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Abstract. We study the magneto-mechanical behavior of periodic laminates made of hard-magnetic 

active elastomers (HMAEs). We formulate the amended free-energy function for HMAEs, and 

derive an explicit expression for the induced deformation of the HMAE laminate as a function of 

the applied magnetic field. Next, we employ the “small-on-large” framework and examine the 

small-amplitude shear waves propagating in the finitely deformed HMAE laminate in a magnetic 

field.  

We find that the remanent magnetization of HMAE phases can result in compressive 

deformations (in the direction of the applied magnetic field), as opposed to the induced tensile 

deformation in previously considered soft-magnetic active laminates. Further, we derive the 

dispersion relations for the transverse elastic waves propagating in the direction perpendicular to 

the layers. We use the analytical results to illustrate the tunability of the shear wave band gaps with 

varying remanent magnetizations of the phases; moreover, the shear wave band gaps can be actively 

controlled by a remotely applied magnetic field. 
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1 Introduction 

Magnetoactive elastomers (MAEs) are composite materials consisting of magnetizable 

particles embedded in a soft matrix. Under an externally applied magnetic field, the magnetized 

particles interact, resulting in modification of the mechanical properties and leading to deformation 

occurring mostly in the matrix. The remote and reversible principle of actuation and property 

tunability makes the materials attractive for the development of variable-stiffness devices (Erb et 

al., 2012; Ginder et al., 2002), vibration absorbers (Ginder et al., 2001; Li et al., 2014) and isolators 

(Opie and Yim, 2011), actuators (Kashima et al., 2012; Tang et al., 2018), and sensors (Tian et al., 

2011), and biomedical devices (Makarova et al., 2016) among others. Typically, a polymeric matrix 

material (e.g., silicone rubber) in its liquid state before polymerization, is mixed with magnetizable 

particles of micro or even nano size. Curing in the presence of magnetic field results in the formation 

of chainlike structures aligned along the direction of the magnetic field. Through this microstructure 

modification, different interactions between magnetizable particles are induced, thus, enabling 

tunability of the overall magneto-mechanical behavior of MAEs. 

The foundation of magneto-elasticity (and mathematically analogous electro-elasticity) was 

developed by Truesdell and Toupin (1960). Since then, the magneto-elastic theory has been further 

developed by Dorfmann and Ogden (2003; 2004), Bustamante et al. (2006), Vu and Steinmann 

(2007), and Destrade and Ogden (2011). In parallel, significant efforts have been made towards the 

development and implementation of nonlinear magneto-elasticity into numerical schemes (Haldar 

et al., 2016; Labusch et al., 2014; Metsch et al., 2016). An analytical approach for estimating the 

response and effective properties of MAEs with the random distribution of magnetoactive particles 

has been developed by Ponte Castañeda and Galipeau (2011). Galipeau et al. (2014) showed that 

MAEs with seemingly similar microstructures might exhibit significantly different magneto-

mechanical properties. Rudykh and Bertoldi (2013) employed a micromechanics approach to 

analyze the macroscopic stability in anisotropic MAEs. Goshkoderia and Rudykh (2017) have 

investigated the long-wave instability in particulate MAE composites via a numerical 

homogenization. Goshkoderia et al. (2020) have reported the experimental observations of the 

instability-induced patterns in soft magneto-sensitive periodic systems. More recently, Pathak et al. 

(2022) studied the onset of microscopic instabilities in MAEs with bi-phasic layered microstructure 

exhibiting ferromagnetic behavior. 
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The aforementioned MAEs belong to so-called soft-magnetic active elastomers, typically 

based on embedding particles such as iron, soft ferrite, iron-silicon alloys, iron-nickel alloys (Jolly 

et al., 1996). These soft-magnetic materials have low coercivity and do not retain remanent 

magnetization once the external magnetic field has been removed (Bertotti, 1998). Recently, 

particles of high-coercivity ferromagnetic materials or hard-magnetic materials (such as NdFeB, 

hard ferrite, alnico alloys, samarium-cobalt) have been used to fabricate hard-magnetic active 

elastomers (HMAEs). These new magnetoactive composites showed programmable and complex 

shape transformations at low magnetic fields (Kim et al., 2018; Lum et al., 2016; Montgomery et 

al., 2020; Yan et al., 2021b). Once exposed to a large magnetic field, hard-magnetic materials retain 

their magnetization even after removing the external field. The high coercivity allows the hard-

magnetic materials to sustain their remanent magnetization over a wide range of applied magnetic 

fields (that are below the coercive field strength). When the applied magnetic field is not aligned 

with the magnetization direction of the hard-magnetic particles, the induced magnetic torque acts to 

align the particle’s magnetization direction with the applied field, leading to deformation of the 

HMAE composite. The remote and reversible shape-transformative behavior of HMAEs has 

enabled functionalities in areas such as soft robotics (Cui et al., 2019; Hu et al., 2018), biomedicine 

(Wang et al., 2021), and mechanical metamaterials (Chen et al., 2021) , self-assembly and self-

organization (Piranda et al., 2021), and actuation (Bowen et al., 2015; Crivaro et al., 2016). To 

describe the behavior of the materials, Zhao et al. (2019) proposed a phenomenological model for 

ideal HMAEs. In the model, the magnetic flux density in the material is assumed to be linear with 

the external field strength, with the permeability constant equal to that of the vacuum. Yan et al. 

(2021a) have extended the model to both uniform and non-uniform magnetic fields. Garcia-

Gonzalez and Hossain (2021) have proposed a lattice-based model that incorporates information of 

the particles’ distribution into the constitutive formulations. A recent review by Lucarini et al. (2022) 

summarizes the development in the field of HMAEs. 

