = 0.2, χ = 10 and different permittivity ratios ξ = 3, 10 (a), 
and ξ = 20, 100 (b). The plate is subjected to the electric excitation D = 2. The blue and red curves correspond to the antisymmetric and symmetric bifurcation 
modes, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. The critical stretch versus the phase contrasts χ = ξ for the DE laminate plate with c(f) = 0.03 (a), and c(f) = 0.5 (b) when kH→0. The plate is subjected to 
two different levels of the electric excitation: D = 2 and 4. The black and blue curves denote the macroscopic material, and plate instabilities, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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curve based on the plate stability criterion approaches the one predicted 
by the material criterion for contrast values beyond χ = ξ ≈ 50. 

In Fig. 11, we compare the instability criterion predictions for DE 
laminates plates with a fixed dielectric constant ratio and varying shear 
modulus contrast ratio. The results are shown for the longwave case 
kH→0. The black and blue curves represent the macroscopic material, 
and structural antisymmetric instability modes, respectively. The ex-
amples are given for the DE laminate plate with c(f) = 0.5, subjected to 
D = 2 and 4. Fig. 11 shows the dependence of the critical stretch on the 
shear moduli ratio with the fixed dielectric constant ratio ξ = 10. As it is 
shown, the critical stretch increases when the electric displacement field 
goes up, which means the electric displacement has a destabilizing ef-
fect. The results show that the material instability curves are lower than 
their plate instability counterparts. Hence, the stable range of λcr is 
determined by the area above the blue curve. It is observed that the 
structural and material instability curves are monotonically decreasing 
functions of χ for the two values of the electric displacement. For D = 2, 
the two criteria predict similar critical stretches for the DE laminates 
with high shear modulus ratios. For example, the material criterion 
predicts the onset of instability at λcr = 1.004 for χ = 300, while the 
plate instability develops at λcr = 1.009. The difference predicted by the 
two criteria increases as the shear moduli ratio decreases. For an 
increased excitation level, D = 4, the curves approach each other at high 
levels of the shear modulus contrasts. For example, for χ = 400, the 
critical stretch values based on the material and plate criteria are 
respectively λcr = 1.015 and λcr = 1.025. 

Finally, we compare the material and plate instability predictions in 
DE laminate plates with a fixed shear modulus ratio and varying 
dielectric constant ratio. Fig. 12 shows the example for the DE composite 
plate with c(f) = 0.5 and the fixed shear moduli ratio χ = 10; the plate is 
subjected to the electric excitations D = 2 and D = 4. In agreement with 
the previous observations, the plate instability curves are above the 
corresponding material instability ones. We note that the critical 
stretches of the plate instability antisymmetric mode are independent of 
the dielectric contrast ratio at given normalized electric displacement 
levels; in particular, λcr = 1.151 for D = 2, and λcr = 1.359 for D = 4. 
Recall that this is due to the normalization of the applied electric 
displacement (the dependence of the critical stretch on the actual elec-
tric displacement is given in Appendix B). The critical stretches of the 
macroscopic material instability, however, initially show their strong 
dependence on the dielectric constant ratio followed by their asymptotic 

behavior towards the corresponding critical stretch values. Thus, the 
materials critical stretch ratios attain λcr = 1.121 at D = 2, and λcr =

1.345 at D = 4. 

6. Conclusion 

We examined the instability of dielectric composite plates that may 
occur at (i) structural plate level and (ii) microstructural material level. 
We considered the elastomer plates with layered microstructure with 
ideal dielectric incompressible phases; the composite DE plates are 
subjected to finite deformations and electric fields. In the plate struc-
tural instability analysis, decoupled equations associated with anti-
symmetric (flexural) and symmetric (barrelling) modes were obtained. 
We investigated the influence of the electro-mechanical loading, and 
microstructural parameters on the stability of DE composites. We 
observed that the application of the electric field results in destabilizing 
the dielectric composite plates. We found that in the composite plates 
with small volume fractions of the active phase, an increase in the stiffer 
phase volume fraction results in a decrease in the critical stretch. 
However, in the composite plates with a high volume fraction of the 
active stiffer phase, an increase in the volume fraction has a destabi-
lizing effect (the critical stretch increases). We compared the results of 
the plate structural instability analysis with the prediction of material 
instabilities (based on the macroscopic instability analysis) for the 
limiting case kH→0. The instability predictions of the plate and material 
criteria were examined for a large range of the shear moduli and 
dielectric constant ratios for the longwave case kH→0. The two criteria 
predict close values for DE laminate plates with high shear moduli 
contrasts. In addition, the stabilizing effect of the shear moduli ratio on 
the onset of structural instabilities was demonstrated. DE laminate 
plates with higher dielectric constant ratios are found to be more prone 
to instability development. Overall, the closed-form material instability 
estimate may be used for predicting instabilities in DE laminate plates 
with relatively high contrasts in the phase properties. For the laminate 
plates with lower contrasts in the constituent properties, the involving 
plate instability analysis is needed to obtain accurate predictions for the 
onset of instability. 
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Appendix A. Analytical explicit expressions for roots of Eq. (29) 

Here, we give expressions for the analytical solution of Eq. (29). Rewriting this equation as 

z1s6 − z2s4 + z3s2 − z4 = 0  

where 

z1 = cf − d2‚ z2 = 2bf + cg+ 2(d − e)d  

z3 = 2bg+ af − (d − e)2‚ z4 = ag  

and, taking t = s2 we will have 

z1t3 − z2t2 + z3t − z4 = 0 

Solving this cubic equation, one can obtain the corresponding roots as follow 
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Appendix B. Effect of dielectric constant ratio on the onset of instabilities 

Here, we illustrate the effect of the permittivity ratio on the onset of instabilities considering the actual electric displacement D* = D0
/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ(m)ε(m)

√

(normalized by the matrix properties). Using this normalization for the electric displacement, we show in Fig. 13 that the dielectric constant ratio has a 
decreasing effect on the onset of bifurcation. This is unlike what we observed in Fig. 9 in which for kH→0, the critical stretch value was the same for 
different contrasts. Rewriting the normalized displacement D = D0

/
̅̅̅̅̅
μ̆ε̆

√
in terms of D* and the contrast ξ, we displayed the variation of the actual 
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electric displacement with respect to the permittivity ratio by the red curved in Fig. 13. The curve is plotted for the laminate plates with c(f) = 0.2, χ =

10, and D = 2. It is observed that the actual field increases with increase in the permittivity ratio. Moreover, the dependence of the plate critical 
stretch on the contrast in electric permittivities for the long-wave mode kH→0 is illustrated by the blue curve in Fig. 13. The results are shown for the 
DE laminate plate with c(f) = 0.2, χ = 10; the DE laminate plate is subjected to the electric displacement D* = 2. It is found that the onset of structural 
instabilities is dependent on the dielectric constant ratio; it decreases as the dielectric constant ratio increases.

Fig. 13. The actual electric displacement D* versus the dielectric constants ratio for the plate with c(f) = 0.2, χ = 10, and D = 2 (red curve), and the critical stretch 
versus dielectric constants ratio for the DE laminate plate with c(f) = 0.2, χ = 10, and when kH→0. The plate is subjected to the electric excitation D* = 2 
(blue curve). 
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