The material tunability by a remotely magnetic field – either through property modification or 

induced deformation – holds the intriguing potential for designing metamaterials for elastic wave 

manipulation. The foundation of the analysis of infinitesimal motion superimposed on finite 

deformations can be found in the work of Green et al. (1952), further developed by Ogden (2007), 

and is widely adopted as “small-on-large” theory (Bertoldi and Boyce, 2008; Guo et al., 2017; Guo 

et al., 2022; Norris and Parnell, 2012; Rudykh and Boyce, 2014). Here, we employ the small-on-
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large framework to examine the propagation of small-amplitude elastic waves in finitely deformed 

magnetoelastic materials. Following the work by Maugin (1981), providing the governing equations 

for magnetoelastic waves in magnetizable deformable materials, the nonlinear surface waves (Abd‐

Alla and Maugin, 1987; Hefni et al., 1995) and inhomogeneous plane waves (Boulanger, 1989) have 

been studied. Based on the formulation of Dorfmann and Ogden (2004), Destrade and Ogden (2011) 

examined the small-amplitude plane harmonic waves in the finitely strained magnetoelastic material. 

Saxena and Ogden (2011; 2012) studied the Rayleigh surface and Love waves propagating in a 

finitely strained isotropic and layered half-space magnetoelastic solid immersed in a magnetic field. 

Recently, Karami Mohammadi et al. (2019) have investigated transverse elastic wave propagation 

in finitely deformed bi-phase periodic magnetoelastic layered composites, and illustrated the shear 

wave bandgap tunability by magnetically induced deformation. However, these aforementioned 

works considered soft-magnetic active elastomers, while little is known about the wave propagation 

in HMAE medium.  

In this work, we investigate the finite deformation and superimposed small-amplitude 

transverse elastic waves in bi-phasic layered HMAEs with remanent magnetization. We study the 

magnetostriction of the periodic layered HMAEs and derive the expression for the induced 

deformation as a function of the applied magnetic field, mechanical and magnetic properties of the 

phases, and their volume fractions. Moreover, we analyze the influences of the applied magnetic 

field and material parameters – especially the remanent magnetization – on the shear wave band 

gaps in the HMAE laminates. 

2 Theoretical Background  

2.1 Nonlinear magneto-elasticity 

Consider a magnetoelastic deformable solid occupying domain Ω0 in the reference 

configuration where no magnetic and mechanical fields are applied. Under the action of combined 

magnetic and mechanical loadings, the magnetoelastic solid occupies a deformed configuration 

denoted as Ω. The deformation is described by a function x = x(X) that maps the material point X 

from the reference state to the new position x in the deformed state. The deformation gradient is 

thus defined as /= ∂ ∂F x X . For incompressible solids, det 1J ≡ =F . 

Here, we follow the work by Dorfmann and Ogden (2004) and denote by B, H, and M, 
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respectively, the magnetic induction, the magnetic field, and the magnetization in the deformed 

configuration. They are related as 

 ( )0µ= +B H M , (1) 

where the constant µ0 is the magnetic permeability in a vacuum. Neglecting electrical, thermal, and 

relativistic effects, the quasi-static Maxwell equations in terms of the magnetic induction B and the 

magnetic field H in the deformed state, can be written as 

 div 0    and    curl= =B H 0 . (2) 

Here and thereafter, the upper case first letter denotes the differential operator in the reference 

configuration, whereas the lower case denotes the ones in the deformed configuration. The 

magnetostatic equations in the reference configuration are 

 Div 0    and    CurlL L= =B H 0 , (3) 

where 1
L

−= ⋅B F B  and T
L = ⋅H F H  are the Lagrangian counterparts of the magnetic induction 

and the magnetic field, respectively.  

Following the work of Kovetz (2000), the magnetization is defined in terms of the specific 

free-energy density φ (F, B) as 

 ( ),φ
ρ

∂
= −

∂
F B

M
B

, (4) 

where ρ is the density in the deformed configuration. The total Cauchy stress σ   can then be 

written in the form 

 ( ) ( )
, T Mφ

ρ
∂

= + ⋅ − ⊗ +
∂
F B

σ F M B I M B T
F

, (5) 

where  

 ( )
0 0

1 1
2

M

µ µ
= ⊗ − ⋅T B B B B I  (6) 

is the so-called Maxwell stress. The specific free-energy density in the Lagrangian form is defined 

as ( ) ( ), ,L LφΦ =F B F FB . In terms of Φ, an “amended” free-energy function has been proposed by 

Dorfmann and Ogden (2004) 

 ( ) ( )0
0

, ,
2
L L

L LW ρ
µ
⋅

= Φ +
FB FBF B F B , (7) 

where ρ0 = ρ (J = 1) is the density in the reference configuration. Thus, the total first Piola-Kirchhoff 
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stress tensor P, and Lagrangian magnetic field HL are 

 
( ) ( ), ,

    and     L LT
L

L

W W
p −∂ ∂

= − =
∂ ∂
F B F B

P F H
F B

. (8) 

Here, p is the Lagrange multiplier introduced due to the incompressibility constraint. 

Correspondingly, the total Cauchy stress tensor is  

 
( , ) TLW p∂

= −
∂
F Bσ F I
F

. (9) 

Under the quasi-static condition and in the absence of body forces, the total Cauchy and first Piola-

Kirchhoff stresses satisfy the following equilibrium equations 

 div     and    Div= =σ 0 P 0 . (10) 

2.2 Incremental motions 

Next, we consider an infinitesimal incremental motion superimposed on the deformed state. 

We denote the incremental changes in F, p, P, BL, and HL as F , p , P , LB , and LH , respectively. 

According to Eq. (8), the linearized constitutive relations can be written as 

 0 0

0 0

:

:

T T T T
L

L L

p p− − −= + ⋅ − + ⋅ ⋅

= + ⋅

P F B F F F F

H F K B



   



  




 (11) 

where  

 
2 2 2

0 0 0,  ,  
L L L

W W W∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
K

F F F B B B
  . (12) 

The “push-forward” counterparts (in the deformed configuration) of the incremental changes P , 

LB , and LH  are  

 ,    and    T T
L L

−= ⋅ = ⋅ = ⋅σ P F B F B H F H    

 , . (13) 

Denoting =u x  as the infinitesimal incremental displacement superimposed on the deformed state, 

the incremental constitutive laws in Eq. (11) becomes 

 :
:

Tp p= + ⋅ − +

= + ⋅

σ U B I U
H U K B





 

 




 (14) 

where 1grad −= = ⋅U u F F . The incompressibility constraint yields 
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 tr div 0= =U u . (15) 

The updated tensors of the magnetoelastic moduli in Eq. (14) are  

 
0

1
0

1
0

ijkl irks jr ls

ijk irm jr mk

T

F F

F F −

− −

=

=

= ⋅ ⋅K F K F

 

    (16) 

The corresponding incremental equations of motion are 

 ,div ,   div 0,    and    curlttρ= = =σ u B H 0 

 . (17) 

We consider steady-state small amplitude waves propagating in the deformed magnetoelastic 

medium. Following Destrade and Ogden (2011), the solution for Eq. (17) can be written in the form 

of plane waves with constant polarization 

 
 ( )
 ( )
( )

f ct
q ct

p ct

= ⋅ −

= ⋅ −
= Π ⋅ −

u g n x
B d n x

n x





 (18) 

where g and d are constant unit vectors denoting polarizations, f, q, and Π are single-variable 

functions with respect to the argument ct⋅ −n x , and n is the constant unit vector denoting the 

direction of propagation. The use of the incompressibility constraint in Eq. (15) and the incremental 

motion of Eq. (17)2 yields 

 0    and    0⋅ = ⋅ =g n d n . (19) 

3 Results and Examples 

3.1 Energy density function for HMAEs 

Due to the relatively large coercivity, hard-magnetic materials can retain high remanent 

magnetization even in the absence of an externally applied magnetic field once they are saturated. 

The high coercivity further allows the magnetic materials to sustain the remanent magnetization 

over a wide range of applied magnetic fields (below the coercivity level). The magnetic behavior of 

the HMAEs can be approximated by a linear function when the applied magnetic field is below the 

coercivity level (Zhao et al., 2019).  
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Fig. 1 The illustration of typical magnetic hysteresis behavior of HAMEs in terms of (a) the B-H 

curve and (b) the M-H curve. Here, a linear hard-magnetic behavior is assumed for the applied 

magnetic field far below the coercivity. The slopes of the linear regions on the B-H and M-H curves 

are µrµ0 and µr -1, respectively, where µ0 is the permeability of vacuum and µr is the relative 

magnetic permeability. 

As illustrated in Fig. 1a, we assume that the magnetic induction B of the HMAEs is linearly 

related to the applied magnetic field H when the field strength is small enough relative to the 

coercivity level (Lovatt and Watterson, 1999), namely 

 r µ= +B B H , (20) 

where Br is the remanent induction and is related to the remanent magnetization Mr by Br = µ0Mr. 

The combination of Eqs. (1) and (20) yields 

 ( )1r rµ= − +M H M , (21) 

where µr = µ / µ0 is the relative magnetic permeability. The idealized magnetization loop with the 

linear region represented by Eq. (21) is illustrated in Fig. 1b. Alternatively, the magnetization can 

be expressed with respect to the magnetic induction 

 
0

1
r

r

χ
µ µ

= +
BM M , (22) 

where ( )0 /χ µ µ µ= −  is the magnetic susceptibility. Based on Eq. (22), the specific free-energy 

function can be written as 

 
0

1 1( , )
2e r

r

wρφ χ
µ µ

= − ⋅ − ⋅F B B B B M , (23) 

where ew  denotes the purely elastic response of the HMAEs. The constructed specific free-energy 

function satisfies Eq. (4). Therefore, the Lagrangian form of the specific free-energy function is  
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 ( ) ( )0
0

1 1,
2L e L L L Lr

r

Wρ χ
µ µ

Φ = − ⋅ − ⋅F B F FB FB FB RM , (24) 

where We(F) can be defined by the appropriate hyperelastic energy potentials. In Eq. (24), MLr is 

the remanent magnetization in the Lagrangian description. It is related to the remanent 

magnetization in the deformed configuration via RMLr = Mr, where R is the rotational component 

of the deformation gradient F. Such a definition is adopted since the remanent magnetization Mr in 

the deformed configuration is determined by the rotations of the HMAEs, independently of stretches. 

This relation has been examined by Mukherjee et al. (2021) through full-field homogenization 

simulations, agreeing with the experimental observations (Danas et al., 2012). Recalling Eq. (7), 

the Lagrangian amended energy function can be written as  

 ( ) 1 1( , )
2L e L L L Lr

r

W W
µ µ

= + ⋅ − ⋅F B F FB FB FB RM . (25) 

Upon substitution of Eq. (25) into Eq. (9), the total Cauchy stress in the HMAEs is evaluated as 

 ( ) 1 1eT T
r

r

W
p

µ µ
∂

= = − + ⊗ − ⊗
∂

F
σ PF F I B B M B

F
. (26) 

3.2 HMAE laminates 

Consider periodic laminates consisting of two isotropic incompressible alternating HMAE 

phases with volume fractions v(1) and v(2) = 1- v(1). Denoting the periodic constant of the undeformed 

laminate as L, the alternating layer thicknesses will be L(1) = v(1)L and L(2) = v(2)L, respectively (see 

Fig. 2a).  

 

Fig. 2 HMAE laminates with bi-phasic layered microstructure in (a) the reference (undeformed) 

state, and (b) the magnetic field induced deformed state; (c) a representative unit cell.  
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We consider the case when the remanent magnetizations in the laminates are in the same 

direction as the applied field (in the e2 direction; see Fig. 2b), namely 

 (1) (1) (2) (2)
2 2    and    r r r rM M= =M e M e . (27) 

Under the action of the applied field, the laminate stretches along the e2 direction. In the deformed 

laminate, the layer thicknesses become 

 (1) (1) (1) (2) (2) (2)
2 2 2,    ,    and    l L l L l Lλ λ λ= = = , (28) 

where (1)
2λ  and (2)

2λ  are the phase stretch ratios in the e2 direction and (1) (1) (2) (2)
2 2 2v vλ λ λ= + . Here 

and thereafter, the parameters of the alternating layers are denoted as (•)(1) and (•)(2), respectively. 

The average deformation gradient and Eulerian magnetic induction are defined as 

 ( )(1) (1) (2) (2) 1/2
2 2 2 2v v λ λ −= + = ⊗ + − ⊗F F F e e I e e  (29) 

and 

 (1) (1) (2) (2)
2v v B= + =B B B e , (30) 

respectively. The displacement continuity condition along the interface between the layers enforces 

 (1) (2)( )− ⋅ =F F s 0 , (31) 

where s is an arbitrary unit vector perpendicular to n (the unit vector denoting the lamination 

direction; see Fig. 2a). Using Eq. (31) and the symmetry of the deformation gradient defined in Eq. 

(29) with the phase incompressibility, we obtain (1) (2)
2 2λ λ λ= =  . Therefore, the deformation 

gradients in alternating phases are 

 ( )(1) (2) 1/2
2 2 2 2λ λ −= = ⊗ + − ⊗F F e e I e e . (32) 

The traction continuity condition across the interface between the layers implies that 

 (1) (2)( )− ⋅ =σ σ n 0 . (33) 

Moreover, in the absence of free current at the interface, the jump conditions for the Eulerian 

magnetic induction and magnetic field are 

 (1) (2) (1) (2)( ) 0    and    ( )− ⋅ = − × =B B n H H n 0 . (34) 

Using the magnetic induction jump condition (34)1, for the macroscopically applied magnetic load 
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defined in Eq. (30), we obtain 

 (1) (2)
2B= =B B e . (35) 

3.3 Magneto-deformation 

Consider the laminates consisting of HMAE phases, whose constitutive behavior is governed 

by the energy function (25); we assume that their purely elastic response is expressed as a function 

of the first invariant of the right Cauchy-Green deformation tensor ( )( ) ( ) ( )Tξ ξ ξ= ⋅C F F , namely 

 ( ) ( )( ) ( ) ( ) ( )
1e eW Iξ ξ ξ ξΨ=F , (36) 

where ( ) ( ) ( )
1 :I ξ ξ ξ= F F . Thus, the stress field in the layer ξ  ( 1, 2ξ = ) is  

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 ( ) ( )

1 12
T

r
r

pξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξΨ

µ µ
= ⋅ − + ⊗ − ⊗σ F F I B B M B , (37) 

where ( ) ( ) ( )
1 1/e Iξ ξ ξΨ Ψ= ∂ ∂ . The nonzero stress components are 

 

( ) ( ) ( ) 1 ( )
11 33 1

2
( ) ( ) 2 ( ) ( )
22 1 ( ) ( )

2      and

12 r
r

p

Bp M B

ξ ξ ξ ξ

ξ ξ ξ ξ
ξ ξ

σ σ Ψ λ

σ Ψ λ
µ µ

−= = −

= − + −
 (38) 

We assume that the HMAE laminate is surrounded by a vacuum, and no mechanical loadings are 

applied. The stress field jump condition across the interface between the laminate and vacuum yields 

 (1) (1) (2) (2)
mv v ∗+ =σ σ σ , (39) 

where  

 ( )
0

1 1
2m µ

∗ ∗ ∗ ∗ ∗ = ⊗ − ⋅ 
 

σ B B B B I  (40) 

is the Maxwell stress in the vacuum. Once again, the magnetic induction jump condition across the 

interface between the laminate and vacuum enforces 2B∗ = =B B e .  

For simplicity, we consider that the purely elastic response of the HMAE phases is dictated by 

the neo-Hookean model, namely 

 ( ) ( )
( )

( ) ( ) ( )
1 1 3

2e
GI I

ξ
ξ ξ ξΨ = − , (41) 

where G(ξ) is the shear modulus. Using Eqs. (33) and (38)-(41), we obtain  
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( )

2
1 (1) (1) (2) (2)

0
2 2

( ) 2 ( ) ( )
( ) ( )

0

       and
2

1
2r

r

BG v p v p

B BG p M Bξ ξ ξ
ξ ξ

λ
µ

λ
µµ µ

− − + = −

− + − =
 (42) 

where (1) (1) (2) (2)G v G v G= + . By eliminating the Lagrange multipliers from Eq. (42), we obtain the 

expression of the induced deformation as a function of the magnetic induction, mechanical and 

magnetic properties of layers, and their volume fractions, namely 

 ( )
(1) (1) (2) (2)2

2 1
(1) (2)

0

1 1 r r
r

r r

v M v MB B
G G

λ µ
λ µ µ µ

−  
− = − + + 

 
 , (43) 

where  

 
1(1) (2)

(1) (2)r
r r

v vµ
µ µ

−
 

= + 
 

 . (44) 

Defining the normalized magnetic induction as 0/nB B Gµ=   and normalized remanent 

magnetization as ( ) ( )
0/ /n rM M Gξ ξ µ= , Eq. (43) can be written as 

 ( )
(1) (1) (2) (2)

2 2 1
(1) (2)

1 1 n n
n r n

r r

v M v M
B Bλ µ

λ µ µ
−  

− = − + + 
 

 . (45) 

Note that for the case ( )
nM ξ  = 0, expression (45) reduces to the result corresponding to the 

case for the laminate with soft-magnetic active elastomers (Pathak et al., 2022), namely 

 ( )2 2 11 1n rBλ µ
λ

−− = −  . (46) 

In this case of the soft-magnetic laminate, the application of the external magnetic fields leads to 

stretching in the e2 direction. 
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Fig. 3 Magnetic field-induced stretch λ as a function of the normalized magnetic induction 

0/nB B Gµ= . The normalized remanent magnetization of layer 1 is fixed at (1) 1nM = − , and the 

normalized remanent magnetization of layer 2 takes the value of (a) (2) 0.2nM = + , (b) (2) 0.6nM = + , 

(c) (2) 1.0nM = +  , and (d) (2) 1.5nM = +  , correspondingly. The volume ratio and shear modulus 

contrast are v(1) = 0.5 and G(1)/G(2) = 15, respectively. 

Figure 3 shows the dependence of the induced stretch λ on the magnetic induction for various 

levels of initial magnetization (2)
nM ; the normalized remanent magnetization of layer 1 is (1) 1nM = − . 

The results are given for HMAE laminates with volume ratio v(1) = 0.5, and shear modulus contrast 

G(1)/G(2) = 15. First, when (2)
nM  takes a relatively small positive value (for example, (2) 0.2nM = +  

in Fig. 3a or (2) 0.6nM = +  in Fig. 3b), compressive deformation (i.e., λ < 1) developed under a low 

magnetic induction level (see the red and blue curves in Fig. 3a and b). From a physical point of 

view, at a low magnetic induction level, the magnetic stress in the HMAE phases is dominated by 
( ) ( ) ( )/r r
ξ ξ ξµ− ⊗M B , which is positive in layer 1 and negative in layer 2. Since (1)

nM  is much larger 

than (2)
nM  , the resulting magnetic stress inside the laminate is positive. At a small magnetic 

induction level, the resulting positive magnetic stress is larger than the Maxwell stress m
∗σ  outside 

the laminate. To satisfy the mechanical traction-free boundary conditions, the magnetic stress inside 

the laminate is partially compensated by a compressive (negative) mechanical stress, resulting in 

the compressive deformation. However, as the magnetic induction further increases, the magnetic 

stress in the HMAE phases is dominated by ( ) ( ) ( )/ξ ξ ξµ⊗B B , which is smaller than the Maxwell 
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stress m
∗σ   outside the laminate, thus, tensile (positive) mechanical stress develops inside the 

laminate and stretch deformation is observed. Note that, for the case (1) (2) 1.0r rµ µ= =  which means 

the permeability of the HMAE phases equals that of the vacuum surrounding the laminate, only 

compressive deformation develops (see the black curves in Fig. 3a and b). This is because the 

magnetic stress inside the laminate is always larger than the Maxwell stress m
∗σ   outside the 

laminate due to the positive magnetic stress component (1) (1) (1)/r rµ− ⊗M B . Second, when the value 

of (2)
nM  is equal to (e.g., (2) 1.0nM = + , see Fig. 3c) or greater (e.g., (2) 1.5nM = + , see Fig. 3d) than 

the absolute value of (1)
nM , only stretch deformation occurs (see the red and blue curves in Fig. 3c 

and d) because the magnetic stress inside the laminate is smaller than the Maxwell stress m
∗σ  

outside the laminate due to negative magnetic stress component (2) (2) (2)/r rµ− ⊗M B . In particular, 

for the case (2) 1.0nM = +  and (1) (2) 1.0r rµ µ= = , no deformation occurs in the laminate (see the black 

line in Fig. 3c), since the magnetic stress components (1) (1) (1)/r rµ− ⊗M B   and (2) (2) (2)/r rµ− ⊗M B  

canceled each other, thus, the magnetic stress inside the laminate equals the Maxwell stress m
∗σ  

outside the laminate.  

 
Fig. 4 Magnetic field-induced stretch λ as a function of the normalized magnetic induction

0/nB B Gµ=   for (a) (1) (2) 2.5n nM M= = +   and (b) (1) (2)2.0,  4.0n nM M= + = +  . The volume ratio 

and shear modulus contrast are v(1) = 0.5 and G(1)/G(2) = 15, respectively. 

Figure 4 shows the dependence of the induced stretch λ on the magnetic induction for laminates 

in which the remanent magnetizations of both phases are positive (i.e., in the same direction of 

magnetic induction). The results are given for HMAE laminates with volume ratio v(1) = 0.5, and 

shear modulus contrast G(1)/G(2) = 15. One can see that when the remanent magnetization ( )
nM ξ  

takes relatively large positive values, the stretch λ exhibits a richer evolution phenomenon with the 

change of relative permeability ( )
r
ξµ . Consider the case of (1) (2) 2.5n nM M= = + , as an example: at a 

relatively small magnetic induction Bn, the stretch λ becomes smaller when the relative permeability 
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( )
r
ξµ  takes a larger value (see Fig. 4a). However, after reaching a transition point at Bn = 2.5, the 

stretch λ increases correspondingly as the relative permeability ( )
r
ξµ  takes larger values. Similar 

phenomenon is observed in the laminate with (1) (2)2.0,  4.0n nM M= + = +  (see Fig. 4b, the transition 

point is at Bn = 3.0). The reason is as follows. When ( )
nM ξ is positive, increasing ( )

r
ξµ  leads to an 

increase of the magnetic stress component ( ) ( ) ( )/r r
ξ ξ ξµ− ⊗M B  and a decrease of the magnetic stress 

component ( ) ( ) ( )/ξ ξ ξµ⊗B B . At a low magnetic induction level, the component ( ) ( ) ( )/r r
ξ ξ ξµ− ⊗M B  

dominates the magnetic stress, thus, the magnetic stress inside the laminate increases with an 

increment in relative permeability ( )
r
ξµ . However, the Maxwell stress m

∗σ  does not change with 

HAME’s magnetic properties, that is, the total stress inside the laminate also remains constant. 

Therefore, an increase in magnetic stress is compensated by a decrease in mechanical stress. Thus, 

the laminate undergoes comparatively smaller deformation as the relative permeability ( )
r
ξµ  

increases. By contrast, for Bn larger than a critical value, the magnetic stress component 
( ) ( ) ( )/ξ ξ ξµ⊗B B  dominates the magnetic stress, thus, the stretch increases with an increment in 

relative permeability ( )
r
ξµ . Be noted, due to the presence of remanent magnetization in the HMAE 

laminate, Bn = 0 does not mean that the external applied magnetic field equals zero. The relation 

between the magnetic induction inside the laminate and the external applied magnetic field is 

provided in Appendix A. 

3.4 Transverse elastic wave propagation in HMAE laminates 

In this section, we consider incremental waves propagating perpendicularly to the layers (i.e., 

n = e2; see Fig. 2c) in the laminate subjected to macroscopically applied magneto-mechanical loads 

defined in Eq. (29) and Eq. (30). By substituting Eqs. (14), (16), (18), (19), (32) and (35) into 

(17), we have  

 ( ) ( )
2 ( ) 2 ( )2 ( ) 2 ( ) ( )2 2( ) ( )3 31 1

2 2 2 2
22 2

,   0,   and   
u uu u pc c

xt x t x

ξ ξξ ξ ξ
ξ ξ∂ ∂∂ ∂ ∂

= = =
∂∂ ∂ ∂ ∂


, (47) 

where  

 ( ) ( ) ( )
12 /c ξ ξ ξλ Ψ ρ= . (48) 

The magnetoelastic moduli tensors for the HMAE phases are given in Appendix B. 

Next, substituting Eqs. (15), (16), (18), (19), (32) and (35) into (14) yields 
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( ) ( )
( ) 2 ( ) ( )1 1
12 1 1( )

2 2

( ) ( )
22

( ) ( )
( ) 2 ( ) ( )3 3
32 1 3( )

2 2

2

2

u uB B B
x x

p

u uB B B
x x

ξ ξ
ξ ξ ξ

ξ

ξ ξ

ξ ξ
ξ ξ ξ

ξ

σ λ Ψ
µ

σ

σ λ Ψ
µ

 ∂ ∂
= + + ∂ ∂ 
= −

 ∂ ∂
= + + ∂ ∂ 





 





 (49) 

and 

 

( )
( ) ( )1
1 1( )

2

( )
( ) ( )3
3 3( )

2

1

1

uH B B
x

u
H B B

x

ξ
ξ ξ

ξ

ξ
ξ ξ

ξ

µ

µ

 ∂
= + ∂ 

 ∂
= + ∂ 

 

 

 (50) 

The incremental jump conditions across the interface between alternating layers (at x2 = 0) 

corresponding to Eqs. (33) and (34)2 are 

 
(1) (2) (1) (2) (1) (2)
12 12 22 22 32 32

(1) (2) (1) (2)
1 1 3 3

,    ,    

,   H H H H

σ σ σ σ σ σ= = =

= =

     

   

 (51) 

Substitution of Eqs. (49) and (50) into Eq. (51) yields 

 
2 2 2 2

(1) (2)(1) (2)
(1) (2) (1) (2)3 31 1

1 1 1 1
2 2 2 20 0 0 0

,     
x x x x

u uu u
x x x x

Ψ Ψ Ψ Ψ
= = = =

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂
. (52) 

We seek a solution for Eq. (47)1 in the form 

 
( ) ( )

2 2( ) ( )( ) ( ) ( )
1

i k x t i k x tu A e A e
ξ ξω ωξ ξ ξ− − −

+ −= + , (53) 

where ω is the angular frequency, and ( ) ( )/k cξ ξω=   is the wavenumber. The perfect bonding 

condition between alternating layers enforces 

 
2 2

(1) (2)
1 10 0x x

u u
= =

= . (54) 

Substituting Eq. (53) into Eqs. (52)1 and (54) respectively yields 

 (1) (1) (2) (2) 0A A A A+ − + −+ − − =  (55) 

and 

 
(1) (1) (1) (1) (2) (2) (2) (2)

1 1 1 1
(1) (1) (2) (2) 0A A A A

c c c c
Ψ Ψ Ψ Ψ+ − + −− − + = . (56) 
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Two additional equations for (1)A+ , (1)A− , (2)A+ , and (2)A−  will be obtained from the Bloch theorem 

as follows. Rewriting the plane wave solution in Eq. (53) as the Bloch waveform 

 2( )( ) ( )
1 1 2( ) i kx tu U x e ωξ ξ −= , (57) 

where 

 
( ) ( )

2 2( ) ( ) ( )
1 2( ) iK x iK xU x A e A e

ξ ξξ ξ ξ− +−
+ −= + , (58) 

and ( ) ( )K k kξ ξ
± = ± . According to the Bloch theorem, ( )

1 2( )U xξ  must be a periodic function with 

the period equal to the lattice constant (1) (1)l l l= + . Recalling the unit cell shown in Fig. 2c, we have 

 (1) (1) (2) (2)
1 1( ) ( )U l U l− = . (59) 

Substituting Eq. (58) into Eq. (59) yields 

 
(1) (1) (1) (1) ( 2) ( 2) ( 2) ( 2)(1) (1) (2) (2) 0iK l iK l iK l iK le A e A e A e A− + − +− −

+ − + −+ − − = . (60) 

Next, Substituting Eq. (57) and 2( )( ) ( )
1 1 2( ) i kx tB d x e ωξ ξ −=   into Eqs. (50)1 and (49)1 respectively 

yields 

 ( )
2

( ) ( )
2 2

( )( ) ( )
1 1 2

( ) ( ) ( ) ( )
1 2 1 2( ) ( )

( )
1( ) ( )

i kx t

iK x iK x

H x e
ix B A e A e d x
c

ξ ξ

ωξ ξ

ξ ξ ξ ξ
ξ ξ

ω
µ

− +

−

−
+ −

=

 = − +  







 (61) 

and  

 ( )
2

( ) ( )
2 2

( )( ) ( )
12 1 2

( ) 2 ( ) ( ) ( ) ( )
1 2 1 1 2( )

( )

( ) 2 ( )

i kx t

iK x iK x

x e
ix A e A e B x
c

ξ ξ

ωξ ξ

ξ ξ ξ ξ ξ
ξ

σ
ωλ Ψ − +

−

−
+ −

=

= − +



 



 (62) 

The Bloch theorem implies 

 

(1) (1) (2) (2)
1 1

(1) (1) (2) (2)
1 1
(1) (1) (2) (2)
1 1

( ) ( )
( ) ( )
( ) ( )

l l
l l

d l d l

− =

− =

− =

 

   (63) 

Finally, substituting Eq. (62) into Eq. (63) yields 

 
(1) (1) (1) (1) ( 2) ( 2) ( 2) ( 2)

(1) (1) (2) (2)
(1) (1) (2) (2)1 1 1 1

(1) (1) (2) (2) 0iK l iK l iK l iK le A e A e A e A
c c c c

Ψ Ψ Ψ Ψ
− + − +− −

+ − + −− − + = . (64) 
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Combination of Eqs. (55), (56), (60) and (64) yields 

 (1) (1) (1) (1) ( 2) ( 2) ( 2) ( 2)

(1) (1) (1) (1) ( 2) ( 2) ( 2) ( 2)

(1) (1) (2) (2)
1 1 1 1
(1) (1) (2) (2)

(1) (1) (2) (2)
1 1 1 1
(1) (1) (2) (2)

1 1 1 1

det
iK l iK l iK l iK l

iK l iK l iK l iK l

c c c c
e e e e

e e e e
c c c c

Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ

− + − +

− + − +

− −

− −

− − 
 
 − −
 

= 
− − 

 
 − −
  

0  (65) 

Recalling Eq. (48), Eq. (65) can be reduced to the following dispersion relation ω = ω(k), 

 ( )
(1) (2) (1) (1) (2) (2) (1) (2)

(1) (2) (2) (2) (1) (1) (1) (2)

1cos cos cos sin sin
2

l l c c l lkl
c c c c c c

ω ω ρ ρ ω ω
ρ ρ

         
= − +         

         
. (66) 

The layer thicknesses l(ξ) and phase velocity c(ξ) are functions of the stretch ratio as determined by 

Eq. (28) and Eq. (48), respectively. Note that the obtained dispersion relation for HMAE laminates 

(66) is identical to that for the purely elastic problem (Galich et al., 2017), and soft-magnetic 

laminates (Karami Mohammadi et al., 2019). However, the dependence of the stretch on the applied 

magnetic field differs, resulting in different tunability of the dispersion curves for the different 

material systems. To illustrate the dependence, one should consider a material model with a 

stiffening effect (see the discussion of the results for neo-Hookean HMAE laminates in Appendix 

C). To this end, we consider the HMAE laminate with the phases whose elastic response is dictated 

by the Gent model, namely 

 ( )
( ) ( ) ( )

( ) ( ) 1
1 ( )

3ln 1
2

m
e

m

G J II
J

ξ ξ ξ
ξ ξ

ξΨ
 −

= − − 
 

, (67) 

where ( )
mJ ξ   is the locking parameter; here, we assume that both phases are characterized by 

identical locking parameters (1) (2)
m m mJ J J= =  . Referring to the steps of Eqs. (37) to (45), the 

expression for the induced deformation corresponding to the Gent model is 

 
( ) ( )

2 1 (1) (1) (2) (2)
2 1

2 1 (1) (2)1
3 2

m n n
n r n

m r r

J v M v M
B B

J

λ λ
µ

λ λ µ µ

−
−

−

−  
= − + + + − −  

 . (68) 

Submitting Eq. (67) into Eq. (48) yields the corresponding phase velocity 

 
( )

( )
( ) 2 13 2

m
G

m

JGc
J

ξ
ξ

ξλ
ρ λ λ −=

+ − −
. (69) 
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Fig. 5 Tunability of band gap for transverse waves in HMAE laminates with Gent phases; the 

geometric and material parameters are v(1) = 0.5, ρ(1)/ρ(2) = 1.0, G(1)/G(2) = 15, and (1) (2) 1.0r rµ µ= = . 

(a) The dispersion curves at Bn = 0, with the transverse wave band gaps highlighted by the shaded 

areas. The evolution of the transverse wave band gaps versus Bn for (b) (1) (2)1.0,  0.5n nM M= − = − , 

and (c) (1) (2)1.0,  0.5n nM M= + = + . The frequency is normalized as ( )/ 2 /nf L Gω π ρ=  . 

By making use of Eqs. (28), (66), (68), and (69), band structure diagrams for transverse 

waves in the HMAE laminate with alternating Gent phases subjected to the magnetic field 

perpendicular to the layers are constructed. Figure 5 illustrates the results for the laminates with v(1) 

= 0.5, ρ(1)/ρ(2) = 1.0, G(1)/G(2) = 15, and (1) (2) 1.0r rµ µ= = ; the reported frequency is normalized as 

( )/ 2 /nf L Gω π ρ=   , where (1) (1) (2) (2)v vρ ρ ρ= +   and ( ) 1(1) (1) (2) (2)/ /G v G v G
−

= +  . Figure 5a 

displays the dispersion curves at Bn = 0. In the reported frequency range, four transverse wave band 

gaps are observed, as highlighted by the shaded areas. The dependence of the transverse wave band 

gaps on the magnetic induction Bn is shown in Fig. 5b for laminate with phase magnetizations 
(1) 1.0nM = −  and (2) 0.5nM = − , and in Fig. 5c for laminate with phase magnetizations (1) 1.0nM = +  

and (2) 0.5nM = + . The magnetic excitation widens and shifts transverse wave band gaps toward 

higher frequencies. The external magnetic excitation leads to a compression in the laminate with 

phase magnetizations (1) 1.0nM = −   and (2) 0.5nM = −  , and stretching in the laminate with phase 

magnetizations (1) 1.0nM = +  and (2) 0.5nM = + . For instance, at Bn = 2.5, the induced deformation 

corresponding to the phase magnetizations (1) 1.0nM = −  and (2) 0.5nM = −  is λ = 0.729, shifting the 

lower boundary of the first bandgap from fn = 0.397 to 0.593 and widening it from △fn = 0.285 to 

0.426. By contrast, the induced deformation in the laminate with the phase magnetizations 
(1) 1.0nM = +  and (2) 0.5nM = +  is λ = 1.311 (at Bn = 2.5); the induced deformation shifts the lower 

boundary of the first bandgap from fn = 0.397 to 0.557 and widens it from △fn = 0.285 to 0.399. 

4 Conclusion 

In this paper, we investigated the behavior of hard-magnetic soft laminates with bi-phasic 
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layered microstructure. We considered the HMAE laminates subjected to a magnetic field 

perpendicular to the direction of the layers. First, we derived the expression for the magnetic field-

induced stretch of the HMAE laminates with remanent magnetizations. The induced stretch is 

expressed as a function of the volume ratio and the magnetoelastic constants (including the remanent 

magnetizations) of the HMAE phases. Remarkably, the results indicate that the HMAE laminate 

undergoes compressive deformation along the direction of the magnetic field when the direction of 

the remanent magnetizations in the phases is opposite to that of the applied magnetic field. This is 

in contrast to the previously considered laminates made out of soft-magnetic active elastomers, 

which can only develop tensile strains in the magnetic field direction.  

Second, we examined the propagation of shear waves in the HMAE laminates undergoing finite 

strains in the presence of an external magnetic field. Interestingly, the derived dispersion relation 

for HMAE laminates is identical to the one for the purely elastic setting and the one for laminates 

made of soft-magnetic active elastomers. We note that the bandgap of the shear waves propagating 

in the direction perpendicular to the layers in the HMAE laminate with neo-Hookean phases is 

independent of magnetic excitations. However, the dependence of the stretch on the applied 

magnetic field differs, resulting in different tunability of the dispersion curves for the different 

material systems. We illustrate this dependence by considering a material model with a stiffening 

effect; namely, we consider laminates with HMAE Gent phases. We show that the width and position 

of the shear wave band gaps in the HMAE laminates with remanent magnetizations can be tuned by 

a remotely applied magnetic field.  

The results can guide the design of novel materials with potential applications in remotely 

controlled wave manipulating devices. We note that the derived exact solutions are based on the 

material and geometry idealization and may not account for material (Hauseux et al., 2017; Hauseux 

et al., 2018; Rappel et al., 2019) or geometrical (Chen et al., 2019; Ding et al., 2021; Yu et al., 2022) 

uncertainties (or imperfections). These uncertainties in material properties and geometrical (the 

layer thickness and shape) parameters can affect the wave propagation characteristics in the HMAE 

laminates. Moreover, the imperfections of the interface or interphase between layers may be 

introduced in the material manufacturing processes (Arora et al., 2019). The influence of such 

uncertainties can be quantified through multi-field coupled stochastic analyses (Elouneg et al., 2021; 

Mazier et al., 2022).  
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Appendix A. The relation between the magnetic induction inside the 
HMAE laminate and external applied magnetic field 

Note that we consider an idealization of the periodic microstructure unit cells (shown in Fig. 

2) situated far from the specimen boundaries. Under this assumption, the magnetic fields can be 

considered to be homogeneous in each layer of the laminate and are determined by the jump 

conditions. According to Eqs. (20) and (30), the magnetic induction B inside the HMAE laminate 

can be expressed as the applied magnetic field H as follows, 

 ( ) ( )(1) (1) (2) (2) (1) (1) (2) (2)
0 r rB v v H v M v Mµ µ µ= + + + . (70) 

 

Appendix B. The magnetoelastic moduli tensors for the HMAE Phases 

We consider HMAE laminates with phases defined by the amended energy function in Eq. 

(25). By recalling Eq. (36), the tensors of magnetoelastic moduli defined in Eq. (16) are 

 

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 11 ( )

( ) ( ) ( ) ( )
|( ) ( )

( ) ( )  1 ( )
( )

12 2

1 1

1

ijkl ik lj ij kl ik l j

ijk jk r i ik j jk i
r

ij ki kj

b b b B B

M B B

K F F

ξ ξ ξ ξ ξ ξ ξ ξ
ξ

ξ ξ ξ ξ
ξ ξ

ξ ξ ξ
ξ

δ Ψ Ψ δ
µ

δ δ δ
µ µ

µ
−

= + +

= − + +

=



  (71) 

where ( ) ( ) ( )
1 1/e Iξ ξ ξΨ Ψ= ∂ ∂  and ( ) ( ) ( )

11 1 1/ Iξ ξ ξΨ Ψ= ∂ ∂  ; ( )
ljb ξ   is the component of the left Cauchy-

Green tensor ( )( ) ( ) ( ) Tξ ξ ξ= ⋅b F F , and ( )
|r iM ξ  is the component of the remanent magnetization ( )

r
ξM . 

According to Eq. (27), we have ( ) ( )
|1 |3 0r rM Mξ ξ= =  and ( ) ( )

|2r rM Mξ ξ= . 

 

Appendix C. Band structure for neo-Hookean HMAE laminates 

Consider that the purely elastic response of the HMAE phases is described by the neo-Hookean 
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model, submitting Eq. (41) into Eq. (48) yields 

 ( ) ( ) ( )/Hc Gξ ξ ξλ ρ= . (72) 

By making use of Eqs. (28), (45), (66), and (72), the dispersion diagrams for the neo-Hookean 

HMAE laminate can be constructed. Figure 6 shows the results for laminates with v(1) = 0.5, ρ(1)/ρ(2) 

= 1.0, and G(1)/G(2) = 15. The dispersion structure is presented in Fig. 6a, with the band gaps 

highlighted by the shaded areas. The evolution of the first four band gaps with respect to magnetic 

induction Bn is plotted in Fig. 6b. It can be found that the band gaps are indifferent to the applied 

magnetic field and induced deformation. The reason can be found by comparing Eq. (28) and Eq. 

(72), which indicates that the change in the geometry induced by deformation is identical to the 

change in phase velocity; this implies that the term ( ) ( )/l cξ ξ  in Eq. (66) keeps constant regardless 

of the value of the magnetic field and the magnetic parameters (including the relative permeabilities 

and the remanent magnetizations). Therefore, the band gap structures in Fig. 6 are true for any values 

in relative permeabilities and remanent magnetizations. To achieve magnetic field-induced 

tunability of the transverse wave band gaps, one should consider laminates with phases exhibiting 

stronger stiffening (Galich and Rudykh, 2017), for example, Arruda-Boyce or Gent phases. 

 
Fig. 6 Dispersion diagrams for transverse waves in HMAE laminates with neo-Hookean phases; the 

geometric and material parameters are v(1) = 0.5, ρ(1)/ρ(2) = 1.0, and G(1)/G(2) = 15. (a) Dispersion 

curves and (b) the evolution of the first four band gaps with respect to Bn. The frequency is 

normalized as ( )/ 2 /nf L Gω π ρ=  . 
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